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ABSTRACT

In this short note we give examples of degenerations of algebraic curves which are cyclic branched coverings of

degree 3 over the complex projective line and show the results of calculations of the monodromies around singular loci of

them. As an application, we construct symplectic representation of the Artin braid group.
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1 Introduction

In this short note, we study compact Riemann sur-
faces which are cyclic branched coverings of degree 3
over the complex projective line P/(C). Here we discuss
concrete examples of degenerations of such Riemann sur-
faces. The purpose of this note is to calculate monodromies
around singular loci explicitly for these examples. And , as
an application, we get a symplectic representation of Artin
braid group B, of n strings. ( For the definition of B,, refer,
for example, [B].)

First, we recall cyclic branched coverings of degree 3
over the complex projective line P}(C) and equivalence
problem of cyclic coverings which is due to M. Namba.

Let Py,--- ,Pg € P!(C) be six distinct points of the
complex projective line and B = {Py,---, Pg}). We study
here cyclic branched coverings over P!(C) which branches
at B. It is known that the fundamental group of the com-
plement is presentated as follows ( Cf. {M1], [M2], [N2]
and [N3]):

m(PC)NB) =<1, ¥slve 11 =1>.
Then we define a group ﬁomomorphism
®: 7 (P'(C)\ B) - S3,
where §'3 is the symmetric group of 3 letters, such as :
y)=(123)G=1,-,6).

Corresponding to kernel of @, there exists a cyclic cov-
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ering of degree 3
m: X - PY{O).

From the Riemann-Hurwitz formula, the genus of X
is 4 and the first homology group H,(X;Z) is isomorphic
to Z%8,

Let f(x) be a polynomial and n be a positive integer. Let
C be the Compact Riemann surface defined by

C:y" = fx)
The precise meaning of this is that C is a non-singular
model of the closure in P!(C) x P!(C) of the affine curve :
y" = f(x). Let

n:(x,y)~x
be the projection mapping. Through the mapping x, C
is considered as a cyclic covering of degree n over P!(C)
which branches at the zero points of f(x) = 0 or co.

For such cyclic coverings, M. Namba gave an answer for
the equivalence problem as follows ([N1]) :

Theorem 1.1 (Namba). Let s > 3 be an integer. Define
algebraic curves Cy and C; asa follows:

¢ iy
G

(x-ay) - (x-aj)
(x—=pB1)- - (x—Bs),

where a; and By are complex numbers satisfying a; #
ap (j# ) B # By (k% k).

Then C, is biholomorphic to C, if and only if there is an
automorphism T € Aut (P1 (C)) such that

T({ala" © Oy, 00)) = wly" . vBS’ OO}
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2 Examples of degeneration over isolated points

In this section we give examples of families of com-
pact Riemann surfaces which degenerate over some points
and show the result of calculation of the monodromies. Let
A be a domain of C.

Example 1. Let X = {X,},c, be the families of cyclic
coverings of degree 3 over P!(C) defined as :

X1={!l3=x5‘t}-

Let f
Lyt

: X — A be projection mapping defined as

For general 1 € A, X, are nonsingular curves of genus 4.
For ¢t = 0, Xy is a singular fiber. We take here 15 € A \ {0}
and fix it. For the convenience, we assume 15 € R,q. It
is natural that the fundamental group n;(A \ {0}, 1) acts on
H\(X,: Z). Let

My 2 mi(a\ (0}, 0) = Aut (H\(X,,; Z))

be the monodromy representation of f;.

Let 6¢ € m (A \{0), ) be a homtopy class of closed path
which starts from 19, rounds around 0 once in the counter-
clockwise direction and goes back to #,.

For &y, it is possible to compute M;(d;). We choose
suitable symplectic basis of H;(X,,;Z) and use the the
Reidemeister-Schreier method, then we have by direct cal-

culations :
0 1 -2 1 1 1 0 1
0 0 -2 0 0 1 1 1
0 -1 0 -1 0 0 1 O
0 0 -1t 1 0 0 0 1
M,(60) =
@)=\ 1 ) 0 2121 01 0
1 -2 2 -1 1 -1 0 -1
1 1 =5 0 0 2 2
01 0 -1 0 0 0 O

Let n be a positive integer and E, be the indentity matrix.
And let
0 -E
Jn = "
E, 0

In this calculations, considering the intersecton numbers
of the basis, we have chosen suitable basis of H(X,,; Z) so
that M,(do) € S, (4,Z). That is

Ja = "My(60) Ja M1(60).

So, as the result, we have a group homomorphism
My m(a\ {0}, 50) » §,(4,2).

Remarkl. From Theorem1.1, the moduli of X = {X,},cs
does not change along &, and #M,(&), the order of the
matrix, M,(dp) is finite. In fact the order is 15 .

Next we consider the following:

Example 2. Let 9 = {Y,};c. be the families of cyclic
coverings of degree 3 over P(C) defined as :

Y, = {y® = x(x + D(x + 2)(x + 3)(x + ).

Let , : 9 — A be projection mapping defined as
(xy,t)y—t.

For general t € A, Y, are curves of genus 4. Fort =
0,-1,-2,-3,00, Yo,Y_y,Y_3,Y_3,Y, are singular fibers.
We take here 15 € A \ {0,-1,-2, -3} and fix it. For the
convenience, we assume fp € R.q, as above. It is natural
that the fundamental group m;(a \ {0, -1, -2, -3}, %) acts
on H (Y,,;Z). Let

My m(a \ {0, -1,-2, —3}, to) - Aut(Hl(Y,o;Z))

be the monodromy representation of f,. Let g € mj(a \
{0, -1, =2, -3}, 1p) be a homtopy class of closed path which
starts from fg, rounds around O once in the counterclock-
wise direction and goes back to #. In the simimilar way
above (Example 1), it is possible to compute M>(). Di-
rect calculations show :

1 0 0 0 010 0
01 0 0 000 0
00 1 0 000 0
01 -2 1 000 1
Mm=16 6 o 0 100 o0
0 -1 -1 1 010 2
0 2 -1 200 1 -1
01 1 -1000 -1
1 0 0 00 1 0 0
0 -1 0 -1 0 1 2 -2
0 4 4 1 0 -1 1 -1
0 4 -3 0 0 1 -1 1
Mm=l6 6 6 01 0 0 o
0 4 6 4 0 -3 2 -3
02 -1 20 0 1 -1
02 0 -1 0 1 2 -1
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0 -1 -2 -1 1 1
10 -2 -1 1 1 2 2
2 -2 3 1 -1 -1 1 -1
2 2 2 0 1 1 -1 1
M=\ |y 4 2 1 2 a1
121 4 2 =2 -1 -1 1
2 -2 -4 2 2 2 5 4
-1 21 =2 -1 2 -l
0 1 -4 2 1 2 -1
2 0 -2 -1 -1 1 2 -2
1 =2 3 1 -2 - _
Mayo| L2 20 2 1 -1
a4 0-2 2 1 -1 <1 1 -
1 -1 4 2 -1 -1 -1
4 -2 -4 2 2 2 5 4
2 -1 -2 -1 -1 1 2 -1
0 0 0 0 1 0 0
0 -1 1 0 0 0 0
0 -1 0 0 0 0 0 0
0 0 0 -1 0 0 0 -1
M@=l 1 6 0 0 -1 0 0 o0
0 -2 -1 0 0 0 1 0
0 =1 3 0 0 -1 -1 0
0O 0 0 1 0 0 0 0

In this calculations, considering the intersecton numbers
of the basis, we have chosen suitable basis of H,(Y,,;Z) so
that My(n;) € S, (4,Z) for (j = 0, 1,2, 3, ). That is

Jo = "My(n1;) J4 Ma(ny).
So, as the result, we have a group homomorphism
M2 . ”](A \ {Oa —17 _23 _3]$ to) - Sp (47Z)'

Remark2. From Theoreml.1, the moduli of § = {V.}en
change along n; and #M2(n)) = .

3 Examples of degeneration along discriminant locus

In this section we consider examples of families of
compact Riemann surfaces which degenerate along the dis-
criminant locus and then give a symplectic representation
of the Artin braid group.
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Example 3. Let a = (ay, a3, a3, a4, as) € C. Next we
consider the families of cyclic 3-gonal curves 3 = {Z,}yecs
defined as :

Za={y’ = X + ayx* + axx® + asx® + asx + as).
Let f; : 3 — C° be projection mapping defined as
(xr,y,a) > aecC’,

Let A(f3) € € be the discriminant locus of f;. It is
known that ([D]):

1 (C°\ a(f)) = Bs,
where Bs is the Artin braid group. Through the above
isomorphism, we identify m (C5 \ A( f3)) with Bs.- Bs is
presented as follows:

<O, O4lOT k1T = O 1Ok Tk = 1,2,3) > .

Under the situation, it is also natural that m (C5 \ A( f3))
acts on Hy(Zy,; Z). Let

M;s : m(a\ (0}, 1p) = Aut(H((Z,,: Z))

be the monodromy representation of f;. For each o €
m (C5 \ A( f3)), direct caluculatios show:

1 000100 O
0 100 0O0O0 O
0 01 00O0O0 O
Ms(o) = 0 001 0O0O0C -0
-1 000000 O
0 000010 O
0 00 0O0COT1 O
0 00 0O0COO0O 1
1 0 -1 01 0 0O
0 1 1 0 0 0 OO
0.0 1 0 0 0 00O
Ms(os) = 0O 0 01 0 0 OO
-1 1 0 0 -1 0 OO
1 -1 0 01 1 0O
-1 1 -1 0 0 -0 10
0O 0 0 0 0O 0 01
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1 0 0 00000
0 0 -1 0011 0
0 -2 1 00010
Myon<|® 0 0 10000
0 0 0 012000
0 -3 1 00010
0 -1 -1 001 20
00 0 000 01
1 0 0 0 0000
01 0 0 0000
00 1 0 0000
00 -1 1 0000
M@=16 6 0 0 1000
0 -1 0 1 0101
01 -1 -1 0010
01 0 -10000

In this calculations, considering the intersecton numbers
of the basis, we have chosen suitable basis of Hy ('Z:.0 1 Z) so
that M3(ox) € S, (4,Z) for (k= 1,2,3,4). That is

Js = 'My(oi) Js Ma(07g).

So , as the result, we have a symplectic representaion of
the braid group Bs

M3 :Bs - S5,(4,Z).

References

[B] Joan S. Birman :

groups, Annals of Mathematics Studies, No. 82.

Braids, links, and mapping class

Princeton University Press, Princeton, N.J.; Univer-
sity of Tokyo Press, Tokyo, 1974.

[D} Alexandru Di mca :
hypersurfaces., Universitext. Springer-Verlag, New
York, 1992.

Singularities and topology of

[M1] T. Matsuno : On a theorem of Zariski-van Kampen
type and its applications, Osaka J. Math. 32 (1995),
no. 3, 645-658.

[M2} T. Matsuno :
large automorphism groups, J. Math. Soc. Japan, 51
(1999), no. 2, 309-329.

Compact Riemann surfaces with

[N1] M. Namba :
phism groups of certain compact Riemann surfaces,
Tsukuba J. Math. , Vol. 5(1981), 319-338.

Equivalence problem and automor-

[N2] M. Namba : Branched coverings and algebraic func-
tions, Pitman Research Note in Math. , Ser. 161,
Longman Scientific & Technical, 1987.

[N3] M. Namba : Finite branched coverings of com-
plex manifolds, Sugakud2(1990), no. 3, 193-205,
Iwanami Shoten.

_40_



