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                                         ABSTRACT

    In this short note we give examples of degenerations of algebraic curves which are cyclic branched coverings of

degree 3 over the complex projective line and show the results ofcalculations of the monodromies around singular loci of

them. As an application, we construct symplectic representation of the Artin braid group.
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1 Introduction

    In this short note, we study compact Riemann sur-

faces which are cyclic branched coverings of degree 3

over the complex projective line Pi(C). Here we discuss

concrete examples of degenerations of such Riemann sur-

faces. The purpose of this note is to calculate monodromies

around singular 1oci explicitly for these examples. And , as

an application, we get a symplectic representation of Anin

braid group B, ofn strings. ( For the definition of B. , refer,

for example, [B].)

  First, we recall cyclic branched coverings of degree 3

over the complex projective line Pi(C) and equivalence

problem of cyclic coverings which is due to M. Namba.

    Let Pi,•••,P6 E Pi(C) be six distinct points of the

complex projective line and B = {Pi,•• • , P6}. We study

here cyclic branched coverings over Pi (C) which branches

at B. It is known that the fundamental group of,the com-

plement is presentated as follows ( Cf. [M1], [M2], [N2]

and [N3]):

     ni (Pi(C) N B) =-< 7i,''' ,76176 '''7i = 1 > -

  Then we define a group homomorphism

             Åë : rt1(Pl(C) X B) . S3,

where S3 is the symmetric group of 3 letters, such as :

           O(7j) = (1 23) (j = 1,••• ,6).

  Corresponding to kernel of O, there exists a cyclic cov-
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ering of degree 3

                 n : x -" pi (c).

    From the Riemann-Hurwitz formula, the genus of X

is 4 and the first homology group Hi (X;Z) is isomorphic

to ze8.

  Let f(x) be a polynomial and n be a positive integer. Let

C be the Compact Riemann surface defined by

                 C: of = f(x).

The precise meaning of this is that C is a non-singular

model of the closure in Pi (C) Å~ Pi(C) of the aMne curve :

if = f(x). Let

                 n: (x, y) Hx

be the projection mapping. Through the mapping n, C

is considered as a cyclic covering of degree n over Pi(C)

which branches at the zero points off(x) = O or co.

  For such cyclic coverings, M. Namba gave an answer for

the equivalence problem as follows ([Nl]) :

Theorem 1.1 (Namba). Let s 2 3 be an integen Define

algebraic curves Ci and C2 asafollows:

         Ci :y3 = (x-ai)•••(x-a,)
         C2 :y3 = (x-Bi)•••(x-Bs),

where aj and 6k are complex numbers satisLtving aj ;

       ttar (j tj ), Bk #Bk• (k :k ).

Then Ci is biholomorphic to C2 ifand only if there is an

automorphism T E Aut (Pi (C)) such that

        T({ai,•••,as, co}) = {t3i,•••,6s, oo}•
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2 Examplesofdegenerationoverisolatedpoints

   In this section we give examples of families of com-

pact Riemann surfaces which degenerate over some points

and show the result of calculation of the monodromies. Let

A be a domain ofC.

  Example 1. Let X = {Xt}tEA be the families of cyclic

coverings of degree 3 over Pi (C) defined as :

               X, = {y3 = x5 - t}.

  Let fi : X - A be projection mapping defined as

(X, Y, t) H t.

  For generaltE A, Xt are nonsingular curves of genus 4.

For t = O, Xo is a singular fiber. We take here to E A X {O}

and fix it. For the convenience, we assume to E R>o. It

is natural that the fundamental group ni(A X {O}, to) acts on

Hl (Xt, ; Z), Let

       Mi : ni(A X {O}, to) - Aut (Hi(Xt,;Z))

be the monodromy representation of fi .

  Let 6o E ni (A X {O}, to) be a homtopy class of closed path

which starts from to, rounds around O once in the counter-

clockwise direction and goes back to to.

  For 6o, it is possible to compute Mi(6o). We choose

suitable symplectic basis of Hi(Xt,;Z) and use the the

Reidemeister-Schreier method, then we have by direct cal-

culations :
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  Let n be a positive integer and E, be the indentity matrix,

And let
              Jn =( EO, -oE" )

  in this calculations, considering the intersectQn numbers

of the basis, we have chosen suitable basis of Hi (Xt,; Z) so

that Mi (6o) E Sp (4, Z). That is

            J4 = 'Mi (6o)J4 Ml(6o)•

So , as the result, we have a group homomorphism

         Mi : ni (A X {O}, to) . Sp (4, Z) .

  Remarkl. From Theorem1.1, the moduli of re = {Xt}tEA

does not change along 6o and #Mi(6o), the order of the

matrix, Mi(6o) is finite. In fact the order is 15 .

  Next we consider the following:

  Example 2. Let ep = {Yt}tEA be the families of cyclic

coverings of degree 3 over Pi(C) defined as :

      Y, = {y3 = x(x + l)(x + 2)(x + 3)(x + t)}.

  Let f2 : W - A be projection mapping defined as

(X, Y, t) Ht.

  For generaltE A, Yt are curves of genus 4. Fort=

O,-1,-2,-3, oo, Yo, Y-i, Y-2, Y-3, Y. are singular fibers.

We take here to EAX{O,-1,-2,-3} and fix it. For the

convenience, we assume to E R>o, as above. It is natural

that the fundamental group ni(A X {O, -1,-2, -3}, to) acts

on Hi(Yfp;Z). Let

   M2 : ni (A N {O, -1, -2, -3}, to) -> Aut (Hi(Y,, ;Z))

be the monodromy representation of f2. Let no E rti(A X

{O, -1, -2, -3}, to) be a homtopy class of closed path which

starts from to, rounds around O once in the counterclock-

wise direction and goes back to to. In the simimilar way

above (Example 1), it is possible to compute M2(no). Di-

rect calculations show :
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M2(n2) =
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  In this calculations, considering the intersecton numbers

of the basis, we have chosen suitqble basis of Hi (Yt, ;Z) so

that M2(nJ•) E Sp (4,Z) for (j = O, 1,2, 3, oo), That is

             J4 = 'M2(nJ•)J4 M2(nj)•

So , as the result, we have a group homomorphism

     M2 : nl (A X {O, -- 1, -2, -3}, to) . Sp (4, Z).

  Remark2. From Theoreml.1, the moduli ofD = {Yt}tEA

change along ni and #M2(nj) = oo.

3 Examplesofdegenerationalongdiscriminantlocus

    In this section we consjder exarnples of families of

compact Riemann surfaces which degenerate along the dis-

criminant 1ocus and then give a symplectic representation

of the Artin braid group.
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  Example 3. Let a = (ai,a2,a3,a4,as) E CS. Next we

consider the families of cyclic 3-gonal curves 3 = {Zh}aEcs

defined as:

    zh = {y3 = x5 +ai x4 + a2x3 + a3x2 + a4x+ as}•

  Let f3 : 3 - C5 be projection mapping defined as

(x, y, a) HaE C5 .

  Let A(f3) c C5 be the discriminant locus of f3. It is

known that ([D]):

              ni (C5 X A(f3)) cr- Bs,

  where Bs is the Ardn braid group. Through the above
isomorphism, we identify ni (C5 X A(f3)) with Bs. Bs is

presented as follows:

  < ai,••- ,a4Iakak+iak = ak+iakak+i(k = 1, 2, 3) > .

Under the situation, it is also natural that ni (CSXA(f3))

acts on Hi(Zi,;Z). Let

       M3 : rri(A X {O}, to) . Aut (Hi(Z,, ; Z))

be the monodromy representation of f3, For each o'k E
ni (C5 X A(f3)), direct caluculatios show:

               1 OOOIOO O
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M3 (a3) =

M3(a4) =
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  In this calculations, considering the intersecton numbers

of the basis, we have chosen suitable basis of Hi(Zh, ; Z) so

that M3(cr'k) E Sp (4,Z) for (k = 1, 2, 3,4). That is

             J4 = 'M3(ak)J4 M3(ak)•

So , as the result, we have a symplectic representaion of

the braid group Bs

              M3:Bs -> Sp(4,Z).
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