An Application of Theory of Strongly Branched Coverings

メタデータ	言語：eng
	出版者：
	公開日：2013－12－20
	キーワード（Ja）：
	キーワード（En）：
	作成者：Matsuno，Takanori メールアドレス： 所属：
URL	https：／／doi．org／10．24729／00007599

AN APPLICATION OF THEORY OF STRONGLY BRANCHED COVERINGS

Takanori Matsuno*

Abstract

R. D. M. Accola [A] developed a theory of strongly branchecd coverings of compact Riemann surfaces and among other applications of the theory he constructed a Riemann surface admitting only the identity automorphism. In this short note, applying the theory of strongly branched coverings, we construct a Riemann surface whose automorphism group is a finite simple group.

Key Words : Riemann surface, automorphism group, finte simple group, branched covering

1 Introduction

Let G be any finite simple group. The main purpose of this short note is to give a method to construct a compact Riemann surface whose automorphism group is isomorphic to G. This is an application of a theory of strongly branched coverings of compact Riemann surfaces due to R. D. M. Accola ([A]).

Though Greenberg's theorem is known, our method is very simple and easy (Cf. [G], [M-N]).

Let $\pi: C_{1} \rightarrow C_{2}$ be a holomorphic mapping of compact Riemann surfaces of degree d_{π} and total ramification r_{π}. We denote by $g_{i}=g\left(C_{i}\right)$ for $i=1,2$ the genus of C_{i}. From the Riemann-Hurwitz formula, we have

$$
2 g_{1}-2=d_{\pi}\left(2 g_{2}-2\right)+r_{\pi}
$$

Definition 1.1. The mapping π will be called strongly branched if

$$
r_{\pi}>2 d_{\pi}\left(d_{\pi}-1\right)\left(g_{2}+1\right)
$$

Notice that if $d_{\pi}=2$ and $g_{2}=0$, and $r_{\pi}>4$, we are in the hyperelliptic case.

For a non-constant meromorphic function $f: C_{i} \rightarrow$ $\mathbf{P}^{1}(\mathbb{C})$, we denote by $o(f)$ the order of f. The function field on C_{i} will be denoted by M_{i}. If $\pi: C_{1} \rightarrow C_{2}$ is a holomorphic mapping of compact Riemann surfaces of degree d_{π}, then $M_{2}\left(\subset M_{1}\right)$ will be the subfield of index d_{π} obtained by lifting functions from C_{2} to C_{1}.
Let $f: C_{1} \rightarrow \mathbf{P}^{1}(\mathbb{C})$ be a meromorphic function on C_{1} of order $o(f)$. Let $\pi: C_{1} \rightarrow C_{2}$ be a branched covering of degree d_{π}, not necessarily strongly branched. We denote by $B\left(\subset C_{2}\right)$ the branch locus of π. For a point $Q \in C_{2} \backslash B$, let $\pi^{-1}(Q)=\left\{P_{1}, \cdots, P_{d_{\pi}}\right\}$ be the inverse image of Q.

(Received August 20, 2009)

* Dept. of Industrial Systems Engineering : Natural Science

Define $\triangle_{\pi}(f)$ as follows,

$$
\triangle_{\pi}(f)(Q)=\prod_{i<j}\left(f\left(P_{i}\right)-f\left(P_{j}\right)\right)^{2}
$$

$\triangle_{\pi}(f)$ is a well-defined meromorphic function on $C_{2} \backslash$ B and, from Riemann's extension theorem, $\triangle_{\pi}(f)$ extends to a meromorphic function on C_{2}. The order of $\triangle_{\pi}(f)$ is at most $2\left(d_{\pi}-1\right) o(f)$ while the number of zeros of $\triangle_{\pi}(f)$ is at least r_{π}. Thus if $r_{\pi}>2\left(d_{\pi}-\right.$ 1) $o(f), \Delta_{\pi}(f) \equiv 0$. From the unicity theorerm, we have the following lemma.

Lemma 1.1. If $r_{\pi}>2\left(d_{\pi}-1\right) o(f)$, then $\pi: C_{1} \rightarrow C_{2}$ admits a factorization such that $\mu: C_{1} \rightarrow C_{3}$ and ν : $C_{3} \rightarrow C_{2}$, where $\pi=\nu \circ \mu$ and there is a meromorphic function $\lambda: C_{3} \rightarrow \mathbf{P}^{1}(\mathbb{C})$ on C_{3} so that $f=\lambda \circ \mu$. (See Figure1.)

Figure 1.
Lemma 1.2. Let C_{1} be a compact Riemann surface of genus g_{1}. Let f_{1} and f_{2} be meromorphic functions on C_{1} of order o_{1} and o_{2}, respectively. If f_{1} and f_{2} generate $M_{1}=\mathbb{C}\left(f_{1}, f_{2}\right)$, the full function field on C_{1}, then

$$
g_{1} \leqq\left(o_{1}-1\right)\left(o_{2}-1\right)
$$

Proof. Consider $f_{1}: C_{1} \rightarrow \mathbf{P}^{1}(\mathbb{C})$ as a branched covering. From the Riemann-Hurwitz formula,

$$
2 g_{1}-2=-2 o_{1}+r_{1}
$$

where, r_{1} is a total ramification of f_{1}.
Assume $r_{1}>2\left(o_{1}-1\right) o_{2}$. Then $\triangle_{f_{1}}\left(f_{2}\right) \equiv 0$. So from Lemmal.1, there is a factorization $\mu: C_{1} \rightarrow$ C_{2} and $\nu: C_{2} \rightarrow \mathbf{P}^{1}(\mathbb{C})$ where $f_{1}=\nu \circ \mu$. The degree of μ, d_{μ}, is strictly greater than 1 and there is a meromorphic function $\lambda: C_{2} \rightarrow \mathbf{P}^{1}(\mathbb{C})$ so that $f_{2}=\lambda \circ \mu$. The index $\left[M_{1}: M_{2}\right]=d_{\mu}>1$ and $M_{2} \varsubsetneqq M_{1}$.

Figure 2.
From the diagram above (Figure 2), we have :

$$
\begin{aligned}
M_{1} & =\mathbb{C}\left(f_{1}, f_{2}\right) \\
& =\mathbb{C}(\nu \circ \mu, \lambda \circ \mu) \\
& =\mu^{*} \mathbb{C}(\nu, \lambda) \\
& \subset M_{2} \varsubsetneqq M_{1} .
\end{aligned}
$$

This is a contradiction. So we have:

$$
r_{1} \leqq 2\left(o_{1}-1\right) o_{2}
$$

Then

$$
\begin{aligned}
2 g_{1}-2 & \leqq-2 o_{1}+2\left(o_{1}-1\right) o_{2} \\
g_{1} & \leqq\left(o_{1}-1\right)\left(o_{2}-1\right) . \quad \text { q.e.d. }
\end{aligned}
$$

2 Preliminaries

In this section we recall a theory of strongly branched coverings of compact Riemann surfaces developed by R. D. M. Accola [A] .

Applying the Riemann-Hurwitz formula to the definition of strongly branched coverings, we have the following criterions.

Lemma 2.1. If $\pi: C_{1} \rightarrow C_{2}$ is a holomorphic mapping of compact Riemann surfaces then the following conditions are equivalent to π being strongly branched:
(1) $g_{1}>d_{\pi}^{2} g_{2}+\left(d_{\pi}-1\right)^{2}$,
(2) $d_{\pi} \cdot r_{\pi}>\left(d_{\pi}-1\right)\left(2 g_{1}-2+4 d_{\pi}\right)$.

Definition 2.1. M_{2} will be called strongly branched subfield of M_{1}, if $\pi: C_{1} \rightarrow C_{2}$ is a strongly branched covering.

We need the following inequality to prove the lemma after the next.

Lemma 2.2. Let n, m be positive integers. Then the following inequality holds :

$$
n^{2}(m-1)^{2}+(n-1)^{2} \leqq(n m-1)^{2}
$$

Proof.

$$
\begin{aligned}
& (n m-1)^{2}-n^{2}(m-1)^{2}-(n-1)^{2} \\
= & -2 m n+2 n^{2} m-n^{2}-n^{2}+2 n \\
= & 2 n(n-1)(m-1) \geqq 0 . \quad \text { q.e.d. }
\end{aligned}
$$

Lemma 2.3. Let $\pi: C_{1} \rightarrow C_{2}, \mu: C_{1} \rightarrow C_{3}, \nu:$ $C_{3} \rightarrow C_{2}$ be coverings such that $\pi=\nu \circ \mu$. If π is strongly branched then μ or ν is.

Proof. Since π is strongly branched, from Lemma2.1,

$$
g_{1}>d_{\pi}^{2} g_{2}+\left(d_{\pi}-1\right)^{2}
$$

Assume that neither μ nor ν is strongly branched. Then from Lemma2.1,

$$
\begin{cases}g_{1} & \leqq d_{\mu}^{2} g_{3}+\left(d_{\mu}-1\right)^{2} \\ g_{3} & \leqq d_{\nu}^{2} g_{2}+\left(d_{\nu}-1\right)^{2}\end{cases}
$$

Eliminating g_{3}, we have:

$$
\begin{aligned}
g_{1} & \leqq d_{\mu}^{2}\left\{d_{\nu}^{2} g_{2}+\left(d_{\nu}-1\right)^{2}\right\}+\left(d_{\mu}-1\right)^{2} \\
& =d_{\mu}^{2} d_{\nu}^{2} g_{2}+d_{\mu}^{2}\left(d_{\nu}-1\right)^{2}+\left(d_{\mu}-1\right)^{2}
\end{aligned}
$$

From Lemma2.2,

$$
\begin{aligned}
g_{1} & \leqq d_{\mu}^{2} d_{\nu}^{2} g_{2}+\left(d_{\mu} d_{\nu}-1\right)^{2} \\
& =d_{\pi}^{2} g_{2}+\left(d_{\pi}-1\right)^{2}
\end{aligned}
$$

This is a contradiction. q.e.d.
Definition 2.2. A strongly branched subfield M_{2} will be called a maximal strongly branched subfield of M_{1}, if whenever $M_{2} \subset M_{3} \subset M_{1}$ and $M_{2} \neq M_{3}$ then M_{3} is not a strongly branched subfield. The corresponding definition will also holds for coverings.

Lemma 2.4. Let $\pi: C_{1} \rightarrow C_{2}$, be a maximal strongly branched covering of degree d_{π}. Suppose $f_{1}: C_{1} \rightarrow$ $\mathbf{P}^{1}(\mathbb{C})$ is a meromorphic function on C_{1} such that $2\left(d_{\pi}-1\right) o\left(f_{1}\right)<r_{\pi}$. Then there is a meromorphic function f_{2} on C_{2} so that $f_{1}=f_{2} \circ \pi\left(i . e . f_{1} \in M_{2}\right)$.

Proof. Because of the condition 2($\left.d_{\pi}-1\right) o\left(f_{1}\right)<$ r_{π}, from Lemma1.1, there exists a factorization μ : $C_{1} \rightarrow C_{3}, \nu: C_{2} \rightarrow C_{3}$ where $\pi=\nu \circ \mu$, and the degree of μ, d_{μ}, is stirictly greater than 1 , and there is a meromorphic function f_{3} on C_{3} so that $f_{1}=f_{3} \circ \mu$. Choose $\nu: C_{2} \rightarrow C_{3}$ as d_{ν} is minimum. Here we assume $d_{\nu}>1$. Since π is maximal, μ is
not strongly branched. From Lemma, ν is strongly branched. So we have :

$$
r_{\mu} \leqq 2 d_{\mu}\left(d_{\mu}-1\right)\left(g_{3}+1\right)
$$

and

$$
r_{\nu}>2 d_{\nu}\left(d_{\nu}-1\right)\left(g_{2}+1\right)
$$

From the Riemann-Hurwitz formula

$$
g_{3}-2=d_{\nu}\left(2 g_{2}-2\right)+r_{\nu}
$$

and direct calculation shows that

$$
r_{\mu}<\frac{d_{\mu} \cdot d_{\nu}\left(d_{\mu}-1\right)}{d_{\nu}-1} \cdot r_{\nu}
$$

It is easy to see that $r_{\pi}=r_{\mu}+d_{\mu} \cdot r_{\nu}$ from the Riemann-Hurwitz formula. Then we have:

$$
\begin{aligned}
r_{\pi} & <\frac{d_{\mu} \cdot d_{\nu}\left(d_{\mu}-1\right)}{d_{\nu}-1} \cdot r_{\nu}+d_{\mu} \cdot r_{\nu} \\
& =\frac{d_{\mu} \cdot d_{\nu}\left(d_{\mu}-1\right)+\left(d_{\nu}-1\right) \cdot d_{\mu}}{d_{\nu}-1} \cdot r_{\nu} \\
& =\frac{d_{\mu}\left(d_{\pi}-1\right)}{d_{\nu}-1} \cdot r_{\nu}
\end{aligned}
$$

So it follows that:

$$
\begin{aligned}
2\left(d_{\nu}-1\right) \cdot o\left(f_{3}\right) & =\frac{2\left(d_{\nu}-1\right)}{d_{\mu}} \cdot o\left(f_{1}\right) \\
& <\frac{2\left(d_{\nu}-1\right)}{d_{\mu}} \cdot \frac{r_{\pi}}{2\left(d_{\pi}-1\right)} \\
& =\frac{d_{\nu}-1}{d_{\mu}\left(d_{\pi}-1\right)} \cdot r_{\pi} \\
& <r_{\nu}
\end{aligned}
$$

Then there must exist a factorization of ν and this contradicts the minimality of d_{ν}. So $d_{\nu}=1$ and ν : $C_{3} \rightarrow C_{2}$ is a biholomorphic mappinng. Put $f_{2}=$ $f_{3} \circ \nu^{-1}: C_{2} \rightarrow \mathbf{P}^{1}(\mathbb{C})$. Then

$$
\begin{aligned}
f_{2} \circ \pi & =\left(f_{3} \circ \nu^{-1}\right) \circ(\nu \circ \mu) \\
& =f_{3} \circ\left(\nu^{-1} \circ \nu\right) \circ \mu \\
& =f_{3} \circ \mu \\
& =f_{1} .
\end{aligned}
$$

So f_{2} is a required function. q.e.d.
Lemma 2.5. If a maximal strongly branched subfield of M_{1} exists, then it is unique.

Proof. Suppose that there exist two maximal storngly branched coverings $\mu: C_{1} \rightarrow C_{2}$ and ν : $C_{1} \rightarrow C_{3}$. We denote by d_{μ} and by d_{ν} the degree of μ and of ν, respectively. We may assume that

$$
d_{\mu}\left(g_{2}+1\right) \geqq d_{\nu}\left(g_{3}+1\right)
$$

Let f_{1} and f_{2} be meromorphic functtions on C_{3} of order $o\left(f_{1}\right)$ and $o\left(f_{2}\right)$, respectively and generate the full function field of C_{3}.

From Lemma1.2, both $o\left(f_{1}\right)$ and $o\left(f_{2}\right)$ are no greater than $g_{3}+1$. Then the order of $f_{1} \circ \nu$ is no greater than $d_{\nu}\left(g_{3}+1\right)$. So, by the assumption, the order of $f_{1} \circ \nu$ is no greater than $d_{\mu}\left(g_{2}+1\right)$. From Lemma2.4, $f_{1} \circ \nu \in M_{2}$. By the same argument, $f_{2} \circ \nu \in M_{2}$ also holds. Because $f_{1} \circ \nu$ and $f_{2} \circ \nu$ generate M_{3}, it follows that $M_{3} \subset M_{2} \subset M_{1}$. Since M_{3} is maximal, we have $M_{3}=M_{2} \quad$ q.e.d.

We denote by $A(C)$ the full group of holomorphic automorphisms. Let f be a meromorphic function on C and take any automorphism $\sigma \in A(C)$. Then $f \circ \sigma$ is a meromorphic funciton on C again. So, in this manner, $A(C)$ acts on the function field on C. Let $\pi: C_{1} \rightarrow C_{2}$ be a maximal storngly branched covering. Since a maximal stongly branched subfield is unique, $A\left(C_{1}\right)$ acts on M_{1} leaving M_{2} invariant. Let N be the subgroup of $A\left(C_{1}\right)$ which leaves the functions of M_{2} poitwise fixed. Let $f_{2} \in M_{2}$ and $\tau \in N$. For any $\sigma \in A\left(C_{1}\right)$,

$$
\begin{aligned}
& f_{2} \circ\left(\sigma^{-1} \circ \tau \circ \sigma\right) \\
= & \left\{\left(f_{2} \circ \sigma^{-1}\right) \circ \tau\right\} \circ \sigma \\
= & \left(f_{2} \circ \sigma^{-1}\right) \circ \sigma \\
= & f_{2} \circ\left(\sigma^{-1} \circ \sigma\right) \\
= & f_{2} .
\end{aligned}
$$

Then σ^{-1} o $\tau \circ \sigma \in N$. So N is a normal subgroup of $A\left(C_{1}\right) . C_{2}$ is biholomorphic to the quotient space C_{1} / N and N is the covering transformation group of $\pi: C_{1} \rightarrow C_{2}$. Naturally there is an exact sequence of group homomorphisms :

$$
\{1\} \rightarrow N \rightarrow A\left(C_{1}\right) \xrightarrow{\alpha} A\left(C_{1} / N\right)
$$

So the quotient group $A\left(C_{1}\right) / N$ is isomorphic to a finite subgroup of $A\left(C_{1} / N\right)$.

Then we have the following commutative diagram (Figure 3):

Figure 3.
Definition 2.3. ([N1]) For a branched covering π : $C_{1} \rightarrow C_{2}$, if the covering transformation group acts transitively on every fiber of π, then π is said to be Galois.

Then we have the following theorem :
Theorem 2.6. If $\pi: C_{1} \rightarrow C_{2}$ is a Galois and strongly branched covering whose covering transformation group $G\left(\subset A\left(C_{1}\right)\right)$ is a simple group, then π is a maximal strongly branched covering.

Proof. If $\pi: C_{1} \rightarrow C_{2}$ is not maximal, then there exists a maximal branched covering $\mu: C_{1} \rightarrow C_{3}$ and a morphism $\nu: C_{3} \rightarrow C_{2}$ such that $\pi=\nu \circ \mu$. Since μ is maximal, there is a normal subgroup $N\left(\subset A\left(C_{1}\right)\right)$ such that C_{3} is biholomorphic to the quotient space C_{1} / N and $N \subset G$. It is trivial that N is a normal subgroup not only of $A\left(C_{1}\right)$ but also of G. This contradicts the assumption that G is simple. q.e.d.

3 Main theorem

In [A], as an application of the theory of strongly branched coverings, compact Riemann surfaces which admit only the identity automorphism are constructed. In this section modifying the idea of the proof of the above result, we shall prove the following main theorem :

Theorem 3.1. Let G be any finite simple group. Then there is a compact Riemann surface whose automorphism group is isomorphic to G.

Proof. Let d be the order of G. We denote G as $\left\{x_{1}, x_{2}, \cdots, x_{d-1}, x_{d}=e\right\}$, where e is a unit element of G. Let s be an integer such as $s>4 d-3$. Choose a set of s points $B=\left\{P_{1}, \ldots, P_{s}\right\}$ on the complex projective line $\mathbf{P}^{1}(\mathbb{C})$ such that no projective transformation except the identity leaves B setwise fixed. Since $s>5$, this choice is possible. It is known that the fundamental group of the complement of B is presentated as follows (Cf. [M1], [N1]) :
$\pi_{1}\left(\mathbf{P}^{1}(\mathbb{C}) \backslash B\right) \cong<\gamma_{1}, \cdots, \gamma_{s} \mid \gamma_{s} \cdot \gamma_{s-1} \cdots \gamma_{1}=1>$.

Then we define a group homomorphism Φ such as : $\Phi\left(\gamma_{j}\right)= \begin{cases}x_{j} & (1 \leq j \leq d-1) \\ x_{1} & (d \leq j \leq s-1) \\ x_{1}^{-1} \cdots \cdots x_{d-1}^{-1} \cdot x_{1}^{-(s-d)} & (j=s) .\end{cases}$
Φ is well-defined and is surjective. There is an exact sequence of group homomorphisms as follows :

$$
\{1\} \rightarrow \operatorname{Ker}(\Phi) \rightarrow \pi_{1}\left(\mathbf{P}^{1}(\mathbb{C}) \backslash B\right) \xrightarrow{\Phi} G \rightarrow\{1\}
$$

Corresponding to the kernel of $\Phi, \operatorname{Ker}(\Phi)$, there exists a finite Galois covering $\pi: C \rightarrow \mathbf{P}^{\mathbf{1}}(\mathbb{C})$ which
branches at B. The covering transformation group of π is isomorphic to G (Cf. [M2], [N1], [N2]). Since $s>4 d-3$,

$$
r_{\pi} \geqq \frac{d}{2}(s-1)>2 d(d-1)
$$

So $\pi: C \rightarrow \mathbf{P}^{1}(\mathbb{C})$ is a strongly branched covering. From Theorem2.6, since G is simple, π is a maximal strongly branched covering. So G is a normal subgroup of $A(C)$. Since π is Galois, the quotient space C / G is biholomorphic to the base space $\mathbf{P}^{1}(\mathbb{C})$. Then we have an injection:

$$
A(C) / G \hookrightarrow A\left(\mathbf{P}^{1}(\mathbb{C})\right)
$$

Because of our choice of set of branching points B, the quotient group $A(C) / G$ must be isomorphic to a unit group $\{1\}$. Then the full group of holomorphic automorphism of $C, A(C)$, must be equal to G. The proof is completed.

References

[A] R. D. M. Accola : Strongly branched coverings of closed Riemann surfaces, Proc. Amer. Math. Soc. , 26, 315-322, 1970.
[G] R. Greenberg : Maximal Fuchsian group, Bull. Amer. Math. Soc., 69 (1963), 569-573.
[M1] T. Matsuno : On a theorem of Zariski-van Kampen type and its applications, Osaka J. Math. 32 (1995), no. 3, 645-658.
[M2] T. Matsuno : Compact Riemann surfaces with large automorphism groups, J. Math. Soc. Japan, 51 (1999), no. 2, 309-329.
[M-N] S. Mizuta \& M. Namba : Greenberg's theorem and equivalence problem of compact Riemann surfaces, Osaka J. Math. 43 (2006), no. 1, 137178.
[N1] M. Namba : Branched coverings and algebraic functions, Pitman Research Note in Math. , Ser. 161, Longman Scientific \& Technical, 1987.
[N2] M. Namba : Finite branched coverings of complex manifolds, Sugaku42(1990), no. 3, 193-205, Iwanami Shoten.

