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1. Introduction

The notion of a hypergroup is one of generalizations of the concept of the

measure algebra on a locally compact group. The axiomatic setting of a

hypergroup was set up by C. Dunkl [D], R. Jewett [J] and R. Spector [S]

around 1975. A hypergroup is suitable for describing a random walk on

symmetric graphs. Some models of a hypergroup are association schemes, a

hypergroup coming from double cosets of a group by a compact subgroup, the

(conjugacy) class hypergroup coming from conjugacy classes of a compact

group, and the character hypergroup coming from irreducible representations

of a compact group.

One of the important problems for a hypergroup is to determine the struc-

tures of hypergroups. N. Wildberger analyzed finite hypergroups in 1995

([W1]) and determined the structures of hypergroups of order three in 2002

([W2]). However the structures of hypergroups of low order, for examples

four and five, has not been determined.

It is important to solve an extension problem in order to determine the

structures of hypergroups. Here we introduce an extension problem in the

category of hypergroups. Let H and L be locally compact hypergroups. A

locally compact hypergroup K is called an extension hypergroup of L by H

if the sequence:

1 −→ H
ι−→ K

ϕ−→ L −→ 1

is exact. An extension problem is to determine all structures of extension

hypergroups K of L by H when L and H are given.

In the present thesis, the author reports to solve some extension problems

and to discover the structures of hypergroups of low order.

We investigate certain extension problems.

First, in the category of finite commutative hypergroups, we considered

the extension problem of the case that H is a finite abelian group and L

is the Golden hypergroup, and we have succeeded in solving it. Moreover,

we characterize splitting extension hypergroups. When N. Wildberger deter-

mined all structures of hypergroups of order three, he pointed out that the

Golden hypergroup was in an interesting position among strong hypergroups

of order three. This is a motivation that we consider an extension problem

of the Golden hypergroup.

Secondly, in the category of locally compact commutative hypergroups,

we considered the extension problem of the case that H is a locally compact

abelian group and L is a hypergroup of order two, and we solved it. As a
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result, when we set a locally compact abelian group H with the one dimen-

sional torus T, it turns out that the extension hypergroups agree with the

hypergroups on two tori T ∪ T determined by M. Voit [V].

Thirdly, in the category of locally compact commutative hypergroups, we

solved the extension problem of the case that H is a locally compact abelian

group and L is the Golden hypergroup. As a result, when we set a locally

compact abelian group H with the one dimensional torus T, we determine a

part of the structures of hypergroups on three tori T ∪ T ∪ T. This result is

a generalization of the result by M. Voit [V].

As a next step, we considered the duality of extension problems. For a

finite commutative signed hypergroup K, we denote the set of all characters

of K by K̂. Then, K̂ becomes a signed commutative hypergroup with the

product as functions on K. For a finite commutative hypergroup K, K̂ is

not necessarily to be a hypergroup. In the category of finite commutative

signed hypergroups, the duality of a hypergroup holds, i.e.
ˆ̂
K ∼= K. The

duality of an extension means that the sequence:

1 −→ L̂
ι̂−→ K̂

ϕ̂−→ Ĥ −→ 1

is exact for the exact sequence:

1 −→ H
ι−→ K

ϕ−→ L −→ 1.

This duality always holds in the category of finite commutative signed hy-

pergroups. Therefore we need to consider extension problems in the category

of a signed hypergroups.

Through our research, we noticed that a signed action of a hypergroup

played an essential role to determine extension hypergroups. Hence we in-

troduced a signed action of a signed hypergroup on a finite set referring to

the definition of actions of a hypergroup by Sunder and Wildberger [SW].

We determined all irreducible signed action of a hypergroup of order two.

Applying these actions, one knows that the structures of extensions of a

hypergroup of order two by a hypergroup of order two can be obtained easily

([KSTY]). This is our developed method for solving extension problems for

hypergroups.

Moreover we introduce the notion of entropy of an irreducible signed action

of a signed hypergroup. We show that this entropy is the complete invariant

for two dimensional irreducible signed actions of a signed hypergroup of order

two.

Let K be a commutative signed hypergroup and H a signed subhypergroup

of K. We give the conditional entropy Hφ(K|H) associated with a canonical

state φ of the measure algebra M b(K) of K. Moreover for the quotient

hypergroup L of K by H, we introduce the conditional entropy H(K|L)
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associated with the normalized Haar measure of K. For these entropy, we

show the dual relation:

Hφ(K|H) = H(K̂|Ĥ), H(K|L) = Hφ̂(K̂|L̂)

where φ̂ be the canonical state of the measure algebra M b(K̂).

Applying these entropy to extension problems, we have determined the

equivalence classes of extension hypergroups of a hypergroup of order two

by a hypergroup of order two. This is a new approach for considering the

extension problems for hypergroups.

Moreover for a generalized orbital hypergroup KE of a finie commutative

hypergroup K, we also introduce two kinds of conditional entropy H(K|KE)

and Hφ(K|KE), and show the dual relation:

Hφ(K|KE) = H(K̂|K̂E), H(K|KE) = Hφ̂(K̂|K̂E).

The present thesis is organized as follows.

In Chapter 2, we describe fundamental notions for hypergroups.

In Chapter 3, we study three extension problems: the extension of the

Golden hypergroup by finite abelian groups, the extension of hypergroups of

order two by locally compact abelian groups and the extension of the Golden

hypergroup by locally compact abelian groups.

In Chapter 4, we introduce a notion of irreducible signed actions of a

signed hypergroup and apply it to certain extension problems.

In Chapter 5, we introduce two kinds of conditional entropy. One is the

conditional entropy associated with the normalized Haar measure of a finite

commutative signed hypergroup K and the other is the conditional entropy

associated with the canonical state of the measure algebra M b(K) of K.

Moreover, the dual relation of these entropy is discussed.
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2. Preliminaries

2.1. Definitions of hypergroups. We recall some notions and facts on

locally compact hypergroups from Bloom-Heyer’s book [BH]. Let K be a

locally compact Hausdorff space, i.e. each point has a compact neighborhood

and any two points can be separated by the compact neighborhoods.

Let Cc(K) be the set of all continuous functions with compact supports

on K.

Let µ be a Radon measure, i.e., µ is a continuous linear mapping from

Cc(K) to C. Let M(K) be the set of all Radon measures on K. Then M(K)

become a linear space. We denote the norm || · || on M(K) by

||µ|| = sup{|µ(f)| : f ∈ Cc(K), ||f ||∞ ≤ 1} ∈ [0,∞]

where ||f ||∞ = max{|f(c)| : c ∈ K} is the uniform norm. Let M b(K),M b
+(K)

and M1(K) be the set of all bounded Radon measures, all bounded positive

Radon measures and all probability measures on K respectively i.e.

M b(K) = {µ ∈ M(K) : ||µ|| < ∞},
M b

+(K) = {µ ∈ M b(K) : µ(f) ≥ 0 for f ≥ 0}
M1(K) = {µ ∈ M b

+(K) : µ(K) = 1}
where f ≥ 0 (f ∈ Cc(K)).

For µ ∈ M b(K), the support of µ is define by

supp(µ) = ∩{F ⊂ K : F is closed, |µ|(F c) = 0}.
We can make M b(K) a topological vector space with weak topology ob-

tained from σ(M(X), Cc(X)).

For c ∈ K, we write the Dirac measure at c by εc ∈ M b
+(K) i.e.

εc(f) = f(c) for f ∈ Cc(K).

Proposition 2.1. Let Ψ(c) = εc for c ∈ K. The mapping Ψ is a homeo-

morphism from K to {εc : c ∈ K}.
Proof. Put Ψ(c) = εc. When cj → c, we have

εcj
(f) = f(cj) → f(c) = εc(f),

because f ∈ Cc(K) is continuous. Hence we get εcj
→ εc. ¤

Let C(K) is the family of all non-empty compact subsets of K. For open

subsets U and V of K, we denote

CU(V ) = {C ∈ C(K) : C ∩ U 6= ∅, C ⊂ V }.
Then, the set {CU(V ) : U, V ⊂ K, U and V are open.} gives a topology in

C(K). This topology is called Michael topology.



5

Definition (locally compact hypergroups). Let K be a non-empty locally

compact Hausdorff space. The quaternary K = (K,M b(K), ∗,− ) will be

called a hypergroup if the following conditions are satisfied.

(1) The vector space M b(K) is a Banach algebra by the binary product

∗ respect to the norm || · ||. The product ∗ called the convolution.

(2) For x, y ∈ K, εx ∗ εy ∈ M1(K) and supp(εx ∗ εy) is compact.

(3) The mapping K × K 3 (x, y) 7→ εx ∗ εy ∈ M1(K) is continuous by

weak topology on M b(K).

(4) K × K 3 (x, y) 7→ supp(εx ∗ εy) ∈ C(K) is continuous by Michael

topology.

(5) For any x ∈ K, there exists the element e ∈ K such that εx ∗ εe =

εe ∗ εx = εx.

(6) There exists a homeomorphism K 3 x → x− ∈ K such that (x−)− =

x and (εx∗εy)
− = εy−∗εx− for all x, y ∈ K, called the involution where

µ− is the image of µ under the involution. Moreover, e ∈ supp(εx∗εy)

if and only if x = y−.

We note that the involution is weakly continuous.

When εx ∗ εy = εy ∗ εx for any x, y ∈ K, we call K commutative. When

x− = x for any x ∈ K, we call K hermitian.

If a hypergroup K is hermitian, then K is commutative because

εx ∗ εy = (εx ∗ εy)
− = εy− ∗ εx− = εy ∗ εx.

Using the convolution ∗ for point measures of K, we define the convolution

∗ on M b(K) i.e.

µ ∗ ν =

∫

K

∫

K

εx ∗ εydµ(x)dν(y).

Let K1 and K2 be hypergroups. We call a mapping ϕ (hypergroup) homo-

morphism from K1 to K2 if ϕ is a mapping from K1 to K2 and the mapping

ϕ̃ from M b(K1) to M b(K2) defined ϕ̃(εx) := εϕ(x) for x ∈ K1 satisfies

ϕ(µ ∗ ν) = ϕ(µ) ∗ ϕ(ν), ϕ(µ−) = ϕ(µ)−

for any µ and ν ∈ M b(K1).

Moreover, if a homomorphism ϕ from K1 to K2 is bijection, then ϕ is

called isomorphism.

Lemma 2.2. The homomorphism ϕ maps a point measure of a hypergroup

K1 to some point measure of a hypergroup K2. Especially, the unit eK1 is

mapped to the unit eK2.
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Proof. By the simple calculation, we have

ϕ(µ ∗ ν)(f) =

∫

K2

f(t′)dϕ(µ ∗ ν)(t′) =

∫

K1

f(ϕ(t))d(µ ∗ ν)(t)

=

∫

K1

∫

K1

∫

K1

f(ϕ(t))d(εx ∗ εy)(t)dµ(x)dν(y)

=

∫

K1

∫

K1

∫

K2

f(t′)dϕ(εx ∗ εy)(t
′)dµ(x)dν(y)

and

(ϕ(µ) ∗ ϕ(ν))(f) =

∫

K2

∫

K2

∫

K2

f(t′)d(εx′ ∗ εy′)(t
′)dϕ(µ)(x′)dϕ(ν)(y′)

=

∫

K1

∫

K1

∫

K2

f(t′)d(εϕ(x) ∗ εϕ(y))(t
′)dµ(x)dν(y).

Hence we have ϕ(εx ∗ εy) = εϕ(x) ∗ εϕ(y).

For the involution, we can calculate that

ϕ(µ−)(f) =

∫

K2

f(t′)dϕ(µ−)(t′) =

∫

K1

f(ϕ(t))dµ−(t)

=

∫

K1

f(ϕ(t)−)dµ(t),

and

ϕ(µ)−(f) =

∫

K2

f(t′)dϕ(µ)−(t′) =

∫

K2

f(t′−)dϕ(µ)(t′)

=

∫

K1

f(ϕ(t−))dµ(t).

Hence εϕ(t)− = εϕ(t−) i.e. ϕ(εt)
− = εϕ(t−) because we know f(ϕ(t)−) =

εϕ(t)−(f) and f(ϕ(t)−) = εϕ(t−)(f).

Moreover, for unit eK1 of K1, ϕ(εeK1
) = ϕ(ε−eK1

∗εeK1
) = ϕ(εeK1

)−∗ϕ(εeK1
).

Since there exists k ∈ K2 such that ϕ(εeK1
) = εk, we have

supp(ε−k ∗ εk) 3 eK2

by the axiom of a hypergroup. Therefore, we have ϕ(eK1) = eK2 because the

element k such that εk = ε−k ∗ εk is the unit eK2 . ¤

Example 2.3. Let G be a locally compact group with unit e and H be

a compact group. A continuous affine action of H on G is a continuous

mapping (x, s) → xs from G × H to G satisfying that xe = x, (xs)t = xst

and there exists c ∈ G and ϕ ∈ Aut(G) such that xs = cϕ(x). We denote

the normalized Haar measure of H by ωH .
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Then, we have the hypergroup GH with the quotient topology whose con-

volution structure is given by

εxH ∗ εyH =

∫

H

∫

H

ε(xsyt)HdωH(s)dωH(t).

Next we introduce the finite case conforming to the axiom of locally com-

pact hypergroups referring to Wildberger [W1].

Let K be a finite set. The sets M b(K),M1
R(K),M1(K) of all measures,

all probability measures and all non-negative probability measures on K are

described as follows respectively.

M b(K) =

{∑
c∈K

acεc : ac ∈ C
}

,

M1
R(K) =

{∑
c∈K

acεc : ac ∈ R,
∑
c∈K

ac = 1

}
,

M1(K) =

{∑
c∈K

acεc : ac ≥ 0,
∑
c∈K

ac = 1

}

where εc is the Dirac measure on c ∈ K. The support of the element µ =∑
c∈K acεc is

supp(µ) = {c ∈ K : ac 6= 0}.
Definition (generalized (finite) hypergroup). Let K = {c0, c1, · · · , cn} be

a finite set. The quaternary (K, M b(K), ∗,− ) is called a generalized (finite)

hypergroup if K satisfies the following conditions.

(1) The triple (M b(K), ∗,−) is a ∗-algebra with unit εc0 .

(2) K− = K.

(3) The structure constant nk
ij ∈ C is defined as follows.

εci
∗ εcj

=
n∑

k=0

nk
ijεck

.

The constant nk
ij satisfies the following conditions.

c−i = cj if and only if n0
ij > 0 and

c−i 6= cj if and only if n0
ij = 0.

We denote (K, M b(K), ∗,− ) by K simply and we say that the order of K

is n + 1. For any i, j, if εci
∗ εcj

belongs to M1
R(K) then K is called a signed

hypergroup and if εci
∗ εcj

belongs to M1(K) then K is called a hypergroup.

In this paper, ci− means c−i . The weight w(ci) of ci ∈ K is defined by

w(ci) := (n0
i−i)

−1.
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The total weight w(K) of K is

w(K) =
n∑

i=0

w(ci).

We note that a generalized hypergroup K become a group if and only if

w(ci) = 1 for all i.

Example 2.4. Consider the symmetric random walk on the edge of a regular

triangle. Fix a vertex x0 as the origin. A vertex x is said to have the

distance i from the origin x0 if there exists a minimal i-step path of edges

which connects x0 and x. Let εci
be the random walk which comes from a

movement from a vertex to another vertex having the distance i. We denote

the walk ci after the walk cj by εci
∗ εcj

. Then, using the probability, we can

write that

εc1 ∗ εc1 =
1

2
εc0 +

1

2
εc1 .

Hence we have the hypergroup K = {c0, c1} of order two with above struc-

ture. If we consider the symmetric random walk on the edge of a regular

pentagon, then we have the Golden hypergroup G = {c0, c1, c2} which has

the following structures:

εc1 ∗ εc1 =
1

2
εc0 +

1

2
εc2 ,

εc2 ∗ εc2 =
1

2
εc0 +

1

2
εc1 ,

εc1 ∗ εc2 =
1

2
εc1 +

1

2
εc2 .

Example 2.5. By the definition of finite signed hypergroup, we have all

hypergroups Zq(2) = {c0, c1} of order two with a parameter q (q > 0) and

the following structure.

εc1 ∗ εc1 = qεc0 + (1− q)εc1 .

We note that if the parameter q satisfies 0 < q ≤ 1 then the signed hyper-

group Zq(2) becomes a hypergroup, and if the parameter q equals to 1 then

we have Zq(2) = Z2.
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2.2. Harmonic analysis of a finite commutative signed hypergroup.

We generalized the some results of Sunder-Wildberger’s work [SW] and Wild-

berger’s work [W1] in the category of finite signed hypergroups.

Hereafter, let K be a finite signed hypergroup.

Lemma 2.6. We define the constant nk
ij ∈ R by εci

∗ εcj
=

∑
ck∈K nk

ijεck
for

ci, cj ∈ K. Then, we have

(1) nk
ij = nk−

j−i− ,

(2)
nk

ij

w(ck)
=

nj
i−k

w(cj)
,

(3)
nk

ij

w(c−k )
=

ni
kj−

w(c−i )
.

Proof. (1) For ci, cj ∈ K, we calculate

(εc−j
∗ εc−i

)− =

( ∑
ck∈K

nk
j−i−εck

)−

=
∑
ck∈K

nk
j−i−ε−ck

=
∑
ck∈K

nk−
j−i−εck

.

Since εci
∗ εcj

= (εc−j
∗ εc−i

)−, we have nk
ij = nk−

j−i− .

(2) By simple calculation,

(ε−ck
∗ εci

) ∗ εcj
=

(∑

l

nl
k−iεcl

)
∗ εcj

= nj−
k−iεc−j

∗ εcj
+

∑

l 6=j−
nl

k−iεcl
∗ εcj

= nj−
k−in

0
j−jεc0 + · · · .

In the similar way, we have ε−ck
∗ (εci

∗ εcj
) = nk

ijn
0
k−kεc0 + · · · . Comparing

the coefficient of the unit εc0 , we get nk
ijn

0
k−k = nj−

k−in
0
j−j.

(3) In the similar calculation of (2), we have

(εci
∗ εcj

) ∗ ε−ck
= nk

ijn
0
kk−εc0 + · · ·

and

εci
∗ (εcj

∗ ε−ck
) = ni−

jk−n0
ii−εc0 + · · · .

Since ni−
jk = ni

kj− by (1), we have nk
ijn

0
kk− = ni

kj−n0
ii− . ¤

We call eK ∈ M1(K) the normalized left Haar measure if µ ∗ eK = eK for

any µ ∈ M1
R(K).

Lemma 2.7. The normalized left Haar measure eK of K is uniquely given

by

eK =
∑
c∈K

w(c)

w(K)
εc.
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Proof. Suppose that the measure eK ∈ M1(K) is a normalized Haar measure.

Put eK =
∑

ci∈K aiεci
. For any c−j ∈ K,

εc−j
∗ eK =

∑
ci∈K

ai

∑
ck∈K

nk
j−iεck

.

Here, the coefficient of the unit εc0 of above measure is ajn
0
j−j. On the other

hand, εc−j
∗ eK = eK by the supposition. Comparing the coefficients of the

unit, we get aj = a0(n
0
j−j)

−1 = a0w(cj). Hence we have

eK =
∑
cj∈K

a0w(cj)εcj
.

Since eK is a probability measure,
∑

cj∈K a0w(cj) = a0

∑
cj∈K w(cj) = a0w(K) =

1. Therefore a0 = 1
w(K)

.

Conversely, we suppose that eK =
∑

cj∈K
w(cj)

w(K)
εcj

. For any ci ∈ K, we

have

εci
∗ eK =

∑
cj∈K

w(cj)

w(K)

∑
cl∈K

nl
ijεcl

.

For any c−k ∈ K,

εc−k
∗ (εci

∗ eK) =
∑
cj∈K

w(cj)

w(K)

∑
cl∈K

nl
ijεc−k

∗ εcl
=

∑
cj∈K

w(cj)

w(K)

∑
cl∈K

nl
ij

∑
cp∈K

np
k−lεcp .

Here, the coefficient of the unit εc0 of above measure is

∑
cj∈K

w(cj)

w(K)
nk

ijn
0
k−k =

∑
cj∈K

w(cj)

w(K)

nk
ij

w(ck)
=

∑
cj∈K

w(cj)

w(K)

nj
i−k

w(cj)
=

1

w(K)

by Lemma 2.6 (2). On the other hand, when we put εci
∗eK =

∑
cj∈K bjεcj

∈
M1
R(K),

ε−ck
∗ (εci

∗ eK) =
∑
cj∈K

bj

∑
cl∈K

nl
k−jεcl

.

The coefficient of the unit εc0 of above measure is bkn
0
k−k = bk

w(k)
. Comparing

the coefficients of the unit, we have bk = w(ck)
w(K)

i.e. εci
∗eK =

∑
ck∈K

w(ck)
w(K)

εcl
=

eK . ¤

Proposition 2.8. For ci ∈ K,

w(c−i ) = w(ci).

Proof. Since the left normalized Haar measure eK satisfies the condition

µ ∗ eK = eK for any µ ∈ M1(K), it is obvious that eK is a projection.

Using Lemma 2.7, for cj ∈ K, we have

eK ∗ εcj
=

∑

i,k

w(ci)

w(K)
nk

ijεck
=

∑

i,k

w(ci)

w(K)

nk
ij

w(ck)
w(ck)εck

.
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Since we can calculate that

nk
ij

w(ck)
=

nj
i−k

w(cj)
=

nj−
k−i

w(c−j )

w(c−j )

w(cj)
=

ni
kj−

w(ci)

w(c−j )

w(cj)

by Lemma 2.6, we have

eK ∗ εcj
=

∑

i,k

w(ci)

w(K)

(
ni

kj−

w(ci)

w(c−j )

w(cj)

)
w(ck)εck

=
w(c−j )

w(cj)

∑

k

w(ck)

w(K)

(∑
i

ni
kj−

)
εck

=
w(c−j )

w(cj)
eK .

Here we have known that eK = eK ∗ eK = eK ∗ (εcj
∗ eK) = (eK ∗ εcj

) ∗ eK =
w(cj)

w(c−j )
eK ∗ eK . Since eK 6= 0, we have

w(c−j )

w(cj)
= 1, namely, w(c−j ) = w(cj).

¤

Corollary 2.9. The normalized left Haar measure eK is an orthogonal pro-

jection of M b(K) and the normalized right Haar measure.

Proof. For any cj ∈ K, it is obvious that eK ∗ εcj
= eK by the proof of

Proposition 2.8 and the normalized right Haar measure is unique. Since

e−K = (eK ∗ εcj
)− = ε−cj

∗ e−K , we have e−K = eK because of the uniqueness of

the normalized Haar measure. ¤

Let K be a finite signed hypergroup. We define a linear mapping φ from

M b(K) to C by

φ(µ) = a0

for any µ =
∑

ck∈K akεck
. Obviously,

φ(ε−ci
∗ εci

) = φ

(
1

w(ci)
εc0 + · · ·

)
=

1

w(ci)
> 0 and φ(c0) = 1.

When φ(µ− ∗ µ) = 0, we have µ = 0 because

φ(µ− ∗ µ) = φ

( ∑
ck,cl∈K

akalε
−
ck
∗ εcl

)
=

∑
ck∈K

|ak|2 1

w(ck)
.

Hence φ is a faithful positive state of M b(K). We call φ the canonical state.

We define the inner product (·|·) of M b(K) by

(µ|ν) = φ(ν− ∗ µ).

Proposition 2.10. (1) (εci
|εcj

) = 1
w(ci)

δi,j where δi,j is Kronecker’s delta.

(2) (εck
∗ εci

|εcj
) = (εci

|ε−ck
∗ εcj

).
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Proof. (1) It is easy to see that φ(ε−cj
∗ εci

) = 0 for i 6= j by the axiom of a

hypergroup.

(2) By the definition, we have

(εck
∗ εci

|εcj
) = φ(ε−cj

∗ (εck
∗ εci

)) = φ((ε−ck
∗ εcj

)− ∗ εci
) = (εci

|ε−ck
∗ εcj

).

¤

Corollary 2.11. For µ =
∑

ck∈K akεck
∈ M b(K), we have

ak = (µ|ck)w(ck).

Proposition 2.12. M b(K) is a C∗-algebra.

Proof. For µ ∈ M b(K), we denote ||µ||2 := (µ|µ)
1
2 . Then M b(K) becomes a

finite dimensional Hilbert space. We denote a Hilbert space M b(K) by H.

Let L(H) be a set of all linear mapping from M b(K) to M b(K). For

µ ∈ M b(K) and x ∈ H, we put π(µ)x = µ ∗ x. We know that π is a ∗-
isomorphism from M b(K) into L(H). Since π(M b(K)) is a ∗-subalgebra of

C∗-algebra L(H), π(M b(K)) is a C∗-algebra with the norm ||·|| by ||π(µ)|| =
supx∈H,||x||2≤1||π(µ)x||2. Hence M b(K) becomes a C∗-algebra with the same

norm of π(M b(K)). ¤

We call a complex valued function χ on a finite commutative signed hy-

pergroup K a character of K if χ satisfies

χ(c0) = 1 and χ(ci)χ(cj) =
∑
ck∈K

nk
ijχ(ck)

where εci
∗εcj

=
∑

ck∈K nk
ijck. There exists the character χ such that χ(ci) = 1

for all ci ∈ K; we write it by χ0. Let K̂ be the set of all character of K

We can expand χ on K into M b(K) by

χ(aiεci
+ ajεcj

) := aiχ(ci) + ajχ(cj)

for ai, aj ∈ C and ci, cj ∈ K.

Proposition 2.13. Let eK be the normalized Haar measure of K. For any

j,

χj(eK) = δ0,j.

Proof. For any ci ∈ K,

χj(εcj
)χj(eK) = χj(εcj

∗ eK) = χj(eK).

Hence we get χj(εci
) = 1 or χj(eK) = 0. When χj(c) = 1 for all c ∈ K

namely χj = χ0, we have

χ0(eK) =
1

w(K)

∑
ck∈K

w(ck)χ0(εck
) =

1

w(K)

∑
ck∈K

w(ck) = 1.
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Since for χj (j 6= 0), there exists ci such that χj(ci) 6= 1, we get χj(eK) =

0. ¤

Proposition 2.14. When K = {c0, c1, · · · , cn}, we have K̂ = {χ0, χ1, · · · , χn}.

Proof. For a character χ̃ on M b(K), the restriction χ of χ̃ to K is a character

of K. Conversely, for a character χ of K, the value of character χ̃ of µ =∑
c∈K acεc ∈ M b(K) is given by χ̃(µ) =

∑
c∈K acεχ(c). Hence we see a

one-to-one correspondence between K̂ and M̂ b(K). For χ̃i ∈ M̂ b(K), we

can take the minimal projection ej on M b(K) such that χ̃i(ej) = δi,j and∑n
j=0 ej = 1. Since the numbers of minimal projections on M b(K) is n + 1,

we have M̂ b(K) = {χ̃0, χ̃1, · · · , χ̃n}. Therefore we know that the order of K̂

is n + 1. ¤

Hereafter, Let {ej}j be the minimal projections of M b(K) such that

χi(ej) = δi,j, ej ∗ ej = ej, e−j = ej.

Proposition 2.15.

εci
∗ ej = χj(ci)ej.

Proof. By the fact that M b(K) ∼= ∑
j Cej, we can write εci

=
∑

k akek. Then

we have

εci
∗ ej =

∑

k

akek ∗ ej = ajej

from the property of projections.

On the other hands, χj(ci) = χj (
∑

k akek) =
∑

k akχj(ek) = aj, so we get

χj(ci)ej = ajej = εci
∗ ej.

¤

Proposition 2.16.

χi(c
−
j ) = χi(cj).

Proof. For M b(K) 3 µ =
∑

k akek, it is easy to see that µ− = (
∑

k akek)
− =∑

k ake
−
k =

∑
k akek and χi(µ) = χi (

∑
k akek) =

∑
k akχi(ek) = ai. Hence

we have

χi(µ
−) = χi

(∑

k

akek

)
= ai = χi(µ).

This conclusion holds if we restrict χi on K.

¤



14

Let A(K̂) be the ∗-algebra generated by K̂ with following product and

involution:

(χiχj)(c) = χi(c)χj(c) and χ−i (c) = χi(c)

for χi, χj ∈ A(K̂) and c ∈ K. Then any complex valued function on K

belongs to A(K̂).

For χi, χj ∈ K̂, we put

(χi|χj) :=
1

w(K)

∑
ck∈K

χi(ck)χj(ck)w(ck).

Then we define the inner product of A(K̂) as follows:

For a =
∑

χi∈K̂ αiχi, b =
∑

χj∈K̂ βjχj ∈ A(K̂),

(a|b) :=
∑

χi,χj∈K̂

αiβj(χi|χj).

Proposition 2.17. K̂ is a finite commutative signed hypergroup with unit

χ0.

Proof. By the definition, we know that

(χi|χi) =
1

w(K)

∑
ck∈K

|χi(ck)|2w(ck) > 0.

For χj ∈ K̂ (i 6= j), since χiχ
−
j belongs to A(K̂), we can write χiχ

−
j =∑

χk∈K̂

αkχk. For the normalized Haar measure eK of K, we have

χiχ
−
j (eK) =

∑

χk∈K̂

αkχk(eK) = α0

by Proposition 2.13. On the other hands, we have

χiχ
−
j (eK) = χi(eK)χ−j (eK) = 0

because i 6= j. Hence we get α0 = 0, namely, supp(χiχ
−
j ) 63 χ0. We also get

(χi|χj) = 0 because

χiχ
−
j (eK) =

1

w(K)

∑
ck∈K

w(ck)χiχ
−
j (ck) =

1

w(K)

∑
ck∈K

w(ck)χ(ck)χj(ck)

= (χi|χj).

Therefore {χi}i are orthogonal basis of A(K̂), so we can write

χiχj =
∑

χk∈K̂

mk
ijχk

where mk
ij ∈ C.

We note that χiχj(cl) =
∑

k mk
ijχk(cl) and χiχj(c

−
l ) =

∑
k mk

ijχk(c
−
l ).

Hence we have mk
ij = mk

ij i.e. mk
ij ∈ R because of Proposition 2.16.
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Since χi(c0)χj(c0) =
∑

k mk
ijχk(c0) and χ(c0) = 1 for all χ ∈ K̂, we get∑

k mk
ij = 1.

¤

We identify χ ∈ A(K̂) with εχ ∈ M b(K̂).

Corollary 2.18.

(χi|χi) =
1

w(χi)
.

Proposition 2.19.
ˆ̂
K ∼= K.

Proof. Since we already know that M b(K) is a commutative C∗-algebra by

Proposition 2.12, we can see that the set M b(
ˆ̂
K) generated by all character

of K̂ is isomorphic to M b(K) by Gelfand representation. ¤

We call K̂ the dual signed hypergroup of a finite commutative signed

hypergroup K.

For a commutative hypergroup K, when the dual signed hypergroup K̂

satisfies the hypergroup conditions, we call that K is strong. For a commu-

tative signed hypergroup K, when the dual signed hypergroup K̂ satisfies

the dual relation K̂ ∼= K, we call that K is self-dual.

Proposition 2.20.

ej =
w(χj)

w(K)

∑
i

w(ci)χj(ci)εci
.

Proof. Put ej =
∑

k akεck
for ak ∈ C. For any ci ∈ K, we have

(ej|ci) =
∑

k

ak(ck|ci) =
∑

k

akφ(ε−ci
∗ εck

) = ai · 1

w(ci)
.

On the other hands, we have

(ej|ci) = φ(ε−ci
∗ ej) = φ(χj(c

−
i )ej) = χj(ci)a0

by Proposition 2.15 and Proposition 2.16. Hence, we have ai = χj(ci)w(ci)a0.

Then we have

χj(ej) = χj

(∑
i

χj(ci)w(ci)a0εci

)
= a0

∑
i

χj(ci)χj(ci)w(ci)

= a0w(K)(χj|χj) = a0 · w(K)

w(χj)

by Corollary 2.18. Since χj(ej) = 1, we get a0 =
w(χj)

w(K)
.

¤
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Next, we introduce some methods of making new hypergroups from the

materials of given hypergroups.

(1) Direct product hypergroup H × L.

Let H and L be locally compact commutative signed hypergroups

with unit h0 ∈ H and l0 ∈ L respectively. The direct product hyper-

group H × L = {(h, l) : h ∈ H, l ∈ L} is defined as follows.

The point measure ε(h,l) of an element (h, l) ∈ H × L is identified

with εh ⊗ εl ∈ M b(H) ⊗ M b(L). The convolution · on H × L is

calculated as follows.

ε(h,l) · ε(h′,l′) := (εh ∗ εh′)⊗ (εl ∗ εl′).

Then we immediately know that the unit is (h0, l0) and involution −

is given by (h, l)− := (h−, l−).

For χ ∈ Ĥ and τ ∈ L̂, we define the double character (χ, τ) by

(χ, τ)(h, l) := χ(h)τ(l). Then it is obvious that (χ, τ) is a character

of H × L namely Ĥ × L = Ĥ × L̂.

(2) Let H be a compact commutative signed hypergroup and L be a

finite commutative signed hypergroup. We denote L \ {unit of L}
by L0. The a hypergroup join H ∨L := H ∪L0 of H by L is defined

as follows.

(a) εh ∗ εl = εl for h ∈ H and l ∈ L0.

(b) εl−i
∗ εli =

1

w(l)
eH +

∑

k 6=0

nk
i−iεlk for li ∈ L0 where eH is the

normalized Haar measure of H.

(3) Let H be a finite signed hypergroup and G be a finite abelian group.

Let α be a homomorphism from G to Aut(H), called (group) action of

G on H. We denote an α-orbit by Ci and εCi
:=

1

|Ci|
∑
c∈Ci

εc. Then the

set K = {C0, C1, · · · , Cn} of all orbits by α become a commutative

signed hypergroup, called orbital hypergroup of H by G and denoted

by Hα.

Especially, when H is a group and an action α is the adjoint action

of H, K is called the (conjugacy) class hypergroup and denoted by

K(H).

Example 2.21. Let S3 = {e, h, h2, g, hg, h2g} be the symmetric

group of order three where h3 = e, g2 = e and gh = h2g.

The classes are as follows:

C0 = {e}, C1 = {h, h2}, C2 = {g, hg, h2g}.
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Let ci = Ci/|Ci|. The set K(S3) of class hypergroup of S3 is K(S3) =

{c0, c1, c2} and the structure constants are seen to be

εc1 ∗ εc1 =
1

2
εc0 +

1

2
εc1 , εc2 ∗ εc2 =

1

3
εc0 +

2

3
εc1 ,

εc1 ∗ εc2 = εc2 .

(4) Let K be a locally compact signed hypergroup. Let N be a subalgebra

of M b(K) with unit of M b(K). For a state φ of M b(K), there exists

the unique conditional expectation E from M b(K) onto N such that

φ ◦ E = φ namely E satisfies following conditions.

(a) E is a linear mapping from M b(K) to N .

(b) E(εa ∗ εx ∗ εb) = εa ∗ E(εx) ∗ εb for a, b ∈ N and x ∈ M b(K).

(c) φ ◦ E = φ.

If for a locally compact signed hypergroup K ′, there exists the iso-

morphism Ψ from M b(K ′) onto N and for any x ∈ K there exists

c′ ∈ K ′ such that E(εx) = Ψ(εc′), then K is called the generalized

orbital hypergroup of K by the conditional expectation E and denote

by KE.

Remark. Any orbital hypergroup is a generalized orbital hyper-

group.

(5) Let H be a finite group and Ĥ be a set of all irreducible representation

of H. For Ĥ 3 πi, πj, the tensor product of πi and πj is given by

πi ⊗ πj :=
∑

k

⊕Mk
ijπk

where Mk
ij is the multiplicity of πk. Remarking the dimension, we can

see that (dimπi)(dimπj) =
∑

k Mk
ijdimπk. We denote the normalized

character of πi by χi namely

χi(h) :=
tr(πi(h))

dimπi

.

If we put mk
ij =

Mk
ijdimπk

(dimπi)(dimπj)
, then we have

χiχj =
∑

k

mk
ijχk,

∑

k

mk
ij = 1.

The hypergroup is called a character hypergroup and denote by K(Ĥ).

Example 2.22. Let Ŝ3 = {x0, x1, π} be the set of all irreducible rep-

resentations of the symmetric group S3 of order three where dimχi =

1 and dimπ = 2. We denote the normalized character of π by χ2.
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The set K(Ŝ3) of character hypergroup of S3 is K(Ŝ3) = {χ0, χ1, χ2}
and the structure is determined by

εχ1 ∗ εχ1 = εχ0 , εχ2 ∗ εχ2 =
1

4
εχ0 +

1

4
εχ1 +

1

2
εχ2 ,

εχ1 ∗ εχ2 = εχ2 .

Remark. For a finite group H, we have

K̂(H) ∼= K(Ĥ).
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3. Extension problem of some hypergroups

Let K be a locally compact commutative hypergroup and H ⊂ K be a

subhypergroup. It is well-known that the quotient K/H is also a commuta-

tive hypergroup. In order to describe this situation, we often use the form

of short exact sequence:

1 −→ H
ι−→ K

ϕ−→ L −→ 1

where L = K/H and ϕ is the quotient mapping. Then, the hypergroup K

is called an extension hypergroup of L by H.

Problem. For given locally compact commutative hypergroups H and

L, find all commutative extension hypergroups K of L by H.

In this Chapter, we consider three extension problems.

3.1. Extensions of the Golden hypergroup by finite abelian groups.

3.1.1. The structures of extension hypergroups. Let L = {`0, `1, `2} be the

Golden hypergroup G where `0 is the unit of L. The hypergroup structure

of L is determined by

δ`1 ◦ δ`1 =
1

2
δ`0 +

1

2
δ`2 , `−1 = `1,

δ`2 ◦ δ`2 =
1

2
`0 +

1

2
δ`1 , `−2 = `2,

δ`1 ◦ δ`2 =
1

2
δ`1 +

1

2
δ`2

where δ`i
is the Dirac measure at `i ∈ L. Let H = {h0, h1, · · · , hn} be a

finite abelian group where h0 is the unit of H.

We investigate the structure of extensions K of L by H. Let ϕ be a

homomorphism from K onto L such that Ker ϕ = H, where H is assumed

to be a subhypergroup of K. Then K is written as the disjoint union of

H = ϕ−1(`0), S := ϕ−1(`1) and T := ϕ−1(`2). Let H(`1) and H(`2) denote

the stability group of H at s0 ∈ S and t0 ∈ T respectively, i.e.

H(`1) = {h ∈ H : εh ∗ εs0 = εs0},
H(`2) = {h ∈ H : εh ∗ εt0 = εt0}.

We note that H(`1) does not depend on the choice of s0 ∈ S but only on

S and H(`2) also depends only on T .

Proposition 3.1. For each s ∈ S and t ∈ T , there exist h and k ∈ H such

that εs = εh ∗ εs0 and εt = εk ∗ εt0.
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Proof. If s ∈ supp(εh ∗ εs0) for h ∈ H, then supp(ε−h ∗ εs) is contained in

supp(ε−h ∗ εh ∗ εs0). Since H is a group, we have ε−h ∗ εh = εh0 so that

supp(ε−h ∗ εh ∗ εs0) = supp(εh0 ∗ εs0) = supp(εs0) = {s0}.
Hence we see that ε−h ∗ εs = εs0 , namely εs = εh ∗ εs0 . By the fact that

S = H ∗ εs0 =
⋃

h∈H

supp(εh ∗ εs0),

we get the desired conclusion. In a similar way, we have the same conclusion

for t ∈ T . ¤

Let eH0 denote the normalized Haar measure of a subgroup H0 of H. The

next Lemma is useful for our arguments hereafter.

Lemma 3.2. For a subgroup H0 of H, if c ∈ M1(H), supp(c) ⊂ H0 and

eH0 ∗ c = c, then we have c = eH0.

Proof. For c ∈ M1(H) and supp(c) ⊂ H0, we can write c =
∑

hk∈H0

akεhk
where

∑

k

ak = 1. Then, we have

c = eH0 ∗ c =
∑

hk∈H0

akeH0 ∗ εhk
=

∑

hk∈H0

akeH0 =

( ∑

hk∈H0

ak

)
eH0 = eH0 .

Hence we get the desired conclusion. ¤

Let ω(`1) denote the normalized Haar measure of H(`1) and ω(`2) denote

the normalized Haar measure of H(`2).

Proposition 3.3. For s0 ∈ S and t0 ∈ T , there exist h ∈ H and k ∈ H such

that ε−s0
= εh∗εs0 and t−0 = εk∗εt0. Then we have ε−s0

∗εs0 = 1
2
ω(`1)+

1
2
c1∗εt0,

ε−t0 ∗ εt0 = 1
2
ω(`2) + 1

2
c2 ∗ εs0, εs0 ∗ εt0 = 1

2
c3 ∗ εs0 + 1

2
c4 ∗ εt0 where ci ∈

M1(H) (i = 1, 2, 3, 4) such that c−1 ∗ εk = c1 and c−2 ∗ εh = c2 and ω(`1) ∗
ω(`2) ∗ ci = ci (i = 1, 2, 3, 4). Moreover we have c1 ∗ c1 = ω(`1) ∗ ω(`2) ∗ εk,

c2 ∗ c2 = ω(`1) ∗ ω(`2) ∗ εh, c3 = c−1 and c4 = c−2 .

Proof. One can take h, k ∈ H such that ε−s0
= εh ∗ εs0 and t−0 = εk ∗ εt0 by

Proposition 3.1 because s−0 ∈ S and t−0 ∈ T by the relations `−1 = `1 and

`−2 = `2. It is easy to see that ε−s0
∗ εs0 is written as

ε−s0
∗ εs0 =

1

2
c0 +

1

2
c1 ∗ εt0

for some c0, c1 ∈ M1(H).
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First, we show the equality c0 = ω(`1). The fact ω(`1) ∗ εs0 = εs0 implies

that ω(`1)∗c0 = c0 and ω(`1)∗c1 = c1. We suppose that h′ /∈ H(`1). Since we

have εh′∗εs0 6= εs0 , we have (εh′∗εs0)
− 6= ε−s0

. Then h0 /∈ supp((εh′∗εs0)
−∗εs0)

by the axiom of hypergroup. Since (εh′ ∗ εs0)
− ∗ εs0 = 1

2
ε−h′ ∗ c0 + 1

2
ε−h′ ∗ c1 ∗ εt0

because K is commutative, we have h0 /∈ supp(ε−h′ ∗ c0). Therefore h′ /∈
supp(c0). Hence we see that supp(c0) is contained in H(`1). By Lemma 3.2,

we get c0 = ω(`1). By the fact that ω(`1) ∗ εs0 = εs0 and ω(`2) ∗ εt0 = εt0 ,

we see that ω(`1) ∗ ω(`2) ∗ c1 = c1. By the equality:

(ε−s0
∗ εs0)

− =
1

2
(ω(`1))

− +
1

2
c−1 ∗ ε−t0 =

1

2
ω(`1) +

1

2
c−1 ∗ εk ∗ εt0

and (ε−s0
∗ εs0)

− = ε−s0
∗ εs0 , we get c−1 ∗ εk = c1. In a similar way to the

above, we have ε−t0 ∗ εt0 = 1
2
ω(`2) + 1

2
c2 ∗ εs0 where ω(`1) ∗ ω(`2) ∗ c2 = c2

and c−2 ∗ εh = c2. It is easy to see that εs0 ∗ εt0 = 1
2
c3 ∗ εs0 + 1

2
c4 ∗ εt0 where

ω(`1) ∗ ω(`2) ∗ c3 = c3 and ω(`1) ∗ ω(`2) ∗ c4 = c4.

Next, we show the equation c1 ∗ c1 = ω(`1) ∗ ω(`2) ∗ εk, c2 ∗ c2 = ω(`1) ∗
ω(`2)∗εh, c3 = c−1 and c4 = c−2 . We have εs0 ∗εs0 = 1

2
ω(`1)∗ε−h + 1

2
c1∗ε−h ∗εt0 ,

εt0 ∗ εt0 = 1
2
ω(`2) ∗ ε−k + 1

2
c2 ∗ ε−k ∗ εs0 , and εs0 ∗ εt0 = 1

2
c3 ∗ εs0 + 1

2
c4 ∗ εt0 . It

is easy to see by simple calculations that

(εs0 ∗εs0)∗εt0 =
1

4
c1 ∗ε−h ∗ε−k +

1

4
c1 ∗c2 ∗ε−h ∗ε−k ∗εs0 +

1

2
ω(`1)∗ω(`2)∗ε−h ∗εt0 ,

εs0 ∗ (εs0 ∗ εt0) =
1

4
c3 ∗ ε−h +

1

4
c3 ∗ c4 ∗ εs0 +

1

4
(c1 ∗ c3 ∗ ε−h + c4 ∗ c4) ∗ εt0 .

By the associativity: (εs0 ∗εs0)∗εt0 = εs0 ∗ (εs0 ∗εt0), we have 2ω(`1)∗ω(`2)∗
ε−h = c1 ∗ c3 ∗ ε−h + c4 ∗ c4 and c3 = c1 ∗ ε−k = c−1 . In a similar way, since

we have εs0 ∗ (εt0 ∗ εt0) = (εs0 ∗ εt0) ∗ εt0 , we have c4 = c2 ∗ ε−h = c−2 . By

these relations, we have 2ω(`1) ∗ ω(`2) = c1 ∗ c1 ∗ ε−k + c2 ∗ c2 ∗ ε−h . This

fact implies that supp(ω(`1) ∗ω(`2)) = supp(c1 ∗ c1 ∗ ε−k )∪ supp(c2 ∗ c2 ∗ ε−h ).

Hence we see that supp(c1 ∗ c1 ∗ ε−k ) ⊂ H(`1) ∗H(`2) and supp(c2 ∗ c2 ∗ ε−h )

⊂ H(`1) ∗H(`2). Applying Lemma 3.2, we have c1 ∗ c1 ∗ ε−k = ω(`1) ∗ ω(`2)

and c2 ∗ c2 ∗ ε−h = ω(`1) ∗ ω(`2). Therefore, we get c1 ∗ c1 = ω(`1) ∗ ω(`2) ∗ εk

and c2 ∗ c2 = ω(`1) ∗ ω(`2) ∗ εh. ¤

Remark. If K is an extension of the Golden hypergroup L = G by a finite

abelian group H, we can reformulate Proposition 3.3 as follows.

(0) K is the disjoint union of H = ϕ−1(`0), S = ϕ−1(`1) and T = ϕ−1(`2),

and take s0 ∈ S, t0 ∈ T .

(1) ε−s0
= εh ∗ εs0 and ε−t0 = εk ∗ εt0 for h, k ∈ H.

(2) εs0 ∗ εs0 = 1
2
ω(`1) ∗ ε−h + 1

2
c1 ∗ ε−h ∗ εt0 for c1 ∈ M1(H).
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(3) εt0 ∗ εt0 = 1
2
ω(`2) ∗ ε−k + 1

2
c2 ∗ ε−k ∗ εs0 for c2 ∈ M1(H).

(4) εs0 ∗ εt0 = 1
2
c−1 ∗ εs0 + 1

2
c−2 ∗ εt0 .

(5) ω(`1) ∗ ω(`2) ∗ c1 = c1 and ω(`1) ∗ ω(`2) ∗ c2 = c2.

(6) c−1 = c1 ∗ ε−k and c−2 = c2 ∗ ε−h .

(7) c1 ∗ c1 = ω(`1) ∗ ω(`2) ∗ εk and c2 ∗ c2 = ω(`1) ∗ ω(`2) ∗ εh.

We remark that it is easy to check that these conditions assure that K is

a commutative hypergroup which is an extension of L by H. Hence we see

that all extensions K of L by H are determined in this way by

s0 ∈ S, t0 ∈ T, h, k ∈ H, c1, c2 ∈ M1(H)

satisfying the above conditions (1) – (7). Therefore we denote such an ex-

tension K by K = K(s0, t0, h, k, c1, c2).

Let K1 = H ∪ S1 ∪ T1 and K2 = H ∪ S2 ∪ T2 be two extensions of L by

H and ϕ1 (resp. ϕ2) be a canonical quotient mapping from K1 (resp. K2)

onto the Golden hypergroup L = G. Then K1 is called to be equivalent to

K2 as extensions if there exists a hypergroup isomorphism ψ from K1 onto

K2 such that ψ(h) = h for all h ∈ H and ϕ2 ◦ ψ = ϕ1.

When we take u0 ∈ S, v0 ∈ T , h1, k1 ∈ H and d1, d2 ∈ M1(H) satisfying

the above conditions (1) – (7), we have another extension K(u0, v0, h1, k1, d1, d2)

of L by H.

Proposition 3.4. Two extensions K(s0, t0, h, k, c1, c2) and K(u0, v0, h1, k1, d1, d2)

of L by H are mutually equivalent as extensions if and only if there exist

b1, b2 ∈ H such that εu0 = ε−b1 ∗ εs0, εv0 = ε−b2 ∗ εt0, d1 = εb2 ∗ c1, d2 = εb1 ∗ c2,

ω(`1) ∗ εh1 = ω(`1) ∗ εb1 ∗ εb1 ∗ εh and ω(`2) ∗ εk1 = ω(`2) ∗ εb2 ∗ εb2 ∗ εk.

Proof. Suppose that K1 = K(s0, t0, h, k, c1, c2) is equivalent to K2 =

K(u0, v0, h1, k1, d1, d2). Then it is easy to see that both stability groups of

H in K1 and K2 at s0 and u0 coincide and both stability groups of H at t0

and v0 also coincide. Hence we may assume that ϕ−1
2 (`1) = ϕ−1

1 (`1) = S and

ϕ−1
2 (`2) = ϕ−1

1 (`2) = T . For u0 ∈ S and v0 ∈ T , there exist b1 and b2 ∈ H

such that εu0 = ε−b1 ∗ εs0 and εv0 = ε−b2 ∗ εt0 respectively by Proposition 3.1.

By the relation that ε−s0
= εh ∗ εs0 and ε−u0

= εh1 ∗ εu0 , we get

εh1 ∗ εs0 = εb1 ∗ εb1 ∗ εh ∗ εs0 .

Hence we have ω(`1) ∗ εh1 = ω(`1) ∗ εb1 ∗ εb1 ∗ εh. In a similar way, we also

obtain ω(`2)∗ εk1 = ω(`2)∗ εb2 ∗ εb2 ∗ εk. Since ε−u0
∗ εu0 = ε−s0

∗ εs0 , comparing
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coefficients of t0 of ε−s0
∗ εs0 and ε−u0

∗ εu0 , we get d1 = εb2 ∗ c1. In a similar

way, we see that d2 = εb1 ∗ c2.

Conversely, if there exists b1, b2 ∈ H such that εu0 = ε−b1 ∗εs0 , εv0 = ε−b2 ∗εt0 ,

d1 = εb2 ∗ c1, d2 = εb1 ∗ c2, ω(`1) ∗ εh1 = ω(`1) ∗ εb1 ∗ εb1 ∗ εh and ω(`2) ∗ εk1 =

ω(`2) ∗ εb2 ∗ εb2 ∗ εk, it is easy to check that K(s0, t0, h, k, c1, c2) is equivalent

to K(u0, v0, h1, k1, d1, d2). ¤

Let K be an extension of L by a finite abelian group H. If there exists

injective mapping φ from L into K such that

(1) ϕ(φ(`)) = `,

(2) φ(eL) = eK and φ(`−) = φ(`)−,

(3) The set H(`) = {h ∈ H : h ∗ φ(`) = φ(`)} is a subgroup of H,

(4) φ(δ`i
) ∗ φ(δ`j

) = φ(δ`i
◦ δ`j

) ∗ ω(`i) ∗ ω(`j) (i, j = 1, 2),

(5) ω(`i) ∗ ω(`j) ∗ ω(`) = ω(`i) ∗ ω(`j) if ` ∈ supp(δ`1 ◦ δ`2),

(6) K = H ∗ φ(L), and H
⋂

φ(L) = {eK},
then we call that the extension K of L by H splits or K is a splitting extension

([KST]).

Definition (weakly splitting). We call the extension K of L by H weakly

splitting if the conditions (1), (2), (3), (5) are satisfied.

Proposition 3.5. The extension K = K(s0, t0, h, k, c1, c2) is weakly splitting

if and only if there exist b1, b2 ∈ H such that c1 = ω(`1) ∗ ω(`2) ∗ εb2, c2 =

ω(`1) ∗ω(`2) ∗ εb1, ω(`1) ∗ εh = ω(`1) ∗ εb1 ∗ εb1 and ω(`2) ∗ εk = ω(`2)εb2 ∗ εb2.

Moreover, K is splitting if and only if K is weakly splitting and H(`1) =

H(`2).

Proof. Suppose that the extension K is given by K = K(s0, t0, h, k, c1, c2).

We assume that φ(`0) = h0, φ(`1) = s0 and φ(`2) = t0. Then we have

s−0 = s0 and t−0 = t0 by weakly splitting condition (1). This implies

that we can assume that h = h0 and k = k0 so that c1 = c2 = ω(`1) ∗
ω(`2). Since weakly splitting extensions are equivalent to this extension

K = K(s0, t0, h0, k0, c1, c2), we get the desired conclusion by applying Propo-

sition 3.4.

By the structure equations (2) and (3) as described in Remark combined

with splitting condition (4), we get ω(`1) = ω(`2), i.e. H(`1) = H(`2). ¤
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Theorem 3.6. Let K be a commutative hypergroup extension of the Golden

hypergroup L = {`0, `1, `2} by a finite abelian group H, which means that

there exists a hypergroup homomorphism ϕ from K onto L such that Ker

ϕ = H. Let H(`1) be the stability group of H at s0 ∈ S = ϕ−1(`1) and

H(`2) be the stability group of H at t0 ∈ T = ϕ−1(`2). Let ω(`i) denote the

normalized Haar measure of H(`i) (i = 1, 2).

(1) Then we have S = ∪h∈Hsupp(εh ∗ εs0) and T = ∪k∈Hsupp(εk ∗ εt0).

When ε−s0
= εh ∗ εs0 and t−0 = εk ∗ εt0 for some h, k ∈ H, we have

ε−s0
∗ εs0 = 1

2
ω(`1) + 1

2
c1 ∗ εt0, ε−t0 ∗ εt0 = 1

2
ω(`2) + 1

2
c2 ∗ εs0 and

εs0 ∗ εt0 = 1
2
c−1 ∗ εs0 + 1

2
c−2 ∗ εt0 for c1, c2 ∈ M1(H) such that ω(`1) ∗

ω(`2)∗ci = ci (i = 1, 2). Moreover, c−1 = c1∗ε−k , c−2 = c2∗ε−h , c1∗c1 =

ω(`1) ∗ ω(`2) ∗ εk and c2 ∗ c2 = ω(`1) ∗ ω(`2) ∗ εh.

(2) All extensions K of L by H are characterized in this way, so that

we denote such an extension K by K(s0, t0, h, k, c1, c2). Two exten-

sions K(s0, t0, h, k, c1, c2) and K(u0, v0, h1, k1, d1, d2) of L by H are

mutually equivalent as extensions if and only if there exists b1, b2 ∈ H

such that εu0 = ε−b1 ∗ εs0, εv0 = ε−b2 ∗ εt0, d1 = εb2 ∗ c1, d2 = εb1 ∗ c2,

ω(`1)∗ εh1 = ω(`1)∗ εb1 ∗ εb1 ∗ εh and ω(`2)∗ εk1 = ω(`2)∗ εb2 ∗ εb2 ∗ εk.

(3) Moreover, the extension K = K(s0, t0, h, k, c1, c2) is weakly splitting

if and only if there exist b1, b2 ∈ H such that c1 = ω(`1) ∗ ω(`2) ∗ εb2,

c2 = ω(`1) ∗ ω(`2) ∗ εb1, ω(`1) ∗ εh = ω(`1) ∗ εb1 ∗ εb1 and ω(`2) ∗ εk =

ω(`2)∗εb2 ∗εb2. The extension K is splitting if and only if K is weakly

splitting and H(`1) = H(`2).

Proof. These statements follow immediately from Proposition 3.1, 3.2, 3.3,

3.4 and 3.5 so that we omit the details. ¤

3.1.2. Applications and Examples. Under these preparations we calculate all

extensions K of the Golden hypergroup L by concrete abelian groups H =

Z2, Z3, Z4, Z5 and Z6. We denote the order of K by |K|.

Example 3.7. H = Z2 = {h0, h1}, h2
1 = h0.

(1) Case of |K| = 6, i.e. H(`1) = {h0}, H(`2) = {h0} and K6 = H × L.

K6 = {h0, h1, s0, s1, t0, t1}, εs1 = εh1 ∗ εs0 , εt1 = εh1 ∗ εt0 .

s−0 = s0, s−1 = s1, t−0 = t0, t−1 = t1,

εs0 ∗ εs0 = 1
2
εh0 + 1

2
εt0 , εt0 ∗ εt0 = 1

2
εh0 + 1

2
εs0 ,

εs0 ∗ εt0 = 1
2
εs0 + 1

2
εt0 .



25

(2) Case of |K| = 5.

(a) When H(`1) = H, H(`2) = {h0}, i.e.

K5
a = {h0, h1, s0, t0, t1}, εt1 = εh1 ∗ εt0 .

(i) K = K5
a1 (s−0 = s0, t

−
0 = t0, t

−
1 = t1) which is character-

ized by

εs0 ∗ εs0 = 1
4
εh0 + 1

4
εh1 + 1

4
εt0 + 1

4
εt1 ,

εt0 ∗ εt0 = 1
2
εh0 + 1

2
εs0 , εs0 ∗ εt0 = 1

2
εs0 + 1

4
εt0 + 1

4
εt1 .

(ii) K = K5
a2 (s−0 = s0, t

−
0 = t1, t

−
1 = t0) which is character-

ized by

εs0 ∗ εs0 = 1
4
εh0 + 1

4
εh1 + 1

4
εt0 + 1

4
εt1 ,

εt0 ∗ εt0 = 1
2
εh1 + 1

2
εs0 , εs0 ∗ εt0 = 1

2
εs0 + 1

4
εt0 + 1

4
εt1 .

(b) When H(`1) = {h0}, H(`2) = H, in a similar way, we have K5
b1

and K5
b2.

(3) Case of | K |= 4, i.e. H(`1) = H, H(`2) = H.

K4 = H ∨ L = {h0, h1, s0, t0} which is the join of H by L and

characterized by

s−0 = s0, t−0 = t0,

εs0 ∗ εs0 = 1
4
εh0 + 1

4
εh1 + 1

2
εt0 , εt0 ∗ εt0 = 1

4
εh0 + 1

4
εh1 + 1

2
εs0 ,

εs0 ∗ εt0 = 1
2
εs0 + 1

2
εt0 .

Next, we consider the dual of this model. Let K̂5
a1 = {χ0, χ1, χ2, χ3, χ4},

be the dual of K5
a1. The character table of K5

a1 is as follows.

h0 h1 s0 t0 t1

χ0 1 1 1 1 1

χ1 1 1
−1 +

√
5

4

−1−√5

4

−1−√5

4

χ2 1 1
−1−√5

4

−1 +
√

5

4

−1 +
√

5

4

χ3 1 -1 0
1√
2

− 1√
2

χ4 1 -1 0 − 1√
2

1√
2

Hence the structure equations of the dual K̂5
a1 of K5

a1 are given in the

following way.

εχ1 ∗ εχ1 =
1

2
εχ0 +

1

2
εχ2 , εχ1 ∗ εχ2 =

1

2
εχ1 +

1

2
εχ2 , εχ2 ∗ εχ2 =

1

2
εχ0 +

1

2
εχ1 ,

εχ1 ∗ εχ3 =
3−√5

8
εχ3 +

5 +
√

5

8
εχ4 , εχ1 ∗ εχ1 =

5 +
√

5

8
εχ3 +

3−√5

8
εχ4 ,
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εχ2 ∗ εχ3 =
3 +

√
5

8
εχ3 +

5−√5

8
εχ4 , εχ2 ∗ εχ4 =

5−√5

8
εχ3 +

3 +
√

5

8
εχ4 ,

εχ3 ∗ εχ3 = εχ4 ∗ εχ4 =
2

5
εχ0 +

3−√5

10
εχ1 +

3 +
√

5

10
εχ2 ,

εχ3 ∗ εχ4 =
5 +

√
5

10
εχ1 +

5−√5

10
εχ2 .

By this fact we see that K5
a1 is a strong hypergroup. In a similar way, it

is easy to check that K5
a2, K5

b1 and K5
b2 are also strong. It is well known that

H × L and H ∨ L are strong.

Remark. (1) K is a splitting extension of L by H if and only if K =

K6 = H × L or K4 = H ∨ L.

(2) K is a weakly splitting extension of L by H if and only if K = K6 =

H × L, K4 = H ∨ L, K5
a1, or K5

b1

(3) Above extensions are strong.

Example 3.8. H = Z3 = {h0, h1, h2}, h3
1 = h0, h−1 = h2, h−2 = h1.

(1) Case of |K| = 9, i.e. H(`1) = {h0}, H(`2) = {h0}.
K9 = {h0, h1, h2, s0, s1, s2, t0, t1, t2},
εsk

= εhk
∗ εs0 (k = 0, 1, 2), εtj = εhj

∗ εt0 (j = 0, 1, 2).

(a) K = K9
a = H × L (s−0 = s0, s−1 = s2, s−2 = s1, t−0 = t0, t−1 =

t2, t−2 = t1) which is characterized by

εs0∗εs0 = 1
2
εh0+

1
2
εt0 , εt0∗εt0 = 1

2
εh0+

1
2
εs0 , εs0∗εt0 = 1

2
εs0+

1
2
εt0 .

(b) K = K9
b (s−0 = s1, s−1 = s0, s−2 = s2, t−0 = t0, t−1 = t2, t−2 = t1)

which is characterized by

εs0∗εs0 = 1
2
εh2+

1
2
εt2 , εt0∗εt0 = 1

2
εh0+

1
2
εs2 , εs0∗εt0 = 1

2
εs0+

1
2
εt1 .

(c) K = K9
c (s−0 = s2, s−1 = s1, s−2 = s0, t−0 = t0, t−1 = t2, t−2 = t1)

which is characterized by

εs0∗εs0 = 1
2
εh1+

1
2
εt1 , εt0∗εt0 = 1

2
εh0+

1
2
εs1 , εs0∗εt0 = 1

2
εs0+

1
2
εt2 .

(d) K = K9
d (s−0 = s1, s−1 = s0, s−2 = s2, t−0 = t1, t−1 = t0, t−2 = t2)

which is characterized by

εs0∗εs0 = 1
2
εh2+

1
2
εt1 , εt0∗εt0 = 1

2
εh2+

1
2
εs1 , εs0∗εt0 = 1

2
εs1+

1
2
εt1 .
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(e) K = K9
e (s−0 = s2, s−1 = s1, s−2 = s0, t−0 = t1, t−1 = t0, t−2 = t2)

which is characterized by

εs0∗εs0 = 1
2
εh1+

1
2
εt0 , εt0∗εt0 = 1

2
εh2+

1
2
εs0 , εs0∗εt0 = 1

2
εs1+

1
2
εt2 .

(f) K = K9
f (s−0 = s2, s−1 = s1, s−2 = s0, t−0 = t2, t−1 = t1, t−2 = t0)

which is characterized by

εs0∗εs0 = 1
2
εh1+

1
2
εt2 , εt0∗εt0 = 1

2
εh1+

1
2
εs2 , εs0∗εt0 = 1

2
εs2+

1
2
εt2 .

(2) Case of |K| = 7.

(a) When H(`1) = H, H(`2) = {h0}, i.e.

K7
a = {h0, h1, h2, s0, t0, t1, t2} εtj = εhj

∗ εt0 (j = 0, 1, 2).

(i) K = K7
a1 (s−0 = s0, t−0 = t0, t−1 = t2, t−2 = t1) which is

characterized by

εs0 ∗ εs0 = 1
6
εh0 + 1

6
εh1 + 1

6
εh2 + 1

6
εt0 + 1

6
εt1 + 1

6
εt2 ,

εt0 ∗εt0 = 1
2
εh0 + 1

2
εs0 , εs0 ∗εt0 = 1

2
εs0 + 1

6
εt0 + 1

6
εt1 + 1

6
εt2 .

(ii) K = K7
a2 (s−0 = s0, t−0 = t1, t−1 = t0, t−2 = t2) which is

characterized by

εs0 ∗ εs0 = 1
6
εh0 + 1

6
εh1 + 1

6
εh2 + 1

6
εt0 + 1

6
εt1 + 1

6
εt2 ,

εt0 ∗εt0 = 1
2
εh2 + 1

2
εs0 , εs0 ∗εt0 = 1

2
εs0 + 1

6
εt0 + 1

6
εt1 + 1

6
εt2 .

(iii) K = K7
a3 (s−0 = s0, t−0 = t2, t−1 = t1, t−2 = t0) which is

characterized by

εs0 ∗ εs0 = 1
6
εh0 + 1

6
εh1 + 1

6
εh2 + 1

6
εt0 + 1

6
εt1 + 1

6
εt2 ,

εt0 ∗εt0 = 1
2
εh1 + 1

2
εs0 , εs0 ∗εt0 = 1

2
εs0 + 1

6
εt0 + 1

6
εt1 + 1

6
εt2 .

(b) When H(`1) = {h0}, H(`2) = H, in a similar way, we have K7
b1,

K7
b2 and K7

b3.

(3) Case of |K| = 5, i.e. H(`1) = H, H(`2) = H.

K5 = H ∨ L = {h0, h1, h2, s0, t0} which is the join of H by L and

characterized by

s−0 = s0, t−0 = t0, εs0 ∗ εs0 = 1
6
εh0 + 1

6
εh1 + 1

6
εh2 + 1

2
εt0 ,

εt0 ∗ εt0 = 1
6
εh0 + 1

6
εh1 + 1

6
εh2 + 1

2
εs0 , εs0 ∗ εt0 = 1

2
εs0 + 1

2
εt0 .

Remark. (1) We remark that H × L = K9
a
∼= K9

b
∼= K9

c
∼= K9

d
∼= K9

e
∼=

K9
f , K7

a1
∼= K7

a2
∼= K7

a3 and K7
b1
∼= K7

b2
∼= K7

b3, as extensions of L by

H.
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(2) K is a splitting extension of L by H if and only if K ∼= H × L or

K5 = H ∨ L.

(3) K is a weakly splitting extension of L by H if and only if K ∼= H×L,

K5 = H ∨ L, K7
a1, or K7

b1.

Example 3.9. H = Z4 = {h0, h1, h2, h3}, h4
1 = h0, h

−
1 = h3, h−2 = h2.

(1) Case of |K| = 12, i.e. H(`1) = {h0}, H(`2) = {h0}.
K12 = {h0, h1, h2, h3, s0, s1, s2, s3, t0, t1, t2, t3},
εsk

= εhk
∗ εs0 (k = 0, 1, 2, 3), εtj = εhj

∗ εt0 (j = 0, 1, 2, 3).

(a) K = K12
a = H × L (s−0 = s0, s−1 = s3, s−2 = s2, s−3 = s1, t−0 =

t0, t−1 = t3, t−2 = t2, t−3 = t1) which is characterized by

εs0∗εs0 = 1
2
εh0+

1
2
εt0 , εt0∗εt0 = 1

2
εh0+

1
2
εs0 , εs0∗εt0 = 1

2
εs0+

1
2
εt0 .

(b) K = K12
b (s−0 = s2, s−1 = s1, s−2 = s0, s−3 = s3, t−0 = t0, t−1 =

t3, t
−
2 = t2, t−3 = t1) which is characterized by

εs0∗εs0 = 1
2
εh2+

1
2
εt2 , εt0∗εt0 = 1

2
εh0+

1
2
εs1 , εs0∗εt0 = 1

2
εs0+

1
2
εt3 .

(c) K = K12
c (s−0 = s2, s−1 = s1, s−2 = s0, s−3 = s3, t−0 = t2, t−1 =

t1, t
−
2 = t0, t−3 = t3) which is characterized by

εs0∗εs0 = 1
2
εh2+

1
2
εt3 , εt0∗εt0 = 1

2
εh2+

1
2
εs3 , εs0∗εt0 = 1

2
εs3+

1
2
εt3 .

(2) Case of |K| = 10.

(a) When H(`1) = {h0, h2}, H(`2) = {h0}, i.e.

K10
a = {h0, h1, h2, h3, s0, s1, t0, t1, t2, t3},

εsk
= εhk

∗ εs0 (k = 0, 1), εtj = εhj
∗ εt0 (j = 0, 1, 2, 3).

(i) K = K10
a1 (s−0 = s0, s−1 = s1, t−0 = t0, t−1 = t3, t−2 =

t2, t−3 = t1) which is characterized by

εs0 ∗ εs0 = 1
4
εh0 + 1

4
εh2 + 1

4
εt0 + 1

4
εt2 , εt0 ∗ εt0 = 1

2
εh0 +

1
2
εs0 , εs0 ∗ εt0 = 1

2
εs0 + 1

4
εt0 + 1

4
εt2 .

(ii) K = K10
a2 (s−0 = s0, s−1 = s1, t−0 = t2, t−1 = t1, t−2 =

t0, t−3 = t3) which is characterized by

εs0 ∗ εs0 = 1
4
εh0 + 1

4
εh2 + 1

4
εt0 + 1

4
εt2 , εt0 ∗ εt0 = 1

2
εh2 +

1
2
εs0 , εs0 ∗ εt0 = 1

2
εs0 + 1

4
εt0 + 1

4
εt2 .

(b) When H(`1) = {h0}, H(`2) = {h0, h2}, in a similar way, we

have K10
b1 and K10

b2 .
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(3) Case of |K| = 9.

(a) When H(`1) = H, H(`2) = {h0}, i.e.

K9
a = {h0, h1, h2, h3, s0, t0, t1, t2, t3}, εtj = εhj

∗εt0 (j = 0, 1, 2, 3).

(i) K = K9
a1 (s−0 = s0, t−0 = t0, t−1 = t3, t−2 = t2, t−3 = t1)

which is characterized by

εs0 ∗ εs0 = 1
8
εh0 + 1

8
εh1 + 1

8
εh2 + 1

8
εh3 + 1

8
εt0 + 1

8
εt1 + 1

8
εt2 +

1
8
εt3 , εt0 ∗ εt0 = 1

2
εh0 + 1

2
εs0 , εs0 ∗ εt0 = 1

2
εs0 + 1

8
εt0 + 1

8
εt1 +

1
8
εt2 + 1

8
εt3 .

(ii) K = K9
a2 (s−0 = s0, t−0 = t1, t−1 = t0, t−2 = t3, t−3 = t2)

which is characterized by

εs0 ∗ εs0 = 1
8
εh0 + 1

8
εh1 + 1

8
εh2 + 1

8
εh3 + 1

8
εt0 + 1

8
εt1 + 1

8
εt2 +

1
8
εt3 , εt0 ∗ εt0 = 1

2
εh3 + 1

2
εs0 , εs0 ∗ εt0 = 1

2
εs0 + 1

8
εt0 + 1

8
εt1 +

1
8
εt2 + 1

8
εt3 .

(iii) K = K9
a3 (s−0 = s0, t−0 = t2, t−1 = t1, t−2 = t0, t−3 = t3)

which is characterized by

εs0 ∗ εs0 = 1
8
εh0 + 1

8
εh1 + 1

8
εh2 + 1

8
εh3 + 1

8
εt0 + 1

8
εt1 + 1

8
εt2 +

1
8
εt3 , εt0 ∗ εt0 = 1

2
εh2 + 1

2
εs0 , εs0 ∗ εt0 = 1

2
εs0 + 1

8
εt0 + 1

8
εt1 +

1
8
εt2 + 1

8
εt3 .

(iv) K = K9
a4 (s−0 = s0, t−0 = t3, t−1 = t2, t−2 = t1, t−3 = t0)

which is characterized by

εs0 ∗ εs0 = 1
8
εh0 + 1

8
εh1 + 1

8
εh2 + 1

8
εh3 + 1

8
εt0 + 1

8
εt1 + 1

8
εt2 +

1
8
εt3 , εt0 ∗ εt0 = 1

2
εh1 + 1

2
εs0 , εs0 ∗ εt0 = 1

2
εs0 + 1

8
εt0 + 1

8
εt1 +

1
8
εt2 + 1

8
εt3 .

(b) When H(`1) = {h0}, H(`2) = H, in a similar way, we have

K9
b1, K9

b2, K9
b3 and K9

b4.

(4) Case of |K| = 8, i.e. H(`1) = {h0, h2}, H(`2) = {h0, h2}.
K8 = {h0, h1, h2, h3, s0, s1, t0, t1},
εsk

= εhk
∗ εs0 (k = 0, 1), εtj = εhj

∗ εt0 (j = 0, 1).

s−0 = s0, s−1 = s1, t−0 = t0, t−1 = t1, εs0 ∗ εs0 = 1
4
εh0 + 1

4
εh2 +

1
2
εt0 , εt0 ∗ εt0 = 1

4
εh0 + 1

4
εh2 + 1

2
εs0 , εs0 ∗ εt0 = 1

2
εs0 + 1

2
εt0 .

(5) Case of |K| = 7.

(a) When H(`1) = H, H(`2) = {h0, h2}, i.e.

K7
a = {h0, h1, h2, h3, s0, t0, t1}, εtj = εhj

∗ εt0 (j = 0, 1).
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(i) K = K7
a1 (s−0 = s0, t−0 = t0, t−1 = t1) which is character-

ized by

εs0 ∗εs0 = 1
8
εh0 +

1
8
εh1 +

1
8
εh2 + 1

8
εh3 +

1
4
εt0 +

1
4
εt1 , εt0 ∗εt0 =

1
4
εh0 + 1

4
εh2 + 1

2
εs0 , εs0 ∗ εt0 = 1

2
εs0 + 1

4
εt0 + 1

4
εt1 .

(ii) K = K7
a2 (s−0 = s0, t−0 = t1, t−1 = t0) which is character-

ized by

εs0 ∗εs0 = 1
8
εh0 +

1
8
εh1 +

1
8
εh2 + 1

8
εh3 +

1
4
εt0 +

1
4
εt1 , εt0 ∗εt0 =

1
4
εh1 + 1

4
εh3 + 1

2
εs0 , εs0 ∗ εt0 = 1

2
εs0 + 1

4
εt0 + 1

4
εt1 .

(b) When H(`1) = {h0, h2}, H(`2) = H, in a similar way, we have

K7
b1 and K7

b2.

(6) Case of |K| = 6, i.e. H(`1) = H, H(`2) = H.

K5 = H ∨ L = {h0, h1, h2, h3, s0, t0} which is the join of H by L

and characterized by

s−0 = s0, t−0 = t0, εs0 ∗ εs0 = 1
8
εh0 + 1

8
εh1 + 1

8
εh2 + 1

8
εh3 + 1

2
εt0 ,

εt0 ∗ εt0 = 1
8
εh0 + 1

8
εh1 + 1

8
εh2 + 1

8
εh3 + 1

2
εs0 , εs0 ∗ εt0 = 1

2
εs0 + 1

2
εt0 .

Remark. (1) We remark that H × L = K12
a
∼= K12

b
∼= K12

c , K9
a1
∼= K9

a3,

K9
a2
∼= K9

a4, K9
b1
∼= K9

b3 and K9
b2
∼= K9

b4 as extensions of L by H.

(2) K is a splitting extension of L by H if and only if K ∼= H × L, K8

or K6 = H ∨ L.

(3) K is a weakly splitting extension of L by H if and only if K ∼= H×L,

K8, K6 = H ∨ L, K10
a , K9

a1, K9
b1, K7

a1 or K7
b1.

Example 3.10. H = Z5 = {h0, h1, h2, h3, h4}, h5
1 = h0, h

−
1 = h4, h

−
2 = h3.

(1) Case of |K| = 15, i.e. H(`1) = {h0}, H(`2) = {h0}.

K15
a = {h0, h1, h2, h3, h4, h5, s0, s1, s2, s3, s4, t0, t1, t2, t3, t4},

εsk
= εhk

∗ εs0 (k = 0, 1, 2, 3, 4), εtj = εhj
∗ εt0 (j = 0, 1, 2, 3, 4).

(a) K = K15
a = H × L (s−0 = s0, s−1 = s4, s−2 = s3, t

−
0 = t0, t−1 =

t4, t−2 = t3) which is characterized by

εs0∗εs0 = 1
2
εh0+

1
2
εt0 , εt0∗εt0 = 1

2
εh0+

1
2
εs0 , εs0∗εt0 = 1

2
εs0+

1
2
εt0 .
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(b) K = K15
b (s−0 = s1, s−2 = s4, s−3 = s3, t−0 = t0, t−1 = t4, t−2 = t3)

which is characterized by

εs0∗εs0 = 1
2
εh4+

1
2
εt4 , εt0∗εt0 = 1

2
εh0+

1
2
εs3 , εs0∗εt0 = 1

2
εs0+

1
2
εt2 .

In a similar way we get

K15
c (s−0 = s2, s−1 = s1, s−3 = s4, t−0 = t0, t−1 = t4, t−2 = t3),

K15
d (s−0 = s3, s−1 = s2, s−4 = s4, t−0 = t0, t−1 = t4, t−2 = t3),

K15
e (s−0 = s4, s−1 = s3, s−2 = s2, t−0 = t0, t−1 = t4, t−2 = t3),

K15
f (s−0 = s1, s−2 = s4, s−3 = s3, t−0 = t1, t−2 = t4, t−3 = t3),

K15
g (s−0 = s2, s−1 = s1, s−3 = s4, t−0 = t1, t−2 = t4, t−3 = t3),

K15
h (s−0 = s3, s−1 = s2, s−4 = s4, t−0 = t1, t−2 = t4, t−3 = t3),

K15
i (s−0 = s4, s−1 = s3, s−2 = s2, t−0 = t1, t−2 = t4, t−3 = t3),

K15
j (s−0 = s2, s−1 = s1, s−3 = s4, t−0 = t2, t−1 = t1, t−3 = t4),

K15
k (s−0 = s3, s−1 = s2, s−4 = s4, t−0 = t2, t−1 = t1, t−3 = t4),

K15
l (s−0 = s4, s−1 = s3, s−2 = s2, t−0 = t2, t−1 = t1, t−3 = t4),

K15
m (s−0 = s3, s−1 = s2, s−4 = s4, t−0 = t3, t−1 = t2, t−4 = t4),

K15
n (s−0 = s4, s−1 = s3, s−2 = s2, t−0 = t3, t−1 = t2, t−4 = t4)

and

K15
o (s−0 = s4, s−1 = s3, s−2 = s2, t−0 = t4, t−1 = t3, t−2 = t2).

(2) Case of |K| = 11.

(a) When H(`1) = H, H(`2) = {h0}, i.e.

K11
a = {h0, h1, h2, h3, h4, s0, t0, t1, t2, t3, t4},

εtj = εhj
∗ εt0 (j = 0, 1, 2, 3, 4).

(i) K = K11
a1 (s−0 = s0, t−0 = t0, t−1 = t4, t−2 = t3) which is

characterized by

εs0 ∗ εs0 = 1
10

εh0 + 1
10

εh1 + 1
10

εh2 + 1
10

εh3 + 1
10

εh4 + 1
10

εt0 +
1
10

εt1 + 1
10

εt2 + 1
10

εt3 + 1
10

εt4 , εt0 ∗εt0 = 1
2
εh0 + 1

2
εs0 , εs0 ∗εt0 =

1
2
εs0 + 1

10
εt0 + 1

10
εt1 + 1

10
εt2 + 1

10
εt3 + 1

10
εt4 .

In a similar way we get

K11
a2 (s−0 = s0, t−0 = t1, t−2 = t4, t−3 = t3),

K11
a3 (s−0 = s0, t−0 = t2, t−1 = t1, t−3 = t4),

K11
a4 (s−0 = s0, t−0 = t3, t−1 = t2, t−4 = t4) and

K11
a5 (s−0 = s0, t−0 = t4, t−1 = t3, t−2 = t2).

Moreover, we get K11
b1 , K11

b2 , K11
b3 , K11

b4 and K11
b5 .

(3) Case of |K| = 6 i.e. H(`1) = H, H(`2) = H.

K = H ∨ L = {h0, h1, h2, h3, h4, s0, t0} which is the join of H by L

and characterized by
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s−0 = s0, t−0 = t0, εs0 ∗εs0 = 1
10

εh0 + 1
10

εh1 + 1
10

εh2 + 1
10

εh3 + 1
10

εh4 +
1
2
εt0 , εt0 ∗εt0 = 1

10
εh0 + 1

10
εh1 + 1

10
εh2 + 1

10
εh3 + 1

10
εh4 + 1

2
εs0 , εs0 ∗εt0 =

1
2
εs0 + 1

2
εt0 .

Remark. (1) We remark that H × L = K15
a
∼= K15

b
∼= K15

c
∼= K15

d
∼=

K15
e
∼= K15

f
∼= K15

g
∼= K15

h
∼= K15

i
∼= K15

j
∼= K15

k
∼= K15

l
∼= K15

m
∼=

K15
n
∼= K15

o , K11
a1
∼= K11

a2
∼= K11

a3
∼= K11

a4
∼= K11

a5 and K11
b1
∼= K11

b2
∼=

K11
b3
∼= K11

b4
∼= K11

b5 as extensions of L by H.

(2) K is a splitting extension of L by H if and only if K ∼= H × L or

H ∨ L.

(3) K is a weakly splitting extension of L by H if and only if K ∼= H×L,

H ∨ L, K11
a1 or K11

b1 .

Example 3.11. H = Z6 = {h0, h1, h2, h3, h4, h5}, h6
1 = h0, h

−
1 = h5, h

−
2 =

h4, h
−
3 = h3.

(1) Case of |K| = 18 i.e. H(`1) = {h0}, H(`2) = {h0}.
K18 = {h0, h1, h2, h3, h4, h5, s0, s1, s2, s3, s4, s5, t0, t1, t2, t3, t4, t5},
εsk

= εhk
∗ εs0 (k = 0, 1, 2, 3, 4, 5), εtj = εhj

∗ εt0 (j = 0, 1, 2, 3, 4, 5).

(a) K = K18
a = H × L (s−0 = s0, s−1 = s5, s−2 = s4, s−3 = s3, t−0 =

t0, t−1 = t5, t−2 = t4, t−3 = t3) = H × L which is characterized

by

εs0∗εs0 = 1
2
εh0+

1
2
εt0 , εt0∗εt0 = 1

2
εh0+

1
2
εs0 , εs0∗εt0 = 1

2
εs0+

1
2
εt0 .

(b) K = K18
b (s−0 = s2, s−1 = s1, s−3 = s5, s−4 = s4, t−0 = t0, t−1 =

t5, t−2 = t4, t−3 = t3) which is characterized by

εs0∗εs0 = 1
2
εh4+

1
2
εt4 , εt0∗εt0 = 1

2
εh0+

1
2
εs1 , εs0∗εt0 = 1

2
εs0+

1
2
εt5 .

In a similar way we get

K18
c (s−0 = s4, s−1 = s3, s−2 = s2, s−5 = s5, t−0 = t0, t−1 = t5, t−2 =

t4, t−3 = t3),

K18
d (s−0 = s2, s−1 = s1, s−3 = s5, s−4 = s4, t−0 = t2, t−1 = t1, t−3 =

t5, t−4 = t4),

K18
e (s−0 = s4, s−1 = s3, s−2 = s2, s−5 = s5, t−0 = t2, t−1 = t1, t−3 =

t5, t−4 = t4) and

K18
f (s−0 = s4, s−1 = s3, s−2 = s2, s−5 = s5, t−0 = t4, t−1 = t3, t−2 =

t2, t−5 = t5).

(2) Case of |K| = 15.
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(a) When H(`1) = {h0, h3}, H(`2) = {h0} i.e.

K15
a = {h0, h1, h2, h3, h4, h5, s0, s1, s2, t0, t1, t2, t3, t4, t5},

εsk
= εhk

∗ εs0 (k = 0, 1, 2), εtj = εhj
∗ εt0 (j = 0, 1, 2, 3, 4, 5).

(i) K = K15
a1 (s−0 = s0, s−1 = s2, t−0 = t0, t−1 = t5, t−2 =

t4, t−3 = t3) which is characterized by

εs0 ∗ εs0 = 1
4
εh0 + 1

4
εh3 + 1

4
εt0 + 1

4
εt3 , εt0 ∗ εt0 = 1

2
εh0 +

1
2
εs0 , εs0 ∗ εt0 = 1

2
εs0 + 1

4
εt0 + 1

4
εt3 .

(ii) K = K15
a2 (s−0 = s1, s−2 = s2, t−0 = t0, t−1 = t5, t−2 =

t4, t−3 = t3) which is characterized by

εs0 ∗ εs0 = 1
4
εh2 + 1

4
εh5 + 1

4
εt2 + 1

4
εt5 , εt0 ∗ εt0 = 1

2
εh0 +

1
2
εs2 , εs0 ∗ εt0 = 1

2
εs0 + 1

4
εt1 + 1

4
εt4 .

In a similar way we get

K15
a3 (s−0 = s2, s−1 = s1, t−0 = t0, t−1 = t5, t−2 = t4, t−3 = t3),

K15
a4 (s−0 = s0, s−1 = s2, t−0 = t1, t−2 = t5, t

−
3 = t4),

K15
a5 (s−0 = s1, s−2 = s2, t−0 = t1, t−2 = t5, t−3 = t4),

K15
a6 (s−0 = s2, s−1 = s1, t−0 = t1, t−2 = t5, t−3 = t4),

K15
a7 (s−0 = s0, s−1 = s2, t−0 = t2, t−1 = t1, t−3 = t5, t

−
4 = t4),

K15
a8 (s−0 = s1, s−2 = s2, t−0 = t2, t−1 = t1, t−3 = t5, t

−
4 = t4),

K15
a9 (s−0 = s2, s−1 = s1, t−0 = t2, t−1 = t1, t−3 = t5, t

−
4 = t4),

K15
a10 (s−0 = s0, s−1 = s2, t−0 = t3, t−1 = t2, t−4 = t5),

K15
a11 (s−0 = s1, s−2 = s2, t−0 = t3, t−1 = t2, t−4 = t5),

K15
a12 (s−0 = s2, s−1 = s1, t−0 = t3, t−1 = t2, t−4 = t5),

K15
a13 (s−0 = s0, s−1 = s2, t−0 = t4, t−1 = t3, t−2 = t2, t−5 = t5),

K15
a14 (s−0 = s1, s−2 = s2, t−0 = t4, t−1 = t3, t−2 = t2, t−5 = t5),

K15
a15 (s−0 = s2, s−1 = s1, t−0 = t4, t−1 = t3, t−2 = t2, t−5 = t5),

K15
a16 (s−0 = s0, s−1 = s2, t−0 = t5, t−1 = t4, t−2 = t3),

K15
a17 (s−0 = s1, s−2 = s2, t−0 = t5, t−1 = t4, t−2 = t3) and

K15
a18 (s−0 = s2, s−1 = s1, t−0 = t5, t−1 = t4, t−2 = t3).

(b) When H(`1) = {h0}, H(`2) = {h0, h3}, in a similar way, we

have K15
b1 , K15

b2 , . . . , K15
b18.

(3) Case of |K| = 14.

(a) When H(`1) = {h0, h2, h4}, H(`2) = {h0} i.e.

K14
a = {h0, h1, h2, h3, h4, h5, s0, s1, t0, t1, t2, t3, t4, t5},

εsk
= εhk

∗ εs0 (k = 0, 1), εtj = εhj
∗ εt0 (j = 0, 1, 2, 3, 4, 5).
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(i) K = K14
a1 (s−0 = s0, s−1 = s1, t−0 = t0, t−1 = t5, t−2 =

t4, t−3 = t3) which is characterized by

εs0 ∗ εs0 = 1
6
εh0 + 1

6
εh2 + 1

6
εh4 + 1

6
εt0 + 1

6
εt2 + 1

6
εt4 ,

εt0 ∗ εt0 = 1
2
εh0 + 1

2
εs0 , εs0 ∗ εt0 = 1

2
εs0 + 1

6
εt0 + 1

6
εt2 + 1

6
εt4 .

(ii) K = K14
a2 (s−0 = s0, s−1 = s1, t−0 = t2, t−1 = t1, t−3 =

t5, t−4 = t4) which is characterized by

εs0 ∗ εs0 = 1
6
εh0 + 1

6
εh2 + 1

6
εh4 + 1

6
εt0 + 1

6
εt2 + 1

6
εt4 ,

εt0 ∗ εt0 = 1
2
εh4 + 1

2
εs0 , εs0 ∗ εt0 = 1

2
εs0 + 1

6
εt0 + 1

6
εt2 + 1

6
εt4 .

(iii) K = K14
a3 (s−0 = s0, s−1 = s1, t−0 = t4, t−1 = t3, t−2 =

t2, t−5 = t5) which is characterized by

εs0 ∗εs0 = 1
6
εh0 + 1

6
εh2 + 1

6
εh4 + 1

6
εt0 + 1

6
εt2 + 1

6
εt4 , εt0 ∗εt0 =

1
2
εh2 + 1

2
εs0 , εs0 ∗ εt0 = 1

2
εs0 + 1

6
εt0 + 1

6
εt2 + 1

6
εt4 .

(b) When H(`1) = {h0} , H(`2) = {h0, h2, h4}, in a similar way, we

have K14
b1 , K14

b2 and K14
b3 .

(4) Case of |K| = 13.

(a) When H(`1) = H, H(`2) = {h0} i.e.

K13
a = {h0, h1, h2, h3, h4, h5, s0, t0, t1, t2, t3, t4, t5},

εtj = εhj
∗ εt0 (j = 0, 1, 2, 3, 4, 5).

(i) K = K13
a1 (s−0 = s0, t−0 = t0, t−1 = t5, t−2 = t4, t−3 = t3)

which is characterized by

εs0 ∗ εs0 = 1
12

εh0 + 1
12

εh1 + 1
12

εh2 + 1
12

εh3 + 1
12

εh4 + 1
12

εh5 +
1
12

εt0 + 1
12

εt1 + 1
12

εt2 + 1
12

εt3 + 1
12

εt4 + 1
12

εt5 , εt0 ∗ εt0 =
1
2
εh0 + 1

2
εs0 , εs0 ∗ εt0 = 1

2
εs0 + 1

12
εt0 + 1

12
εt1 + 1

12
εt2 + 1

12
εt3 +

1
12

εt4 + 1
12

εt5 .

(ii) K = K13
a2 (s−0 = s0, t−0 = t1, t−2 = t5, t−3 = t4) which is

characterized by

εs0 ∗ εs0 = 1
12

εh0 + 1
12

εh1 + 1
12

εh2 + 1
12

εh3 + 1
12

εh4 + 1
12

εh5 +
1
12

εt0 + 1
12

εt1 + 1
12

εt2 + 1
12

εt3 + 1
12

εt4 + 1
12

εt5 , εt0 ∗ εt0 =
1
2
εh5 + 1

2
εs0 , εs0 ∗ εt0 = 1

2
εs0 + 1

12
εt0 + 1

12
εt1 + 1

12
εt2 + 1

12
εt3 +

1
12

εt4 + 1
12

εt5 .

(iii) K = K13
a3 (s−0 = s0, t−0 = t2, t−1 = t1, t−3 = t5) which is

characterized by

εs0 ∗ εs0 = 1
12

εh0 + 1
12

εh1 + 1
12

εh2 + 1
12

εh3 + 1
12

εh4 + 1
12

εh5 +
1
12

εt0 + 1
12

εt1 + 1
12

εt2 + 1
12

εt3 + 1
12

εt4 + 1
12

εt5 , εt0 ∗ εt0 =
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1
2
εh4 + 1

2
εs0 , εs0 ∗ εt0 = 1

2
εs0 + 1

12
εt0 + 1

12
εt1 + 1

12
εt2 + 1

12
εt3 +

1
12

εt4 + 1
12

εt5 .

(iv) K = K13
a4 (s−0 = s0, t−0 = t3, t−1 = t2, t−4 = t5) which is

characterized by

εs0 ∗ εs0 = 1
12

εh0 + 1
12

εh1 + 1
12

εh2 + 1
12

εh3 + 1
12

εh4 + 1
12

εh5 +
1
12

εt0 + 1
12

εt1 + 1
12

εt2 + 1
12

εt3 + 1
12

εt4 + 1
12

εt5 , εt0 ∗ εt0 =
1
2
εh3 + 1

2
εs0 , εs0 ∗ εt0 = 1

2
εs0 + 1

12
εt0 + 1

12
εt1 + 1

12
εt2 + 1

12
εt3 +

1
12

εt4 + 1
12

εt5 .

(v) K = K13
a5 (s−0 = s0, t−0 = t4, t−1 = t3, t−2 = t2, t−5 = t5)

which is characterized by

εs0 ∗ εs0 = 1
12

εh0 + 1
12

εh1 + 1
12

εh2 + 1
12

εh3 + 1
12

εh4 + 1
12

εh5 +
1
12

εt0 + 1
12

εt1 + 1
12

εt2 + 1
12

εt3 + 1
12

εt4 + 1
12

εt5 , εt0 ∗ εt0 =
1
2
εh2 + 1

2
εs0 , εs0 ∗ εt0 = 1

2
εs0 + 1

12
εt0 + 1

12
εt1 + 1

12
εt2 + 1

12
εt3 +

1
12

εt4 + 1
12

εt5 .

(vi) K = K13
a6 (s−0 = s0, t−0 = t5, t−1 = t4, t−2 = t3) which is

characterized by

εs0 ∗ εs0 = 1
12

εh0 + 1
12

εh1 + 1
12

εh2 + 1
12

εh3 + 1
12

εh4 + 1
12

εh5 +
1
12

εt0 + 1
12

εt1 + 1
12

εt2 + 1
12

εt3 + 1
12

εt4 + 1
12

εt5 , εt0 ∗ εt0 =
1
2
εh1 + 1

2
εs0 , εs0 ∗ εt0 = 1

2
εs0 + 1

12
εt0 + 1

12
εt1 + 1

12
εt2 + 1

12
εt3 +

1
12

εt4 + 1
12

εt5 .

(b) When H(`1) = {h0}, H(`2) = H, in a similar way, we have K13
b1 ,

K13
b2 , K13

b3 , K13
b4 , K13

b5 and K13
b6 .

(5) Case of |K| = 12 i.e. H(`1) = {h0, h3}, H(`2) = {h0, h3}.

K12 = {h0, h1, h2, h3, h4, h5, s0, s1, s2, t0, t1, t2},
εsk

= εhk
∗ εs0 (k = 0, 1, 2), εtj = εhj

∗ εt0 (j = 0, 1, 2).

(a) K = K12
a (s−0 = s0, s−1 = s2, t−0 = t0, t−1 = t2) which is

characterized by

εs0 ∗ εs0 = 1
4
εh0 + 1

4
εh3 + 1

2
εt0 , εt0 ∗ εt0 = 1

4
εh0 + 1

4
εh3 + 1

2
εs0 ,

εs0 ∗ εt0 = 1
2
εs0 + 1

2
εt0 .

(b) K = K12
b (s−0 = s1, s−2 = s2, t−0 = t0, t−1 = t2) which is

characterized by

εs0 ∗ εs0 = 1
4
εh2 + 1

4
εh5 + 1

2
εt2 , εt0 ∗ εt0 = 1

4
εh0 + 1

4
εh3 + 1

2
εs0 ,

εs0 ∗ εt0 = 1
2
εs0 + 1

2
εt1 .
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(c) K = K12
c (s−0 = s2, s−1 = s1, t−0 = t0, t−1 = t2) which is

characterized by

εs0 ∗ εs0 = 1
4
εh1 + 1

4
εh4 + 1

2
εt1 , εt0 ∗ εt0 = 1

4
εh0 + 1

4
εh3 + 1

2
εs0 ,

εs0 ∗ εt0 = 1
2
εs0 + 1

2
εt2 .

(d) K = K12
d (s−0 = s1, s−2 = s2, t−0 = t1, t−2 = t2) which is

characterized by

εs0 ∗ εs0 = 1
4
εh2 + 1

4
εh5 + 1

2
εt1 , εt0 ∗ εt0 = 1

4
εh2 + 1

4
εh5 + 1

2
εs1 ,

εs0 ∗ εt0 = 1
2
εs1 + 1

2
εt1 .

(e) K = K12
e (s−0 = s2, s−1 = s1, t−0 = t1, t−2 = t2) which is

characterized by

εs0 ∗ εs0 = 1
4
εh1 + 1

4
εh4 + 1

2
εt0 , εt0 ∗ εt0 = 1

4
εh2 + 1

4
εh5 + 1

2
εs0 ,

εs0 ∗ εt0 = 1
2
εs1 + 1

2
εt2 .

(f) K = K12
f (s−0 = s2, s−1 = s1, t−0 = t2, t−1 = t1) which is

characterized by

εs0 ∗ εs0 = 1
4
εh1 + 1

4
εh4 + 1

2
εt2 , εt0 ∗ εt0 = 1

4
εh1 + 1

4
εh4 + 1

2
εs2 ,

εs0 ∗ εt0 = 1
2
εs2 + 1

2
εt2 .

(6) Case of |K| = 11.

(a) When H(`1) = {h0, h2, h4}, H(`2) = {h0, h3} i.e.

K11
a = {h0, h1, h2, h3, h4, h5, s0, s1, t0, t1, t2},

εsk
= εhk

∗ εs0 (k = 0, 1) , εtj = εhj
∗ εt0 (j = 0, 1, 2).

(i) K = K11
a1 (s−0 = s0, s−1 = s1, t−0 = t0, t−1 = t2) which is

characterized by

εs0 ∗εs0 = 1
6
εh0 + 1

6
εh2 + 1

6
εh4 + 1

6
εt0 + 1

6
εt1 + 1

6
εt2 , εt0 ∗εt0 =

1
4
εh0 + 1

4
εh3 + 1

4
εs0 + 1

4
εs1 , εs0 ∗ εt0 = 1

4
εs0 + 1

4
εs1 + 1

6
εt0 +

1
6
εt1 + 1

6
εt2 .

(ii) K = K11
a2 (s−0 = s1, t−0 = t0, t−1 = t2) which is character-

ized by

εs0 ∗εs0 = 1
6
εh1 + 1

6
εh3 + 1

6
εh5 + 1

6
εt0 + 1

6
εt1 + 1

6
εt2 , εt0 ∗εt0 =

1
4
εh0 + 1

4
εh3 + 1

4
εs0 + 1

4
εs1 , εs0 ∗ εt0 = 1

4
εs0 + 1

4
εs1 + 1

6
εt0 +

1
6
εt1 + 1

6
εt2 .

(iii) K = K11
a3 (s−0 = s0, s−1 = s1, t−0 = t1, t−2 = t2) which is

characterized by



37

εs0 ∗εs0 = 1
6
εh0 + 1

6
εh2 + 1

6
εh4 + 1

6
εt0 + 1

6
εt1 + 1

6
εt2 , εt0 ∗εt0 =

1
4
εh2 + 1

4
εh5 + 1

4
εs0 + 1

4
εs1 , εs0 ∗ εt0 = 1

4
εs0 + 1

4
εs1 + 1

6
εt0 +

1
6
εt1 + 1

6
εt2 .

(iv) K = K11
a4 (s−0 = s1, t−0 = t1, t−2 = t2) which is character-

ized by

εs0 ∗εs0 = 1
6
εh1 + 1

6
εh3 + 1

6
εh5 + 1

6
εt0 + 1

6
εt1 + 1

6
εt2 , εt0 ∗εt0 =

1
4
εh2 + 1

4
εh5 + 1

4
εs0 + 1

4
εs1 , εs0 ∗ εt0 = 1

4
εs0 + 1

4
εs1 + 1

6
εt0 +

1
6
εt1 + 1

6
εt2 .

(v) K = K11
a5 (s−0 = s0, s−1 = s1, t−0 = t2, t−1 = t1) which is

characterized by

εs0 ∗εs0 = 1
6
εh0 + 1

6
εh2 + 1

6
εh4 + 1

6
εt0 + 1

6
εt1 + 1

6
εt2 , εt0 ∗εt0 =

1
4
εh1 + 1

4
εh4 + 1

4
εs0 + 1

4
εs1 , εs0 ∗ εt0 = 1

4
εs0 + 1

4
εs1 + 1

6
εt0 +

1
6
εt1 + 1

6
εt2 .

(vi) K = K11
a6 (s−0 = s1, t−0 = t2, t−1 = t1) which is character-

ized by

εs0 ∗εs0 = 1
6
εh1 + 1

6
εh3 + 1

6
εh5 + 1

6
εt0 + 1

6
εt1 + 1

6
εt2 , εt0 ∗εt0 =

1
4
εh1 + 1

4
εh4 + 1

4
εs0 + 1

4
εs1 , εs0 ∗ εt0 = 1

4
εs0 + 1

4
εs1 + 1

6
εt0 +

1
6
εt1 + 1

6
εt2 .

(b) When H(`1) = {h0, h3}, H(`2) = {h0, h2, h4}, in a similar way,

we have K11
b1 , K11

b2 , K11
b3 , K11

b4 , K11
b5 and K11

b6 .

(7) Case of |K| = 10.

(a) When H(`1) = H, H(`2) = {h0, h3} i.e.

K10
a = {h0, h1, h2, h3, h4, h5, s0, t0, t1, t2},

εtk = εhk
∗ εt0 (k = 0, 1, 2).

(i) K = K10
a1 (s−0 = s0, t−0 = t0, t−1 = t2) which is character-

ized by

εs0 ∗ εs0 = 1
12

εh0 + 1
12

εh1 + 1
12

εh2 + 1
12

εh3 + 1
12

εh4 + 1
12

εh5 +
1
6
εt0 + 1

6
εt1 + 1

6
εt2 , εt0 ∗ εt0 = 1

4
εh0 + 1

4
εh3 + 1

2
εs0 , εs0 ∗ εt0 =

1
2
εs0 + 1

6
εt0 + 1

6
εt1 + 1

6
εt2 .

(ii) K = K10
a2 (s−0 = s0, t−0 = t1, t−2 = t2) which is character-

ized by

εs0 ∗ εs0 = 1
12

εh0 + 1
12

εh1 + 1
12

εh2 + 1
12

εh3 + 1
12

εh4 + 1
12

εh5 +
1
6
εt0 + 1

6
εt1 + 1

6
εt2 , εt0 ∗ εt0 = 1

4
εh2 + 1

4
εh5 + 1

2
εs0 , εs0 ∗ εt0 =

1
2
εs0 + 1

6
εt0 + 1

6
εt1 + 1

6
εt2 .
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(iii) K = K10
a3 (s−0 = s0, t−0 = t2, t−1 = t1) which is character-

ized by

εs0 ∗ εs0 = 1
12

εh0 + 1
12

εh1 + 1
12

εh2 + 1
12

εh3 + 1
12

εh4 + 1
12

εh5 +
1
6
εt0 + 1

6
εt1 + 1

6
εt2 , εt0 ∗ εt0 = 1

4
εh1 + 1

4
εh4 + 1

2
εs0 , εs0 ∗ εt0 =

1
2
εs0 + 1

6
εt0 + 1

6
εt1 + 1

6
εt2 .

(b) When H(`1) = {h0, h3} , H(`2) = H, in a similar way, we have

K10
b1 , K10

b2 and K10
b3 .

(c) When H(`1) = {h0, h2, h4}, H(`2) = {h0, h2, h4} i.e.

K10
c = {h0, h1, h2, h3, h4, h5, s0, s1, t0, t1},

εsk
= εhk

∗ εs0 (k = 0, 1), εtj = εhj
∗ εt0 (j = 0, 1).

s−0 = s0, s−1 = s1, t−0 = t0, t−1 = t1, εs0 ∗ εs0 = 1
6
εh0 + 1

6
εh2 +

1
6
εh4 + 1

4
εt0 + 1

4
εt1 , εt0 ∗εt0 = 1

6
εh0 + 1

6
εh2 + 1

6
εh4 + 1

4
εs0 + 1

4
εs1 , εs0 ∗

εt0 = 1
4
εs0 + 1

4
εs1 + 1

4
εt0 + 1

4
εt1 .

(8) Case of |K| = 9.

(a) When H(`1) = H, H(`2) = {h0, h2, h4} i.e.

K9
a = {h0, h1, h2, h3, h4, h5, s0, t0, t1}, εtj = εhj

∗ εt0 (j = 0, 1).

(i) K = K9
a1 (s−0 = s0, t−0 = t0, t−1 = t1) which is character-

ized by

εs0 ∗ εs0 = 1
12

εh0 + 1
12

εh1 + 1
12

εh2 + 1
12

εh3 + 1
12

εh4 + 1
12

εh5 +
1
4
εt0 + 1

4
εt1 , εt0 ∗ εt0 = 1

6
εh0 + 1

6
εh2 + 1

6
εh4 + 1

2
εs0 , εs0 ∗ εt0 =

1
2
εs0 + 1

4
εt0 + 1

4
εt1 .

(ii) K = K9
a2 (s−0 = s0, t−0 = t1) which is characterized by

εs0 ∗ εs0 = 1
12

εh0 + 1
12

εh1 + 1
12

εh2 + 1
12

εh3 + 1
12

εh4 + 1
12

εh5 +
1
4
εt0 + 1

4
εt1 , εt0 ∗ εt0 = 1

6
εh1 + 1

6
εh3 + 1

6
εh5 + 1

2
εs0 , εs0 ∗ εt0 =

1
2
εs0 + 1

4
εt0 + 1

4
εt1 .

(b) When H(`1) = {h0, h2, h4}, H(`2) = H, in a similar way, we

have K9
b1 and K9

b2.

(9) Case of |K| = 8 i.e. H(`1) = H, H(`2) = H.

K = H ∨ L = {h0, h1, h2, h3, h4, h5, s0, t0} which is the join of H

by L and characterized by

s−0 = s0, t−0 = t0, εs0 ∗ εs0 = 1
12

εh0 + 1
12

εh1 + 1
12

εh2 + 1
12

εh3 +
1
12

εh4 + 1
12

εh5 + 1
2
εt0 , εt0 ∗ εt0 = 1

12
εh0 + 1

12
εh1 + 1

12
εh2 + 1

12
εh3 + 1

12
εh4 +

1
12

εh5 + 1
2
εs0 , εs0 ∗ εt0 = 1

2
εs0 + 1

2
εt0 .
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Remark. (1) We remark that H × L = K18
a
∼= K18

b
∼= K18

c
∼= K18

d
∼=

K18
e
∼= K18

f , K15
a1
∼= K15

a2
∼= K15

a3
∼= K15

a4
∼= K15

a5
∼= K15

a6
∼= K15

a7
∼=

K15
a8
∼= K15

a9
∼= K15

a10
∼= K15

a11
∼= K15

a12
∼= K15

a13
∼= K15

a14
∼= K15

a15
∼= K15

a16
∼=

K15
a17

∼= K15
a18, K15

b1
∼= K15

b2
∼= K15

b3
∼= K15

b4
∼= K15

b5
∼= K15

b6
∼= K15

b7
∼=

K15
b8
∼= K15

b9
∼= K15

b10
∼= K15

b11
∼= K15

b12
∼= K15

b13
∼= K15

b14
∼= K15

b15
∼= K15

b16
∼=

K15
b17
∼= K15

b18, K14
a1
∼= K14

a2
∼= K14

a3 , K14
b1
∼= K14

b2
∼= K14

b3 , K13
a1
∼= K13

a3
∼=

K13
a5 , K13

a2
∼= K13

a4
∼= K13

a6 , K13
b1
∼= K13

b3
∼= K13

b5 , K13
b2
∼= K13

b4
∼= K13

b6 ,

K12
a
∼= K12

b
∼= K12

c
∼= K12

d
∼= K12

e
∼= K12

f , K11
a1
∼= K11

a2
∼= K11

a3 and

K11
b1
∼= K11

b2
∼= K11

b3 as extensions of L by H.

(2) K is a splitting extension of L by H if and only if K ∼= H × L, K12
a ,

K10
c or H ∨ L.

(3) K is a weakly splitting extension of L by H if and only if K ∼= H×L,

K12
a , K10

c , H∨L, K15
a1 , K15

b1 , K14
a1 , K14

b1 , K13
a1 , K13

b1 , K11
a1 , K11

b1 , K10
a1 , K10

b1 ,

K9
a1, K9

b1 or H ∨ L.

3.2. Extensions of hypergroups of order two by locally compact

abelian groups.

3.2.1. The structure of extension hypergroups. Let L = Zq(2) = {`0, `1} be

a hypergroup of order two with the convolution ◦ on M b(L) where `0 is unit

of L. Since the hypergroup structure of L is determined by

δ`1 ◦ δ`1 = qδ`0 + (1− q)δ`1 , 0 < q ≤ 1

where δ`i
is the Dirac measure at `i ∈ L. Let H be a locally compact abelian

group with unit h0.

We will investigate the structure of extensions K of L = Zq(2) by H. Let

ϕ be a continuous homomorphism from a commutative hypergroup K onto

L such that Ker ϕ = H, where H is assumed to be a closed subgroup of

K. Then K is written as the disjoint union of the sets H = ϕ−1(`0) and

S1 := ϕ−1(`1). Fix s0 ∈ S1.

Lemma 3.12. For each s ∈ S1, there exists h ∈ H such that εs = εh ∗ εs0.

Proof. For s′i ∈ Si, there exists h ∈ H such that h ∈ supp(ε−si
∗ εs′i) since

ϕ(ε−si
∗ εs′i) = δ−`i

◦ δ`i
. Hence we see that h0 = h−h ∈ supp((εh ∗ εsi

)− ∗ εs′i).

This implies that s′i ∈ supp(εh ∗ εsi
). Then

supp(ε−h ∗ εs′i) ⊂ supp(ε−h ∗ εh ∗ εsi
) = supp(εh0 ∗ εsi

) = supp(εsi
) = {si}.

Hence we see that ε−h ∗ εs′i = εsi
, namely εs′i = εh ∗ εsi

. ¤
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Let H(`1) denote the stability group of H at s0 ∈ S1, i.e.

H(`1) = {h ∈ H : εh ∗ εs0 = εs0}.

Lemma 3.13. H ∩ supp(ε−s0
∗ εs0) = H(`1).

Proof. Take h ∈ H ∩ supp(ε−s0
∗ εs0). Then h0 = h−h ∈ supp(ε−h ∗ ε−s0

∗ εs0)

= supp((εh ∗ εs0)
− ∗ εs0). Hence we get s0 ∈ supp(εh ∗ εs0). Therefore

supp(ε−h ∗ εs0) ⊂ supp(ε−h ∗ εh ∗ εs0) = supp(εh0 ∗ εs0) = supp(εs0) = {s0},
since H is a group. Then, we see that ε−h ∗ εs0 = εs0 , namely εh ∗ εs0 = εs0

which implies that h ∈ H(`1).

Conversely, we show that H(`1) ⊂ H ∩ supp(ε−s0
∗ εs0). Take k ∈ H(`1),

then εk ∗ εs0 = εs0 . Since h0 ∈ supp(ε−s0
∗ εs0), we see

k ∈ supp(ε−s0
∗ εk ∗ εs0) = supp(ε−s0

∗ εs0).

¤

Lemma 3.14. H(`1) is a compact subgroup of H.

Proof. Since supp(ε−s0
∗ εs0) is compact by the axiom (3) of locally compact

hypergroups and H is a closed subgroup of K, H ∩ supp(ε−s0
∗ εs0) must be

compact. Hence we have that H(`1) is a compact subgroup of H by Lemma

3.13. ¤

Let ω(`1) denote the normalized Haar measure of H(`1). We note that

ω(`1) has the following properties.

(1) ω(`1) ∗ εh = ω(`1) for h ∈ H(`1).

(2) ω(`1) ∗ ω(`1) = ω(`1).

(3) ω(`1)
− = ω(`1).

We denote H/H(`1) by Q(`1).

Proposition 3.15. If K is a commutative hypergroup extension of a hy-

pergroup Zq(2) of order two by a locally compact abelian group H and ϕ a

continuous homomorphism from K onto Zq(2) such that Ker ϕ = H, we

have the conditions (0) – (3) as follows.

(0) K is the disjoint union of the sets H = ϕ−1(`0) and S1 = ϕ−1(`1).

(1) ε−s0
= ε−h ∗ εs0 for some h ∈ Q(`1).

(2) εs0 ∗ εs0 = qεh ∗ ω(`1) + (1− q)εh ∗ c ∗ εs0 for some c ∈ M1(H).



41

(3) c ∗ ω(`1) = c and c− = εh ∗ c.

Proof. (1) Since s0
− ∈ S1 by the relation `−1 = `1, one can take h ∈ Q(`1)

such that

ε−s0
= ε−h ∗ εs0

by Lemma 3.12.

(2) It is easy to see that ε−s0
∗ εs0 is written as

ε−s0
∗ εs0 = qc0 + (1− q)c ∗ εs0

for some c0, c ∈ M1(H). By the fact that ω(`1)∗c0 = c0 and supp(c0) = H(`1)

by Lemma 3.13, we have c0 = ω(`1). Hence we obtain

ε−s0
∗ εs0 = qω(`1) + (1− q)c ∗ εs0 ,

namely εs0 ∗ εs0 = qεh ∗ ω(`1) + (1− q)εh ∗ c ∗ εs0 by (1).

(3) We can take c ∈ M1(H) as c ∗ ω(`1). Then we obtain c ∗ ω(`1) = c

and c− = εh ∗ c. ¤

We see that all extensions K of Zq(2) by H are characterized by

H(`1), s0 ∈ S1, h ∈ H, c ∈ M1(H)

satisfying the conditions described in Proposition 3.15. Therefore we denote

such an extension K by K(H(`1), s0, h, c).

When we take H1(`1), r0 ∈ S1, k ∈ H and d ∈ M1(H) satisfying

the conditions (0) – (3) in Proposition 3.15, we have another extension

K(H1(`1), r0, k, d) of Zq(2) by H.

Proposition 3.16. Two extensions K(H(`1), s0, h, c) and K(H1(`1), r0, k, d)

of Zq(2) by H are mutually equivalent as extensions if and only if H(`1) =

H1(`1) and there exists b ∈ H such that εk ∗ ω(`1) = εb ∗ εb ∗ εh ∗ ω(`1) and

d = εb ∗ c.

Proof. Suppose that K1 = K(H(`1), s0, h, c) is equivalent to K2 = K(H1(`1),

r0, k, d) as extensions. Let ϕi be a continuous homomorphism from Ki onto

Zq(2) (i = 1, 2). Let K1 = H ∪S1 and K2 = H ∪R1 where S1 = ϕ−1
1 (`1) and

R1 = ϕ−1
2 (`1). Let ψ be an isomorphism from K1 to K2 such that ψ(h) = h

for any h ∈ H and ϕ2 ◦ψ = ϕ1. Put ψ(s0) = u0 ∈ R1. Since εh∗εu0 = εu0 for

h ∈ H(`1), we see that H(`1) = H1(`1). For u0 ∈ R1, there exists b ∈ Q(`1)

such that εu0 = εb ∗ εr0 by Lemma 3.12. Then, by ψ(ε−s0
∗ εs0) = ε−r0

∗ εr0 , it

is easy to see that b satisfies εk ∗ ω(`1) = εb ∗ εb ∗ εh ∗ ω(`1) and d = εb ∗ c.
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Conversely, we assume that H(`1) = H1(`1) and there exists b ∈ H such

that

εk ∗ ω(`1) = εb ∗ εb ∗ εh ∗ ω(`1) and d = εb ∗ c.

Take u0 ∈ R1 given by εu0 = εb ∗ εr0 . We put a map ψ from K1 to K2 such

that

ψ(εh) = εh and ψ(εs0) = εu0

for any h ∈ H. Let ϕi be a continuous homomorphism from Ki onto Zq(2)

(i = 1, 2). Then it is clear that ψ is isomorphism from K1 to K2 such that

ϕ2 ◦ ψ = ϕ1. ¤

3.2.2. Construction of the model. Let H be a locally compact abelian group

with unit h0 and L a hypergroup of order two Zq(2) with unit `0. Take a

compact subgroup H(`1) of H and denote the quotient space H/H(`1) by

Q(`1). The normalized Haar measure of H(`1) is denoted by ω(`1). Let K

be the disjoint union of the sets H and Q(`1), namely

K = H ∪Q(`1)

= {(`0, h1), (`1, h2 ∗H(`1)) : h1, h2 ∈ H}.
The Dirac measures at (`0, h1) and (`1, h2 ∗H(`1)) ∈ K are realized respec-

tively in M b(L)⊗M b(H) by

δ`0 ⊗ εh1 and δ`1 ⊗ (εh2 ∗ ω(`1)).

Take and fix f ∈ H. We define the involution − of K by

(`0, h)− = (`0, h
−1) and (`1, h ∗H(`1))

− = (`1, h
−1 ∗ f−1 ∗H(`1)).

Moreover we define the convolution ∗c of K in M b(L) ⊗M b(H) associated

with c ∈ M1(H) such that c ∗ ω(`1) = c and (δ`0 ⊗ c)− = (δ`0 ⊗ εf ∗ c).

(1) (δ`0 ⊗ εh1) ∗c (δ`0 ⊗ εh2) = δ`0 ⊗ (εh1 ∗ εh2).

(2) (δ`0 ⊗ εh1) ∗c (δ`1 ⊗ (εh2 ∗ ω(`1))) = (δ`1 ⊗ (εh2 ∗ ω(`1))) ∗c (δ`0 ⊗ εh1)

= δ`1 ⊗ (εh1 ∗ εh2 ∗ ω(`1)).

(3) (δ`1 ⊗ (εh1 ∗ ω(`1))) ∗c (δ`1 ⊗ (εh2 ∗ ω(`1)))

= qδ`0 ⊗ (εh1 ∗ εh2 ∗ εf ∗ ω(`1)) + (1− q)δ`1 ⊗ (εh1 ∗ εh2 ∗ εf ∗ c).

Since the model K is determined by the compact subgroups H(`1) of H,

f ∈ H and c ∈ M1(H), we denote K by K(H(`1), f, c).

Now we arrive at the main theorem of Section 3.2.

Theorem 3.17. Under the preceding arguments we have the following.
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(1) The model K(H(`1), f, c) is a commutative hypergroup and an exten-

sion of Zq(2) by H.

(2) All extensions K of L by H are equivalent to K(H(`1), f, c) as ex-

tensions.

(3) The extensions K(H(`1), f, c) and K(H1(`1), g, d) are equivalent as

extensions if and only if there exists b ∈ H such that εg ∗ ω(`1) =

εb ∗ εb ∗ εf ∗ ω(`1) and d = ε−b ∗ c.

(4) The extension K(H(`1), f, c) is splitting if and only if there exists

b ∈ H such that εf ∗ ω(`1) = εb ∗ εb ∗ ω(`1) and c = ε−b ∗ ω(`1).

Proof. (1) Since H is a locally compact group and H(`1) is a compact

subgroup of H, the quotient space Q(`1) = H/H(`1) is a locally compact

space. Then the disjoint union K(H(`1), f, c) = H ∪ Q(`1) is also a locally

compact space. It is clear that the definition of the convolution ∗ and the

involution − is well defined. By the definition of K(H(`1), f, c), we know

that the convolution ∗ and the involution − are continuous from the fact

that group operation and inverse operation of H as well as an action of H

on Q(`1) are all continuous.

The compactness of the support of (δ`1 ⊗ ω(`1)) ∗ (δ`1 ⊗ ω(`1)) is assured

by the fact that H(`1) is compact. Since it is easy to check other axioms of

hypergroup, we know that K(H(`1), f, c) holds axioms of a hypergroup.

Let ϕ be a mapping from K(H(`1), f, c) onto Zq(2) such that ϕ(`0, h) = `0

and ϕ(`1, h ∗ H(`1)) = `1 for h ∈ H. Then it is easy to see that ϕ is a

continuous hypergroup homomorphism from K(H(`1), f, c) onto Zq(2) such

that Ker ϕ = H. This implies that K(H(`1), f, c) is an extension of L by H.

(2) Take an extension K of Zq(2) by H. Then K is characterized as K =

K(H(`1), s0, h, c) by Proposition 3.15. Put ψ be a mapping from K onto

the model K(H(`1), f, c) given by ψ(εh) = δ`0 ⊗ εh and ψ(εh ∗ εs0) = δ`1 ⊗
(εh ∗ ω(`2)) for h ∈ H. It is easy to see that the mapping ψ is an involutive

isomorphism such that ϕ2◦ψ = ϕ where ϕ2 is the continuous homomorphism

K(H(`1), f, c) onto Zq(2).

(3) We note that K1 = K(H(`1), f, c) is equal to K(H(`1), s0, h, c) such

that h = (`0, h), s0 = (`1, H(`1)) and [h] = [f−] in Q(`1), and K2 =

K(H1(`1), g, d) is also similar. We assume that K1 is equivalent to K2 as

extensions. By Proposition 3.16, there exists b ∈ H such that

δ`0 ⊗ ε−f ∗ ω(`1) = δ`0 ⊗ (εb ∗ εb ∗ ε−g ∗ ω(`1)),

δ`0 ⊗ c = δ`0 ⊗ (εb ∗ d).

Hence we get εg ∗ ω(`1) = εb ∗ εb ∗ εf ∗ ω(`1) and d = ε−b ∗ c.
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The converse assertion is clear by Proposition 3.16.

(4) We assume that K is a splitting extension. Then, there exists an injective

mapping φ from Zq(2) into K(H(`1), f, c) such that φ(`0) = (`0, h0) and

φ(`1) = (`1, b
− ∗H(`1)) for some b ∈ Q(`1). Since

φ(δ`1) ∗ φ(δ`1) = qδ`0 ⊗ (ε−b ∗ ε−b ∗ εf ∗ ω(`1)) + (1− q)δ`1 ⊗ (ε−b ∗ ε−b ∗ εf ∗ c)

and

φ(δ`1 ◦ δ`1) ∗ ω(`1) = qδ`0 ⊗ ω(`1) + (1− q)δ`1 ⊗ (ε−b ∗ ω(`1)),

we get

ε−b ∗ ε−b ∗ εf ∗ ω(`1) = ω(`1),

ε−b ∗ ε−b ∗ εf ∗ c = ε−b ∗ ω(`1)

by the splitting condition (1). Then we see that εf ∗ ω(`1) = εb ∗ εb ∗ ω(`1)

for the first term. Hence we have ε−b ∗ ε−b ∗ εf ∗ c = c. Therefore we know

that

εf ∗ ω(`1) = εb ∗ εb ∗ ω(`1) and c = ε−b ∗ ω(`1).

It is easy to check the converse. ¤

3.2.3. Applications and examples. Under these discussions we calculate all

extensions K of hypergroups Zq(2) of order two by concrete locally compact

abelian groups H.

Example 3.18. H = Rn.

Since the trivial subgroup {0} of Rn is the only compact subgroup of Rn,

we get extensions K as follows.

K(c) = Rn ∪ Rn := {(0, h), (1, s) : h, s ∈ Rn}, where c ∈ M1(Rn) with

c− = c.

ε−(0,h) = ε(0,−h), ε−(1,s) = ε(1,−s), ε(0,h) ∗ ε(0,k) = ε(0,h+k),

ε(0,h) ∗ ε(1,s) = ε(1,h+s), ε(1,s) ∗ ε(1,t) = qε(0,0) + (1− q)c ∗ ε(1,0).

Remark. When c ∈ M1(Rn) is taking by ε(0,0), then K(c) = H×L which is a

splitting extension. M. Voit determined commutative hypergroup structures

on two disjoint real lines R∪R ([V]). We note that the hypergroup structure

obtained here coincide with Voit’s result since the hypergroup structure of

the real line is known to be unique by Hm. Zeuner ([Z]).
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Example 3.19. H = Zn.

Since the trivial subgroup {0} of Zn is the only compact subgroup of Zn,

we get extensions K = Zn ∪ Zn as follows.

Take f = (ε1, ε2, · · · , εn) ∈ Zn where εj = 0 or 1 for j = 1, 2, · · · , n and

c ∈ M1(Zn) such that c− = ε(0,f) ∗ c.

K(f, c) = Zn ∪ Zn := {(0, h), (1, s) : h, s ∈ Zn}.
ε−(0,h) = ε(0,−h), ε−(1,s) = ε(1,−f−s), ε(0,h) ∗ ε(0,k) = ε(0,h+k),

ε(0,h) ∗ ε(1,s) = ε(1,s) ∗ ε(0,h) = ε(1,h+s),

ε(1,s) ∗ ε(1,t) = qε(0,s+t+f) + (1− q)c ∗ ε(1,s+t+f).

Remark. If c = ε(0,0), then K(c) = H × L which is a splitting extension.

Example 3.20. H = T.

For a natural number m, a real number h is written in the form h = 2π
m

k+r,

where k is an integer and 0 ≤ r < 2π
m

. Then we denote the residue r by [h]m
i.e. r = [h]m.

We identify T with [0, 2π) by

T 3 eiθ ←→ [θ]1 ∈ [0, 2π).

Then the product eiθ1eiθ2 in T corresponds to [θ1+θ2]1 in [0, 2π). For h1, h2 ∈
[0, 2π), we can write εh1 ∗ εh2 = ε[h1+h2]1 .

(1) Case of H(`1) = {0}.
Then we get extensions K1(c) = T ∪ T with c ∈ M1(T) such that

c− = c, which are similar to the case H = Rn in Example 3.18.

(2) Case of H(`1) = H.

The extension K2 of L by H is the hypergroup join H ∨ L.

Since Q(`1) = {0}, K2 = T ∪ {0} := {(0, h), (1, 0) : h ∈ [0, 2π)}.
ε−(0,h) = ε(0,[−h]1), ε−(1,0) = ε(1,0), ε(0,h) ∗ ε(0,k) = ε(0,[h+k]1),

ε(0,h) ∗ ε(1,0) = ε(1,0), ε(1,0) ∗ ε(1,0) = qeH + (1− q)ε(1,0)

where eH is the normalized Haar measure of H.

(3) Case of H(`1) ∼= Zn.

Since Q(`1) = [0, 1
n
2π), K3(c) = T ∪ S1 := {(0, h), (1, s) : h ∈

[0, 2π), s ∈ [0, 1
n
2π)} where c ∈ M1(T) such that c− = c.

ε−(0,h) = ε(0,[−h]1), ε−(1,s) = ε(1,[−s]n), ε(0,h) ∗ ε(0,k) = ε(0,[h+k]1),

ε(0,h) ∗ ε(1,s) = ε(1,[h+s]n),

ε(1,s) ∗ ε(1,t) = q
n

∑n−1
l=0 ε(0,[ l

n
2π+s+t]1) + (1− q)c ∗ ε(1,[s+t]n).
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Remark. K3(c) is homeomorphic with T ∪ T. M. Voit [V] determined all

commutative hypergroup structures on two disjoint tori T ∪ T. We remark

that these extensions obtained here also agree with his result since the hy-

pergroup structure of the one-dimensional torus is known to be unique by

Hm. Zeuner [Z]. When we identify ε(0,h) with Voit’s notation δ(0,eih) and ε(1,s)

with δ(1,eins), it is easy to check that the both are same.

Example 3.21. H = T2.

We identify T2 = {(eiθ1 , eiθ2) : θ1, θ2 ∈ [0, 2π)} with [0, 2π)× [0, 2π).

(1) Case of H(`1) = {(0, 0)}.
Then we get extensions K1(c) = T2 ∪ T2 for c ∈ M1(T2) with

c− = c, which are similar to Example 3.18 and (1) in Example 3.20.

(2) Case of H(`1) = H.

The extension K2 of L by H is the hypergroup join H ∨ L.

(3) Case of H(`1) ∼= Zn × {0}.
Since S1 = [0, 1

n
2π)×[0, 2π), K3(c) = T2∪S1 := {(0, h1, h2), (1, s1, s2) :

h1, h2, s2 ∈ [0, 2π), s1 ∈ [0, 1
n
2π)} where c ∈ M1(T2) such that c− = c.

ε−(0,h1,h2) = ε(0,[−h1]1,[−h2]1), ε−(1,s1,s2) = ε(1,[−s1]n,[−s2]1),

ε(0,h1,h2) ∗ ε(0,k1,k2) = ε(0,[h1+k1]1,[h2+k2]1), ε(0,h1,h2) ∗ ε(1,s1,s2) =

ε(1,[h1+s1]n,[h2+s2]1), ε(1,s1,s2)∗ε(1,t1,t2) = q· 1
n

∑n−1
j=0 ε(0,[ j

n
2π+s1+t1]1,[s2+t2]1)+

(1− q)c ∗ ε(1,[s1+t1]n,[s2+t2]1).

(4) Case of H(`1) ∼= Zn × Zm.

Since S1 = [0, 1
n
2π)×[0, 1

m
2π), K4(c) = T2∪S1 := {(0, h1, h2), (1, s1, s2)

: h1, h2 ∈ [0, 2π), s1 ∈ [0, 1
n
2π), s2 ∈ [0, 1

m
2π)} where c ∈ M1(T2)

such that c− = c.

ε−(0,h1,h2) = ε(0,[−h1]1,[−h2]1), ε−(1,s1,s2) = ε(1,[−s1]n,[−s2]m),

ε(0,h1,h2) ∗ ε(0,k1,k2) = ε(0,[h1+k1]1,[h2+k2]1),

ε(0,h1,h2) ∗ ε(1,s1,s2) = ε(1,[h1+s1]n,[h2+s2]m),

ε(1,s1,s2) ∗ ε(1,t1,t2) = q · 1
nm

∑n−1
i=0

∑m−1
j=0 ε(0,[ i

n
2π+s1+t1]1,[ j

m
2π+s2+t2]1)

+ (1− q)c ∗ ε(1,[s1+t1]n,[s2+t2]m).

(5) Case of H(`1) ∼= Zn × T.

Since S1 = [0, 1
n
2π)×{0}, K5(c) = T2∪S1 := {(0, h1, h2), (1, s1, 0) :

h1, h2 ∈ [0, 2π), s1 ∈ [0, 1
n
2π)} where c ∈ M1(T2) such that c− = c.

ε−(0,h1,h2) = ε(0,[−h1]1,[−h2]1), ε−(1,s1,0) = ε(1,[−s1]n,0),

ε(0,h1,h2) ∗ ε(0,k1,k2) = ε(0,[h1+k1]1,[h2+k2]1),

ε(0,h1,h2) ∗ ε(1,s1,0) = ε(1,[h1+s1]n,0),

ε(1,s1,0) ∗ ε(1,t1,0) = q
n

∑n−1
l=0 ε(0,[ l

n
2π+s1+t1]1,0) ∗ ω(0,0,T)

+ (1− q)c ∗ ε(1,[s1+t1]n,0).
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Remark. For K1(c), if c = ε(0,0), then K1(c) = H × L which is a splitting

extension. K2 is also a splitting extension.

3.3. Extensions of the Golden hypergroups by locally compact abelian

groups.

3.3.1. The structures of extension hypergroups. Let L = {`0, `1, `2} be the

Golden hypergroup G with the convolution ◦ on M b(L) where `0 is unit of

L. The hypergroup structure of L is determined by

δ`1 ◦ δ`1 =
1

2
δ`0 +

1

2
δ`2 , `−1 = `1,

δ`2 ◦ δ`2 =
1

2
δ`0 +

1

2
δ`1 , `−2 = `2,

δ`1 ◦ δ`2 = δ`2 ◦ δ`1 =
1

2
δ`1 +

1

2
δ`2 ,

where δ`i
is the Dirac measure at `i ∈ L. Let H be a locally compact abelian

group with unit h0.

We will investigate the structure of extensions K of L by H. Let ϕ be a

continuous homomorphism from a commutative hypergroup K onto L such

that Ker ϕ = H, where H is assumed to be a closed subgroup of K. Then

K is written as the disjoint union of the sets H = ϕ−1(`0), S1 := ϕ−1(`1)

and S2 := ϕ−1(`2). Fix s1 ∈ S1 and s2 ∈ S2.

Let H(`i) denote the stability group of H at si ∈ Si, i.e.

H(`i) := {h ∈ H : εh ∗ εsi
= εsi

}.
We note that H(`i) does not depend on the choice of si ∈ Si and that

H(`i) is a compact subgroup of H by Lemma 3.14 for i = 1, 2.

Let ωH0 denote the normalized Haar measure of a compact subgroup H0

of H. The next lemma is useful for our arguments hereafter.

Lemma 3.22. For a compact subgroup H0 of H, if a probability measure µ

on H satisfies that supp(µ) ⊂ H0 and ωH0 ∗ µ = µ, then we have µ = ωH0.

Proof. For µ ∈ M1(H) with supp(µ) ⊂ H0, we can write µ =

∫

H0

εhdµ(h).

We assume that µ = ωH0 ∗ µ. Then, we have

µ = ωH0 ∗ µ = ωH0 ∗
∫

H0

εhdµ(h) =

∫

H0

ωH0 ∗ εhdµ(h) =

∫

H0

ωH0dµ(h)

= ωH0

∫

H0

1dµ(h) = ωH0 ∗ µ(H0) = ωH0 ∗ 1 = ωH0 .

Hence we get the desired conclusion. ¤
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Let ω(`i) (i = 1, 2) denote the normalized Haar measure of H(`i). We

note that ω(`i) has the following properties.

(1) ω(`i) ∗ εh = ω(`i) for h ∈ H(`i).

(2) ω(`i) ∗ ω(`i) = ω(`i).

(3) ω(`i)
− = ω(`i).

Proposition 3.23. If K is a commutative hypergroup extension of the Golden

hypergroup G = {`0, `1, `2} by a locally compact abelian group H and ϕ is a

continuous homomorphism from K onto G, we have the conditions (0) – (7)

as follows.

(0) K is the disjoint union of the sets H = ϕ−1(`0), S1 = ϕ−1(`1) and

S2 = ϕ−1(`2).

Let H(`i) denote the stability group of H at si ∈ Si and ω(`i) the normal-

ized Haar measure of H(`i) for i = 1, 2. Fix s1 ∈ S1 and s2 ∈ S2.

(1) ε−s1
= ε−h1

∗ εs1 and ε−s2
= ε−h2

∗ εs2 for some h1, h2 ∈ H.

(2) εs1 ∗ εs1 = 1
2
εh1 ∗ ω(`1) + 1

2
εh1 ∗ c1 ∗ εs2 for some c1 ∈ M1(H).

(3) εs2 ∗ εs2 = 1
2
εh2 ∗ ω(`2) + 1

2
εh2 ∗ c2 ∗ εs1 for some c2 ∈ M1(H).

(4) εs1 ∗ εs2 = 1
2
c−1 ∗ εs1 + 1

2
c−2 ∗ εs2.

(5) ω(`1) ∗ ω(`2) ∗ c1 = c1 and ω(`1) ∗ ω(`2) ∗ c2 = c2.

(6) c−1 = c1 ∗ εh2 and c−2 = c2 ∗ εh1.

(7) c1 ∗ c1 = ω(`1) ∗ ω(`2) ∗ ε−h2
and c2 ∗ c2 = ω(`1) ∗ ω(`2) ∗ ε−h1

.

Proof. (1) Since ε−si
∈ Si by the relations `i

− = `i (i = 1, 2), one can take

hi ∈ H such that ε−si
= ε−hi

∗ εsi
by Lemma 3.12.

(2) and (3) It is easy to see that ε−s1
∗ εs1 is written as

ε−s1
∗ εs1 =

1

2
c0 +

1

2
c1 ∗ εs2

for some c0, c1 ∈ M1(H). By the fact that ω(`1) ∗ εs1 = εs1 , we have that

ω(`1) ∗ c0 = c0 and ω(`1) ∗ c1 = c1. Since supp(c0) = H∩ supp(ε−s1
∗ εs1) =

H(`1) by Lemma 3.13 and ω(`1)∗ c0 = c0, we get c0 = ω(`1) by Lemma 3.22.

Hence we obtain

ε−s1
∗ εs1 =

1

2
ω(`1) +

1

2
c1 ∗ εs2 ,

namely εs1 ∗ εs1 = 1
2
εh1 ∗ ω(`1) + 1

2
εh1 ∗ c1 ∗ εs2 by (1) εs1 = εh1 ∗ ε−s1

. In a

similar way, we obtain εs2 ∗ εs2 = 1
2
εh2 ∗ ω(`2) + 1

2
εh2 ∗ c2 ∗ εs1 .

(5) and (6) We may suppose that ω(`1) ∗ ω(`2) ∗ c1 = c1 by the fact that

ω(`i) ∗ εsi
= εsi

. From the equality: ε−s1
∗ εs1 = 1

2
ω(`1) + 1

2
c1 ∗ εs2 , we have

(ε−s1
∗ εs1)

− =
1

2
(ω(`1))

− +
1

2
c−1 ∗ ε−s2

=
1

2
ω(`1) +

1

2
c−1 ∗ ε−h2

∗ εs2 .

Since (ε−s1
∗ εs1)

− = ε−s1
∗ εs1 , we get c−1 ∗ ε−h2

= c1, namely c−1 = c1 ∗ εh2 . In a

similar way to the above, we have ω(`1) ∗ ω(`2) ∗ c2 = c2 and c−2 = c2 ∗ εh1 .
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(4) and (7) It is easy to see that εs1 ∗ εs2 = 1
2
c3 ∗ εs1 + 1

2
c4 ∗ εs2 for some

c3, c4 ∈ M1(H) such that ω(`1) ∗ ω(`2) ∗ c3 = c3 and ω(`1) ∗ ω(`2) ∗ c4 = c4.

Then

(εs1∗εs1)∗εs2 =
1

4
εh1∗εh2∗c1+

1

4
∗εh1∗εh2∗c1∗c2∗εs1+

1

2
ω(`1)∗ω(`2)∗εh1∗εs2 ,

εs1 ∗ (εs1 ∗ εs2) =
1

4
εh1 ∗ c3 +

1

4
c3 ∗ c4 ∗ εs1 +

1

4
(εh1 ∗ c1 ∗ c3 + c4 ∗ c4) ∗ εs2 .

By the associativity: (εs1 ∗ εs1) ∗ εs2 = εs1 ∗ (εs1 ∗ εs2), we have c1 ∗ εh2 = c3

from the first term and 2ω(`1) ∗ ω(`2) ∗ εh1 = c1 ∗ c3 ∗ εh1 + c4 ∗ c4 from the

last term. Since c−1 = c1 ∗ εh2 , we see that c3 = c−1 . In a similar way, by the

associativity: εs1 ∗ (εs2 ∗ εs2) = (εs1 ∗ εs2) ∗ εs2 , we have c4 = c2 ∗ εh1 = c−2 .

Then we see that εs1 ∗ εs2 = 1
2
c−1 ∗ εs1 + 1

2
c−2 ∗ εs2 . From these equalities we

obtain

2ω(`1) ∗ ω(`2) ∗ εh1 = c1 ∗ c3 ∗ εh1 + c4 ∗ c4

= c1 ∗ (c1 ∗ εh2) ∗ εh1 + (c2 ∗ εh1) ∗ (c2 ∗ εh1),

namely

2ω(`1) ∗ ω(`2) = c1 ∗ c1 ∗ εh2 + c2 ∗ c2 ∗ εh1 .

This fact implies that supp(ω(`1)∗ω(`2)) = supp(c1 ∗c1 ∗εh2) ∪ supp(c2 ∗c2 ∗
εh1). Hence we see that supp(c1∗c1∗εh2) ⊂ H(`1)H(`2) and supp(c2∗c2∗εh1)

⊂ H(`1)H(`2). Since ω(`1)∗ω(`2)∗ci = ci, we have c1∗c1∗εh2 = ω(`1)∗ω(`2)

and c2 ∗ c2 ∗ εh1 = ω(`1) ∗ ω(`2) by Lemma 3.22. Therefore, we get c1 ∗ c1 =

ω(`1) ∗ ω(`2) ∗ ε−h2
and c2 ∗ c2 = ω(`1) ∗ ω(`2) ∗ ε−h1

. ¤

We see that any extension K of L by H is characterized by

H(`1), H(`2), s1 ∈ S1, s2 ∈ S2, h1, h2 ∈ H, c1, c2 ∈ M1(H)

satisfying the conditions described in Proposition 3.23. Therefore we denote

such an extension K by K(H(`1), H(`2), s1, s2, h1, h2, c1, c2).

When we take H1(`1), H1(`2), t1 ∈ S1, t2 ∈ S2, k1, k2 ∈ H and d1, d2 ∈
M1(H) satisfying the conditions (0)–(7) in Proposition 3.23, we have another

extension K(H1(`1), H1(`2), t1, t2, k1, k2, d1, d2) of L by H.

Proposition 3.24. Two extensions K(H(`1), H(`2), s1, s2, h1, h2, c1, c2) and

K(H1(`1), H1(`2), t1, t2, k1, k2, d1, d2) of L = G by H are mutually equivalent

as extensions if and only if H(`1) = H1(`1), H(`2) = H1(`2) and there exist

b1, b2 ∈ H such that εk1 ∗ω(`1) = εb1 ∗ εb1 ∗ εh1 ∗ω(`1), εk2 ∗ω(`2) = εb2 ∗ εb2 ∗
εh2 ∗ ω(`2), d1 = ε−b2 ∗ c1 and d2 = ε−b1 ∗ c2.
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Proof. Suppose that K1 = K(H(`1), H(`2), s1, s2, h1, h2, c1, c2) is equivalent

to K2 = K(H1(`1), H1(`2), t1, t2, k1, k2, d1, d2) as extensions. Let ϕi be a

continuous homomorphism from Ki onto L (i = 1, 2). Let K1 = H ∪S1 ∪S2

and K2 = H ∪ T1 ∪ T2 where Si = ϕ−1
1 (`i) and Ti = ϕ−1

2 (`i). Let ψ be an

isomorphism from K1 to K2 such that ϕ2 ◦ ψ = ϕ1. Put ψ(s1) = u1 ∈ T1

and ψ(s2) = u2 ∈ T2. Since εh ∗ εui
= εui

for any h ∈ H(`i), we see that

H(`i) = H1(`i)(i = 1, 2). For u1 ∈ T1 and u2 ∈ T2, there exist b1 and b2 ∈ H

such that εu1 = ε−b1 ∗ εt1 and εu2 = ε−b2 ∗ εt2 by Lemma 3.12. Then,

ε−u1
= (ε−b1 ∗ εt1)

− = εb1 ∗ ε−t1 = εb1 ∗ ε−k1
∗ εt1 = εb1 ∗ εb1 ∗ ε−k1

∗ εu1 .

By the relation that ε−s1
= ε−h1

∗εs1 , we have ε−u1
= ε−h1

∗εu1 since ψ(ε−h1
∗εs1) =

ψ(εh1)
− ∗ ψ(εs1) = ε−h1

∗ εu1 . Hence we have

ε−h1
∗ εu1 = εb1 ∗ εb1 ∗ ε−k1

∗ εu1 ,

namely

εk1 ∗ εu1 = εb1 ∗ εb1 ∗ εh1 ∗ εu1 .

Since εu1 ∗ ω(`1) = εu1 , we obtain

εk1 ∗ ω(`1) = εb1 ∗ εb1 ∗ εh1 ∗ ω(`1).

In a similar way, we also get

εk2 ∗ ω(`2) = εb2 ∗ εb2 ∗ εh2 ∗ ω(`2).

Since ε−u1
∗ εu1 = ε−t1 ∗ εt1 and εt2 = εb2 ∗ εu2 , we have

ε−u1
∗ εu1 =

1

2
ω(`1) +

1

2
d1 ∗ εt2 =

1

2
ω(`1) +

1

2
εb2 ∗ d1 ∗ εu2 .

Since

ψ(ε−s1
∗ εs1) = ψ(εs1)

− ∗ ψ(εs1) = ε−u1
∗ εu1

and

ψ(ε−s1
∗ εs1) = ψ

(
1

2
ω(`1) +

1

2
c1 ∗ εs2

)
=

1

2
ω(`1) +

1

2
c1 ∗ ψ(εs2)

=
1

2
ω(`1) +

1

2
c1 ∗ εu2 ,

we have

ε−u1
∗ εu1 =

1

2
ω(`1) +

1

2
c1 ∗ εu2 .

Hence we get d1 ∗ εb2 = c1 from the last term, namely d1 = ε−b2 ∗ c1. In a

similar way, we see that d2 = ε−b1 ∗ c2.

Conversely, we assume that H(`1) = H1(`1), H(`2) = H1(`2) and there

exist b1, b2 ∈ H such that

εk1 ∗ ω(`1) = εb1 ∗ εb1 ∗ εh1 ∗ ω(`1), εk2 ∗ ω(`2) = εb2 ∗ εb2 ∗ εh2 ∗ ω(`2),

d1 = ε−b2 ∗ c1 and d2 = ε−b1 ∗ c2.
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Take u1 ∈ T1 and u2 ∈ T2 by εu1 = ε−b1 ∗ εt1 and εu2 = ε−b2 ∗ εt2 . Then we have

ε−u1
= (ε−b1∗εt1)

− = εb1∗ε−t1 = εb1∗ε−k1
∗εt1 = εb1∗ε−b1∗ε−b1∗ε−h1

∗εb1∗εu1 = ε−h1
∗εu1

by the relation ε−k1
∗ ω(`1) = ε−b1 ∗ ε−b1 ∗ ε−h1

∗ ω(`1) and

εu1 ∗ εu1 = ε−b1 ∗ ε−b1 ∗ εt1 ∗ εt1

=
1

2
ε−b1 ∗ ε−b1 ∗ εk1 ∗ ω(`1) +

1

2
ε−b1 ∗ ε−b1 ∗ εk1 ∗ d1 ∗ εt2

=
1

2
εh1 ∗ ω(`1) +

1

2
εh1 ∗ c1 ∗ εu2

by the relation d1 = ε−b2 ∗ c1 and εt2 = εb2 ∗ εu2 . In a similar way, we have

ε−u2
= ε−h2

∗ εu2 , εu2 ∗ εu2 = 1
2
εh2 ∗ ω(`2) + 1

2
εh2 ∗ c2 ∗ εu1 and εu1 ∗ εu2 =

1
2
c−1 ∗ εu1 + 1

2
c−2 ∗ εu2 .

We put a map ψ from K1 to K2 such that

ψ(εh) = εh, ψ(εh ∗ εs1) = εh ∗ εu1 and ψ(εh ∗ εs2) = εh ∗ εu2

for h ∈ H. It is clear that ψ(Si) = Ti for i = 1, 2. Since

ψ(εs1 ∗ εs1) = ψ

(
1

2
εh1 ∗ ω(`1) +

1

2
εh1 ∗ c1 ∗ εs2

)

=
1

2
εh1 ∗ ω(`1) +

1

2
εh1 ∗ c1 ∗ εu2 = εu1 ∗ εu1 ,

we have ψ(εs1 ∗ εs1) = ψ(εs1) ∗ ψ(εs1). In a similar way, we know that ψ is a

homomorphism. Since

ψ(ε−s1
) = ψ(ε−h1

∗ εs1) = ε−h1
∗ εu1 = ε−u1

and ψ(εs1)
− = ε−u1

, we get ψ(ε−s1
) = ψ(εs1)

−. In a similar way, we obtain that

ψ(ε−s2
) = ψ(εs2)

−. Moreover, for a continuous homomorphism ϕi from Ki

onto L (i = 1, 2), it is easy to check that ϕ2 ◦ ψ = ϕ1. ¤

3.3.2. Construction of the model. Let H be a locally compact abelian group

with unit h0 and L = {`0, `1, `2} be the Golden hypergroup G with unit `0.

Take any compact subgroup H(`i) of H where H(`0) = {h0} and denote the

quotient space H/H(`i) by Q(`i) for i = 1, 2. The normalized Haar measure

of H(`i) is denote by ω(`i) (i = 0, 1, 2). Let K be the disjoint union of the

sets H, Q(`1) and Q(`2), namely

K = H ∪Q(`1) ∪Q(`2)

= {(`i, h ∗H(`i)) : `i ∈ L, h ∈ H}.
The Dirac measure at (`i, h ∗H(`i)) ∈ K is realized in M b(L)⊗M b(H) by

δ`i
⊗ (εh ∗ ω(`i)).
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Take and fix f1, f2 ∈ H(`1)H(`2). We define the involution − of K by

(`i, h ∗H(`i))
− = (`i, h

− ∗ fi
− ∗H(`i)),

where f0 = h0. Moreover we define the convolution ∗c of K in M b(L) ⊗
M b(H) by the following.

(1) (δ`0 ⊗ εh1) ∗c (δ`i
⊗ (εh2 ∗ ω(`i))) = (δ`i

⊗ (εh2 ∗ ω(`i))) ∗c (δ`0 ⊗ εh1)

= δ`i
⊗ (εh1 ∗ εh2 ∗ ω(`i)) for i = 0, 1, 2.

(2) (δ`1 ⊗ (εh1 ∗ ω(`1))) ∗c (δ`1 ⊗ (εh2 ∗ ω(`1)))

= 1
2
δ`0 ⊗ (εh1 ∗ εh2 ∗ εf1 ∗ ω(`1)) + 1

2
δ`2 ⊗ (εh1 ∗ εh2 ∗ ω(`1) ∗ ω(`2)).

(3) (δ`2 ⊗ (εk1 ∗ ω(`2))) ∗c (δ`2 ⊗ (εk2 ∗ ω(`2)))

= 1
2
δ`0 ⊗ (εk1 ∗ εk2 ∗ εf2 ∗ ω(`2)) + 1

2
δ`1 ⊗ (εk1 ∗ εk2 ∗ ω(`1) ∗ ω(`2)).

(4) (δ`1 ⊗ (εh ∗ ω(`1))) ∗c (δ`2 ⊗ (εk ∗ ω(`2)))

= (δ`2 ⊗ (εk ∗ ω(`2))) ∗c (δ`1 ⊗ (εh ∗ ω(`1)))

= 1
2
δ`1 ⊗ (εh ∗ εk ∗ ω(`1) ∗ ω(`2)) + 1

2
δ`2 ⊗ (εh ∗ εk ∗ ω(`1) ∗ ω(`2)).

Since the model K is determined by the compact subgroups H(`1), H(`2)

of H and f1, f2 ∈ H(`1)H(`2), we denote K by K(H(`1), H(`2), f1, f2). Put

P (`i) = (H(`1)H(`2))/H(`i), P 2(`i) = {p2 : p ∈ P (`i)} and P2(`i) =

P (`i)/P
2(`i) for i = 1, 2. Now we arrive at the main theorem of the section

3.2.

Theorem 3.25. Under the preceding arguments we have the following.

(1) The model K(H(`1), H(`2), f1, f2) is a commutative hypergroup and

an extension of L by H.

(2) All extensions K of L by H are equivalent to K(H(`1), H(`2), f1, f2)

as extensions.

(3) The extensions K(H(`1), H(`2), f1, f2) and K(H1(`1), H1(`2), g1, g2)

are equivalent as extensions if and only if [fi] = [gi] in P2(`i) for

i = 1, 2.

Proof. (1) Since H is a locally compact group and H(`i) is a compact sub-

group of H, the quotient space Q(`i) = H/H(`i) is a locally compact space.

Then the disjoint union K(H(`1), H(`2), f1, f2) = H ∪Q(`1)∪Q(`2) is also a

locally compact space. It is clear that the definition of the convolution ∗c and

the involution − is well defined. By the definition of K(H(`1), H(`2), f1, f2),

we know that the convolution ∗c and the involution − are continuous from

the fact that group operation and inverse operation of H as well as an action

of H on Q(`i) are all continuous for i = 1, 2.
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We check the associativity of the convolution. It is easy to see that

{(δ`1 ⊗ ω(`1)) ∗c (δ`1 ⊗ ω(`1))} ∗c (δ`2 ⊗ ω(`2))

=
1

4
δ`0 ⊗ (εf2 ∗ ω(`1) ∗ ω(`2)) +

1

4
δ`1 ⊗ (ω(`1) ∗ ω(`2))

+
1

2
δ`2 ⊗ (εf1 ∗ ω(`1) ∗ ω(`2))

and

(δ`1 ⊗ ω(`1)) ∗c {(δ`1 ⊗ ω(`1)) ∗c (δ`2 ⊗ ω(`2))}

=
1

4
δ`0 ⊗ (εf1 ∗ ω(`1) ∗ ω(`2)) +

1

4
δ`1 ⊗ (ω(`1) ∗ ω(`2))

+
1

2
δ`2 ⊗ (ω(`1) ∗ ω(`2)).

Since f1, f2 ∈ H(`1)H(`2), we obtain {(δ`1 ⊗ ω(`1)) ∗c (δ`1 ⊗ ω(`1))} ∗c (δ`2 ⊗
ω(`2)) = (δ`1 ⊗ ω(`1)) ∗c {(δ`1 ⊗ ω(`1)) ∗c (δ`2 ⊗ ω(`2))}. In a similar way, we

know that the associativity of other convolutions holds. For the involution,

it is easy to see that

{(δ`1 ⊗ω(`1)) ∗c (δ`1 ⊗ω(`1))}− =
1

2
δ`0 ⊗ (ε−f1

∗ω(`1))+
1

2
δ`2 ⊗ (ω(`1) ∗ω(`2))

and

(δ`1 ⊗ ω(`1))
− ∗c (δ`1 ⊗ ω(`1))

−

=
1

2
δ`0 ⊗ (εf1 ∗ ε−f1

∗ ε−f1
∗ ω(`1)) +

1

2
δ`2 ⊗ (ε−f1

∗ ε−f1
∗ ω(`1) ∗ ω(`2)).

Since f1, f2 ∈ H(`1)H(`2), we have {(δ`1 ⊗ ω(`1)) ∗c (δ`1 ⊗ ω(`1))}− = (δ`1 ⊗
ω(`1))

− ∗c (δ`1⊗ω(`1))
−. In a similar way, we know that the other properties

of the involution hold.

The compactness of the support of (δ`i
⊗ ω(`i)) ∗c (δ`j

⊗ ω(`j)) is assured

by the fact that H(`i) and H(`j) are compact and L is finite. It is easy to

check other axioms of a hypergroup. We omit the detail. Hence we see that

K(H(`1), H(`2), f1, f2) is a commutative hypergroup.

Let ϕ be a mapping from K(H(`1), H(`2), f1, f2) onto L such that ϕ(`i, h∗
H(`i)) = `i for h ∈ H and `i ∈ L. Then it is easy to see that ϕ is a continuous

hypergroup homomorphism from K(H(`1), H(`2), f1, f2) onto L such that

Ker ϕ = H. This implies that K(H(`1), H(`2), f1, f2) is an extension of L

by H.

(2) Take an extension K of L by H. Then K is characterized as K =

K(H(`1), H(`2), s1, s2, h1, h2, c1, c2) by Proposition 3.23. By the conditions

(1) and (7) in Proposition 3.23:

ε−s1
= ε−h1

∗ εs1 , ε−s2
= ε−h2

∗ εs2 ,

c1 ∗ c1 = ω(`1) ∗ ω(`2) ∗ ε−h2
, c2 ∗ c2 = ω(`1) ∗ ω(`2) ∗ ε−h1

,
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we know that there exist a1, a2 ∈ H and f1, f2 ∈ H(`1)H(`2) such that

c1 = ω(`1) ∗ ω(`2) ∗ ε−a2
, c2 = ω(`1) ∗ ω(`2) ∗ ε−a1

,

εh1 = εa1 ∗ εa1 ∗ εf1 , εh2 = εa2 ∗ εa2 ∗ εf2 .

Put ψ be a mapping from K to the model extension K(H(`1), H(`2), f1, f2)

such that ψ(εh) = δ`0⊗εh, ψ(εh∗εs1) = δ`1⊗(εa1∗εh∗ω(`1)) and ψ(εh∗εs2) =

δ`2 ⊗ (εa2 ∗ εh ∗ ω(`2)) for h ∈ H. It is easy to see that the mapping ψ is

well-defined and bijective.

We have

ψ(εs1 ∗ εs1) =
1

2
δ`0 ⊗ (εh1 ∗ ω(`1)) +

1

2
δ`2 ⊗ (εh1 ∗ εa2 ∗ c1)

and

ψ(εs1)∗cψ(εs1) =
1

2
δ`0⊗(εa1 ∗εa1 ∗εf1 ∗ω(`1))+

1

2
δ`2⊗(εa1 ∗εa1 ∗ω(`1)∗ω(`2)).

Since εh1 = εa1 ∗ εa1 ∗ εf1 and εa2 ∗ c1 = ω(`1) ∗ ω(`2), we have ψ(εs1 ∗
εs1) = ψ(εs1) ∗c ψ(εs1). In a similar way, we see that ψ is a homomorphism.

Moreover,

ψ(ε−s1
) = ψ(ε−h1

∗ εs1) = δ`1 ⊗ (εa1 ∗ ε−h1
∗ ω(`1)).

By the definition of the model K(H(`1), H(`2), f1, f2),

ψ(εs1)
− = δ`1 ⊗ (ε−a1

∗ ε−f1
∗ ω(`1)).

Since ε−h1
= ε−a1

∗ ε−a1
∗ ε−f1

, we have ψ(ε−s1
) = ψ(εs1)

−. In a similar way, we

know that ψ preserves the involution. Hence ψ is an involutive isomorphism.

If we take a continuous homomorphism ϕ2 from K(H(`1), H(`2), f1, f2)

onto L such that ϕ2((`i, h ∗ H(`i))) = `i for `i ∈ L, then it is clear that

ϕ2 ◦ ψ = ϕ.

(3) We note that K1 = K(H(`1), H(`2), f1, f2) is equal to K(H(`1), H(`2),

s1, s2, h1, h2, c1, c2) such that h = (`0, h), s1 = (`1, H(`1)), s2 = (`2, H(`2)),

h1 = f1, h2 = f2, c1 = ω(`1) ∗ ω(`2) and c2 = ω(`1) ∗ ω(`2) and K2 =

K(H1(`1), H1(`2), g1, g2) is also similar. We assume that K1 is equivalent to

K2 as extensions. Applying Proposition 3.24, there exists a1 ∈ H such that

δ`0 ⊗ (εf1 ∗ ω(`1)) = δ`0 ⊗ (εa1 ∗ εa1 ∗ εg1 ∗ ω(`1)),

δ`0 ⊗ (ω(`1) ∗ ω(`2)) = δ`0 ⊗ (εa1 ∗ ω(`1) ∗ ω(`2)).

Hence we get a1 ∈ H(`1)H(`2) and f1 ∗H(`1) = a2
1g1 ∗H(`1) i.e. [f1] = [g1]

in P2(`1). In a similar way, we obtain [f2] = [g2] in P2(`2).

The converse assertion is clear by Proposition 3.24. ¤
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Definition. Let L = {`0, `1, · · · , `n} be a finite commutative hypergroup

and H a locally compact abelian group with unit h0. Let K be an extension

of L by a locally compact abelian group H and let ϕ be a continuous ho-

momorphism from K onto L. Let H(`i) be a compact subgroup of H such

that H(`0) = {h0}, H(`−i ) = H(`i) and let ω(`i) denote the normalized Haar

measure of H(`i) for `i ∈ L. If there exists an injective mapping φ from L

into K such that

(1) The mapping φ is a cross section of ϕ i.e. ϕ(φ(`)) = ` for ` ∈ L and

φ(`0) = h0,

(2) φ(δ`i
) ∗ φ(δ`j

) = φ(δ`i
◦ δ`j

) ∗ ω(`i) ∗ ω(`j) for `i, `j ∈ L,

then we call that the extension K of L by H splits or K is a splitting exten-

sion. Moreover, If a splitting extension K has a property:

(1) ω(`i) ∗ ω(`j) ∗ ω(`) = ω(`i) ∗ ω(`j) for ` ∈ supp(δ`i
◦ δ`j

),

then we call that the extension K of L by H is strong splitting.

Theorem 3.26. The extension K(H(`1), H(`2), f1, f2) is splitting if and only

if [fi] = [h0] in P2(`i) (i = 1, 2) where h0 is unit element of H. Moreover,

K is strong splitting if and only if K is splitting and H(`1) = H(`2).

Proof. We assume that K is splitting. Then, there exists an injective map-

ping φ from L into K(H(`1), H(`2), f1, f2) such that φ(`0) = (`0, h0), φ(`1) =

(`1, a
−
1 ∗H(`1)), and φ(`2) = (`2, a

−
2 ∗H(`2)) for some a1, a2 ∈ H. Since

φ(δ`1)∗φ(δ`1) =
1

2
δ`0⊗ (ε−a1

∗ε−a1
∗εf1 ∗ω(`1))+

1

2
δ`2⊗ (ε−a1

∗ε−a1
∗ω(`1)∗ω(`2))

and

φ(δ`1 ◦ δ`1) ∗ ω(`1) ∗ ω(`1) =
1

2
δ`0 ⊗ ω(`1) +

1

2
δ`2 ⊗ (ε−a2

∗ ω(`1) ∗ ω(`2)),

we get

ε−a1
∗ ε−a1

∗ εf1 ∗ ω(`1) = ω(`1),

ε−a1
∗ ε−a1

∗ ω(`1) ∗ ω(`2) = ε−a2
∗ ω(`1) ∗ ω(`2)

by the splitting condition (1). Hence we know that

f1 ∗H(`1) = a2
1 ∗H(`1) and a2 ∈ H(`1)H(`2).

In a similar way, we get

f2 ∗H(`2) = a2
2 ∗H(`2) and a1 ∈ H(`1)H(`2)

by the equation φ(δ`2) ∗c φ(δ`2) = φ(δ`2 ◦ δ`2) ∗ ω(`2). Therefore, we obtain

[fi] = [h0] in P2(`i) for i = 1, 2.
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Conversely, we assume that [fi] = [h0] in P2(`i) for i = 1, 2. Then there

exist a1, a2 ∈ H(`1)H(`2) such that

f1 ∗H(`1) = a2
1 ∗H(`1) and f2 ∗H(`2) = a2

2 ∗H(`2).

Put φ a mapping from L into K(H(`1), H(`2), f1, f2) such that

φ(`0) = (`0, h0), φ(`1) = (`1, a
−
1 ∗H(`1)), φ(`2) = (`2, a

−
2 ∗H(`2)).

It is clear that φ is a cross section of ϕ. It is easy to see that

φ(δ`1)∗c φ(δ`1) =
1

2
δ`0⊗(ε−a1

∗ε−a1
∗εf1 ∗ω(`1))+

1

2
δ`2⊗(ε−a1

∗ε−a1
∗ω(`1)∗ω(`2))

and

φ(δ`1 ◦ δ`1) ∗ ω(`1) =
1

2
δ`0 ⊗ ω(`1) +

1

2
δ`2 ⊗ (ε−a2

∗ ω(`1) ∗ ω(`2)).

Since ε−a1
∗ ε−a1

∗ εf1 ∗ ω(`1) = ω(`1) and a2 ∈ H(`1)H(`2), we get

φ(δ`1) ∗c φ(δ`1) = φ(δ`1 ◦ δ`1) ∗ ω(`1).

In a similar way, we obtain φ(δ`2) ∗c φ(δ`2) = φ(δ`2 ◦ δ`2) ∗ω(`2) and φ(δ`1) ∗c

φ(δ`2) = φ(δ`1 ◦ δ`2) ∗ω(`1) ∗ω(`2). Therefore K(H(`1), H(`2), f1, f2) is split-

ting.

Suppose that K(H(`1), H(`2), f1, f2) is strong splitting. Then we have

ω(`1) ∗ ω(`1) ∗ ω(`2) = ω(`1) ∗ ω(`1).

Since

supp(δ`1 ◦ δ`1) = {`0, `2},
we get ω(`1) ∗ ω(`2) = ω(`1). In a similar way, we get ω(`1) ∗ ω(`2) = ω(`2).

Therefore we obtain

ω(`1) = ω(`2).

The converse is clear. ¤

3.3.3. Applications and examples. Under these discussions we calculate all

extensions K of the Golden hypergroup L by concrete locally compact abelian

groups H.

Example 3.27. H = Rn.

Since the trivial subgroup {0} of Rn is the only compact subgroup of Rn,

we get only one extension K which is H × L.

Example 3.28. H = Zn.

Since the trivial subgroup {0} of Zn is the only compact subgroup of Zn,

we get only one extension K which is H × L.
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Example 3.29. H = T.

For a natural number m, a real number h is written in the form h = 2π
m

k+r,

where k is an integer and 0 ≤ r < 2π
m

. Then we denote the residue r by [h]m
i.e. r = [h]m. For h1, h2 ∈ [0, 2π), εh1 ∗ εh2 = ε[h1+h2]1 .

We identify T with [0, 2π) by

T 3 eiθ ←→ θ ∈ [0, 2π).

Then the product eiθ1eiθ2 in T corresponds to [θ1 + θ2]1 in [0, 2π).

(1) Case of H(`1) = {0} and H(`2) = {0}.
The extension K of L by H must be H × L.

(2) Case of H(`1) = H and H(`2) = H. Then K = T ∪ S1 ∪ S2 =

T ∪ {0} ∪ {0}.
The extension K of L by H is the hypergroup join H ∨ L.

We identify T, S1 and S2 with {(0, h) : h ∈ [0, 2π)}, {(1, 0)}, and

{(2, 0)} respectively. We denote by ε(j,h) a Dirac measure of (j, h) ∈
K and by eH the normalized Haar measure of H.

ε−(1,0) = ε(1,0), ε−(2,0) = ε(2,0), ε(0,h1) ∗ ε(0,h2) = ε(0,[h1+h2]1),

ε(0,h) ∗ ε(1,0) = ε(1,0), ε(0,h) ∗ ε(2,0) = ε(2,0),

ε(1,0) ∗ ε(1,0) = 1
2
eH + 1

2
ε(2,0), ε(2,0) ∗ ε(2,0) = 1

2
eH + 1

2
ε(1,0),

ε(1,0) ∗ ε(2,0) = 1
2
ε(1,0) + 1

2
ε(2,0).

(3) Case of H(`1) ∼= Zm1 and H(`2) ∼= Zm2 . Then K = T ∪ S1 ∪ S2
∼=

T ∪ T ∪ T.

We identify S1 and S2 with {(1, s1) : s1 ∈ [0, 1
m1

2π)} and {(2, s2) :

s2 ∈ [0, 1
m2

2π)} respectively. Let d be the greatest common divisor

of m1 and m2 and put p1 = m1

d
and p2 = m2

d
.

(a) Case that both p1 and p2 are odd numbers.

We get one extension which is given by

ε−(1,s1) = ε(1,[−s1]m1 ), ε−(2,s2) = ε(2,[−s2]m2 ),

ε(0,h1) ∗ ε(0,h2) = ε(0,[h1+h2]1), ε(0,h) ∗ ε(1,s1) = ε(1,[h+s1]m1 ),

ε(0,h) ∗ ε(2,s2) = ε(2,[h+s2]m2 ),

ε(1,s1)∗ε(1,t1) = 1
2m1

∑m1−1
k=0 ε(0,[ k

m1
2π+s1+t1]1)+

1
2p1

∑p1−1
k=0 ε(2,[ k

m2
2π+s1+t1]m2 ),

ε(2,s2)∗ε(2,t2) = 1
2m2

∑m2−1
k=0 ε(0,[ k

m2
2π+s2+t2]1)+

1
2p2

∑p2−1
k=0 ε(1,[ k

m1
2π+s2+t2]m1 ),

ε(1,s1)∗ε(2,s2) = 1
2p2

∑p2−1
k=0 ε(1,[ k

m1
2π+s1+s2]m1)+

1
2p1

∑p1−1
k=0 ε(2,[ k

m2
2π+s1+s2]m2 ).

This extension is splitting.

(b) Case that either p1 or p2 is an even number.

We get two extensions up to equivalence as extensions. One is

the same in the above (1). Another one is given as follows.

We assume that p2 is even number. Then we take f1 ∈ H(`1)H(`2)

such that [f1] 6= [h0] in P2(`1), for example, f1 = 1
p1p2d

2π.
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ε−(1,s1) = ε(1,[−f1−s1]m1 ), ε−(2,s2) = ε(2,[−s2]m2 ), ε(0,h1) ∗ ε(0,h2) =

ε(0,[h1+h2]1),

ε(0,h) ∗ ε(1,s1) = ε(1,[h+s1]m1 ), ε(0,h) ∗ ε(2,s2) = ε(2,[h+s2]m2),

ε(1,s1)∗ε(1,t1) = 1
2m1

∑m1−1
k=0 ε(0,[ k

m1
2π+f1+s1+t1]1)+

1
2p1

∑p1−1
k=0 ε(2,[ k

m2
2π+s1+t1]m2 ),

ε(2,s2)∗ε(2,t2) = 1
2m2

∑m2−1
k=0 ε(0,[ k

m2
2π+s2+t2]1)+

1
2p2

∑p2−1
k=0 ε(1,[ k

m1
2π+s2+t2]m1 ),

ε(1,s1)∗ε(2,s2) = 1
2p2

∑p2−1
k=0 ε(1,[ k

m1
2π+s1+s2]m1 )+

1
2p1

∑p1−1
k=0 ε(2,[ k

m2
2π+s1+s2]m2 ).

(4) Case of H(`1) ∼= Zm and H(`2) = H. Then K = T ∪ S1 ∪ {0} ∼=
T ∪ T ∪ {0}.

We identify S1 with {(1, s1) : s1 ∈ [0, 1
m

2π)}.
ε−(1,s1) = ε(1,[−s1]m1 ), ε−(2,0) = ε(2,0), ε(0,h1) ∗ ε(0,h2) = ε(0,[h1+h2]1),

ε(0,h) ∗ ε(1,s1) = ε(1,[h+s1]m1), ε(0,h) ∗ ε(2,0) = ε(2,0),

ε(1,s1) ∗ ε(1,t1) = 1
2m

∑m−1
k=0 ε(0,[ k

m
2π+s1+t1]1) + 1

2
ε(2,0),

ε(2,0) ∗ ε(2,0) = 1
2
eH + 1

2m
eH ∗ ε(1,0),

ε(1,s1) ∗ ε(2,0) = 1
2m

eH ∗ ε(1,0) + 1
2
ε(2,0).

In the case that H(`1) = H and H(`2) ∼= Zm, we obtain similar

conclusion for K ∼= T ∪ {0} ∪ T.

Example 3.30. H = Zn = Z/nZ.

If n is a prime number, then there are two extension i.e. K = H × L or

K = H ∨ L. If n is an odd number, then the extensions are similar to 3-(a)

in Example 3.29. If n is an even number, then the extensions are similar to

3 in Example 3.29.

Example 3.31. H = Z2 × · · · × Z2︸ ︷︷ ︸
n

.

If H(`1) = H and H(`2) = {h0}, then we know that P2(`1) = {p0} and

P2(`2) = H = Z2 × · · · × Z2︸ ︷︷ ︸
n

. In this case we obtain extensions associated

with each element of H, which are not mutually equivalent as extensions.
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4. Signed Actions of Finite Hypergroups and the Extension

Problem

4.1. Signed actions of signed hypergroups. For a finite set X = {x1, x2,

· · · , xm}, B(M b(X)) denotes the algebra of all (bounded) linear operators

on the linear space M b(X) over C.

Definition. We call α a signed action of a finite signed hypergroup K on a

set X if α satisfies the following conditions.

(1) α is a homomorphism from M b(K) to B(M b(X)) as algebras such

that α(εc0) is the identity mapping on M b(X).

(2) For ci ∈ K and µ ∈ M1(X), α(εci
)µ ∈ M1

R(X).

(3) For the normalized Haar measure eK of K and µ ∈ M1(X), α(eK)µ ∈
M1(X).

Moreover, if the condition

(2’) For ci ∈ K and µ ∈ M1(X), α(εci
)µ ∈ M1(X)

holds, then we call α an action of K on X.

We denote α(εci
) by α(ci). A subset S of X is called invariant under the

signed action α of K if supp(α(eK)δx) ⊂ S for any x ∈ S.

Definition. A signed action α of a finite signed hypergroup K on X is called

irreducible if a non-empty subset S of X which is invariant under the signed

action α must be X.

For a signed hypergroup K, When we take X = K and ρK(ci)εcj
= εci

∗εcj

for ci, cj ∈ K, we get a signed action ρK of K on K. We call this signed

action ρK the (left) regular action of K. It is easy to check that the regular

action ρK is irreducible.

Lemma 4.1. If a non-negative measure µ on X is invariant under an irre-

ducible signed action α of K on X, then supp(µ) = ∅ or supp(µ) = X.

Proof. Let µ be a non-negative measure on X such that µ is invariant under

an irreducible signed action α of K on X and µ 6= 0. Put S = supp(µ).

Then S 6= ∅ because µ 6= 0. The measure µ is written by

µ = t1δx1 + · · ·+ tmδxm

where tj ≥ 0 (j = 1, 2, · · · ,m). Then we have

α(eK)µ = α(eK)(t1δx1 + · · ·+ tmδxm)

= t1α(eK)δx1 + · · ·+ tmα(eK)δxm .
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Since α(eK)δx1 , · · · , α(eK)δxm are non-negative probability measures by the

condition (3) of the definition of a signed action, α(eK)µ must be a non-

negative measure. Then for any x ∈ S, we have

supp(α(eK)δx) ⊂ supp(α(eK)µ) = supp(µ) = S.

Hence supp(µ) = X by irreducibility of the signed action α. ¤

Proposition 4.2. An irreducible signed action α of a finite signed hyper-

group K has the unique invariant probability measure on X.

Proof. For the normalized Haar measure eK on K and x ∈ X, put µ =

α(eK)δx. It is easy to check that µ is an α-invariant probability measure on

X.

Assume that µ1 and µ2 are α-invariant probability measures on X written

by

µ1 = t1δx1 + t2δx2 + · · ·+ tmδxm ,

µ2 = s1δx1 + s2δx2 + · · ·+ smδxm .

We note that t1, t2, · · · , tm and s1, s2, · · · , sm are all positive real numbers

by Lemma 4.1. Take the minimum value ti
si

among t1
s1

, t2
s2

, · · · , tm
sm

and put

µ = µ1 − ti
si

µ2. Then, µ is a non-negative measure on X and xi 6∈ supp(µ)

by the fact that

µ = s1

(
t1
s1

− ti
si

)
δx1 + · · ·+ si

(
ti
si

− ti
si

)
δxi

+ · · ·+ sm

(
tm
sm

− ti
si

)
δxm

= s1

(
t1
s1

− ti
si

)
δx1 + · · ·+ 0 · δxi

+ · · ·+ sm

(
tm
sm

− ti
si

)
δxm .

Hence supp(µ) 6= X. It is easy to see that µ is α-invariant. Then we have

supp(µ) = φ by Lemma 4.1. This implies that µ = 0. Therefore we obtain

µ1 = ti
si

µ2. Since µ1(X) = 1 and µ2(X) = 1, we obtain ti
si

= 1. Hence

µ1 = µ2. ¤

Remark. When the α-invariant probability measure µ on X is written by

µ = t1δx1 + t2δx2 + · · ·+ tmδxm ,

where tj > 0 (j = 1, 2, · · · ,m) and
∑m

j=1 tj = 1, the representing matrix of

α(eK) associated with the basis δx1 , δx2 , · · · , δxm is

α(eK) =




t1 t1 · · · t1

t2 t2 · · · t2
...

...
. . .

...

tm tm · · · tm



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by the fact that α(eK)δx1 = µ, α(eK)δx2 = µ, · · · , α(eK)δxm = µ. We note

that α(eK) is a rank one projection.

Definition. A signed action α of a finite signed hypergroup K on X is called

to be equivalent to a signed action β of K on Y if there exists a bijection ψ

from X to Y such that

β(cj) = ψ∗ ◦ α(cj) ◦ ψ−1
∗

for all cj ∈ K where ψ∗ is a linear isomorphism from M b(X) to M b(Y ) given

by ψ∗(δx) = δψ(x) for x ∈ X.

In this Chapter we report to succeed to determine all irreducible signed

actions of signed hypergroups Zq(2) (q > 0) of order two and all two dimen-

sional irreducible signed actions of hypergroups of order three.

4.2. Irreducible signed actions of signed hypergroup of order two.

Let K = {c0, c1} be a signed hypergroup of order two with unit c0 where the

structure is characterized by a parameter q (q > 0) given by

εc1 ∗ εc1 = qεc0 + (1− q)εc1 .

We denote this hypergroup K by Zq(2). The total weight w(K) of K is

w(K) = 1+q
q

and the normalized Haar measure eK of K is given by

eK =
q

1 + q
εc0 +

1

1 + q
εc1 .

Let α be an irreducible signed action of K on X = {x1, x2, · · · , xm} and µ

the unique α-invariant probability measure on X which is written by

µ = t1δx1 + t2δx2 + · · ·+ tmδxm

where 0 < tj < 1 (j = 1, 2, · · · ,m) and t1 + t2 + · · · + tm = 1. For t =

(t1, t2, · · · , tm), α is characterized by a parameter t. We denote α by αt.

Then we see that

αt(c1) = (1 + q)αt(eK)− qαt(c0)

and the representation matrices of αt(eK) and αt(c0) associated with the

basis δx1 , δx2 , · · · , δxm in M b(X) are

αt(eK) =




t1 t1 · · · t1

t2 t2 · · · t2
...

...
. . .

...

tm tm · · · tm




and αt(c0) =




1 0 · · · 0

0 1
...

...
. . . 0

0 0 · · · 1




.
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Then we obtain

αt(c1) =




(1 + q)t1 − q (1 + q)t1 · · · (1 + q)t1
(1 + q)t2 (1 + q)t2 − q · · · (1 + q)t2

...
...

. . .
...

(1 + q)tm (1 + q)tm · · · (1 + q)tm − q



· · · (∗)

with a parameter t = (t1, t2, · · · , tm), where 0 < tj < 1 (j = 1, 2, · · · ,m) and

t1+t2+ · · ·+tm = 1. Let Sm be the symmetric group of order m. For σ ∈ Sm

and t = (t1, t2, · · · , tm), we denote (tσ(1), tσ(2), · · · , tσ(m)) by σ(t). Then we

have the following proposition on irreducible signed actions of Zq(2).

Proposition 4.3. (1) When m ≥ 2, 0 < tj < 1 (j = 1, 2, · · · ,m) and

t1 + t2 + · · · + tm = 1, the action αt given by (∗) with the parameter

t = (t1, t2, · · · , tm) is an irreducible action of Zq(2).

(2) All irreducible signed actions of Zq(2) are obtained in this way.

(3) For two irreducible signed actions αt and αt′ of Zq(2), αt is equivalent

to αt′ if and only if there exists σ ∈ Sm such that t = σ(t′).

Remark. The signed action αt of a hypergroup Zq(2) (0 < q ≤ 1) is an

action if and only if m ≤ 1+q
q

and q
1+q

≤ tj ≤ 1
1+q

when m ≥ 2.

4.3. Two-dimensional irreducible signed action of a signed hyper-

group of order three. Let K = {c0, c1, c2} be a signed hypergroup of order

three with unit c0 and K̂ = {χ0, χ1, χ2} where χ0(c) = 1 for c ∈ K. Let

α be an irreducible two dimensional signed action of K on X = {x1, x2}
and µ = tδx1 + (1 − t)δx2 (0 < t < 1) be the unique α-invariant probability

measure on X.

Lemma 4.4. Under the above situation there exists a measure ν on X such

that α(c)ν = χ(c)ν for some χ ∈ K̂ where χ 6= χ0. Moreover, α(eK)ν = 0

for the normalized Haar measure eK of K.

Proof. We may assume that there exists an eigen vector ν ∈ M b(X) with an

eigen value λ(c1) 6= 1 such that α(c1)ν = λ(c1)ν for c1 ∈ K by irreducibility

of the action α of K on X. Then we see that

α(eK)ν = α(eK)α(c1)ν = λ(c1)α(eK)ν.

The fact λ(c1) 6= 1 implies that α(eK)ν = 0. Since α(eK) is a linear combina-

tion of α(c0), α(c1) and α(c2), we obtain α(c2)ν = λ(c2)ν for some λ(c2) ∈ C.

By the fact that α(cicj) = α(ci)α(cj), we see that λ(cicj) = λ(ci)λ(cj).

Hence λ(c) = χ(c) for some χ ∈ K̂ such that χ 6= χ0. ¤
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The representing matrices of α(eK), α(c0), α(c1) and α(c2) associated with

eigen vectors µ and ν on M b(X) are

α(eK) =

(
1 0

0 0

)
, α(c0) =

(
1 0

0 1

)
,

α(c1) =

(
1 0

0 λ1

)
, α(c2) =

(
1 0

0 λ2

)
,

where λ1 = χ(c1) and λ2 = χ(c2).

The representing matrix E(t) of α(eK) associated with δx1 and δx2 is

E(t) =

(
t t

1− t 1− t

)
.

Take a matrix T (t) which satisfies that

E(t) = T (t)

(
1 0

0 0

)
T (t)−1.

For example, we take T (t) =

(
t −1

1− t 1

)
and put

A(t, λ) := T (t)

(
1 0

0 λ

)
T (t)−1.

Then we have

A(t, λ) =

(
λ + (1− λ)t (1− λ)t

(1− λ)− (1− λ)t 1− (1− λ)t

)
.

We note that A(t, λ) does not depend on the choice of T (t). Hence we

obtain irreducible signed actions αt
1 and αr

2 of K on X = {x1, x2} whose

representing matrices associated with δx1 and δx2 are respectively

(1) αt
1(c1) = A(t, χ1(c1)) and αt

1(c2) = A(t, χ1(c2)),

(2) αr
2(c1) = A(r, χ2(c1)) and αr

2(c2) = A(r, χ2(c2)).

Proposition 4.5. (1) The action α given by αt(ci) = A(t, χ(ci)) with the

parameter 0 < t < 1 is a two-dimensional irreducible signed actions

of K on X.

(2) All two dimensional irreducible signed actions of K are obtained in

this way.

(3) For the character χ1, χ2 ∈ K̂, the actions αt and βr given by αt(ci) =

A(t, χ1(ci)) and βt(ci) = A(t, χ2(ci)) respectively are never mutually

equivalent.

(4) The action αt (resp. βr) is equivalent to αt′ (resp. βr′) if and only

if t′ = t or t′ = 1− t (resp. r′ = r or r′ = 1− r).
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Example 4.6. The case that K is the Golden hypergroup G = {c0, c1, c2}
with unit c0. The structure equations of G are given by

εc1 ∗ εc1 = 1
2
εc0 + 1

2
εc2 , εc2 ∗ εc2 = 1

2
εc0 + 1

2
εc1 , εc1 ∗ εc2 = 1

2
εc1 + 1

2
εc2 .

Let Ĝ = {χ0, χ1, χ2} be the dual of G such that χ1(c1) = a = −1+
√

5
4

,

χ1(c2) = b = −1−√5
4

, χ2(c1) = b and χ2(c2) = a. Then we have

αt(c1) =

(
a + (1− a)t (1− a)t

(1− a)− (1− a)t 1− (1− a)t

)
,

αt(c2) =

(
b + (1− b)t (1− b)t

(1− b)− (1− b)t 1− (1− b)t

)

and

βr(c1) =

(
b + (1− b)r (1− b)r

(1− b)− (1− b)r 1− (1− b)r

)
,

βr(c2) =

(
a + (1− a)r (1− a)r

(1− a)− (1− a)r 1− (1− a)r

)

where 0 < t < 1 and 0 < r < 1.

Remark. The signed action αt (resp. βr) of G is an action if and only if
−b
1−b

≤ t ≤ 1
1−b

(resp. −b
1−b

≤ r ≤ 1
1−b

).

Example 4.7. The case that K is the conjugacy class hypergroup K(S3) =

{c0, c1, c2} of S3 with unit c0. The structure equations of K(S3) are

εc1 ∗ εc1 = 1
2
εc0 + 1

2
εc1 , εc2 ∗ εc2 = 1

3
εc0 + 2

3
εc1 , εc1 ∗ εc2 = εc2 .

Let K̂(S3) = {χ0, χ1, χ2} be the dual of K(S3) such that χ1(c1) = 1, χ1(c2) =

−1, χ2(c1) = −1
2

and χ2(c2) = 0. Then we have

αt(c1) =

(
1 0

0 1

)
, αt(c2) =

(
−1 + 2t 2t

2− 2t 1− 2t

)

and

βr(c1) =

(
−1

2
+ 3

2
r 3

2
r

3
2
− 3

2
r 1− 3

2
r

)
, βr(c2) =

(
r r

1− r 1− r

)

where 0 < t < 1 and 0 < r < 1.

Remark. The signed action αt of K(S3) is an action if and only if t = 1
2
.

The signed action βr of K(S3) is an action if and only if 1
3
≤ r ≤ 2

3
.

Example 4.8. The case that K is the character hypergroup K(Ŝ3) =

{c0, c1, c2} of S3 with unit c0. The structure equations of K(Ŝ3) are

εc1 ∗ εc1 = εc0 , εc2 ∗ εc2 = 1
4
εc0 + 1

4
εc1 + 1

2
εc2 , εc1 ∗ εc2 = εc2 .
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Let K̂(Ŝ3) = {χ0, χ1, χ2} be the dual of K(Ŝ3) such that χ1(c1) = 1, χ1(c2) =

−1
2
, χ2(c1) = −1 and χ2(c2) = 0. Then we have

αt(c1) =

(
1 0

0 1

)
, αt(c2) =

(
−1

2
+ 3

2
t 3

2
t

3
2
− 3

2
t 1− 3

2
t

)

and

βr(c1) =

(
−1 + 2r 2r

2− 2r 1− 2r

)
, βr(c2) =

(
r r

1− r 1− r

)

where 0 < t < 1 and 0 < r < 1.

Remark. The signed action αt of K(Ŝ3) is an action if and only if 1
3
≤ t ≤ 2

3
.

The signed action βr of K(Ŝ3) is an action if and only if r = 1
2
.

4.4. Applications to the extension problem. Our strategy to solve the

extension problem is to apply irreducible actions which are already deter-

mined. Let H and L be finite commutative hypergroups and K be an ex-

tension of L by H, i.e. the sequence

1 −→ H −→ K
ϕ−→ L −→ 1

is exact. We note that K is a finite commutative hypergroup. We denote

L = {`0, `1, · · · , `p} and the unit by `0. Put S(`j) = ϕ−1(`j) for `j ∈ L.

Then K is decomposed as K =
⋃p

j=0 S(`j) where S(`0) = H.

Next proposition plays an essential role to our strategy.

Proposition 4.9. Let ρK be the regular action of K and ρK
H be the action

of H which is the restriction of ρK to H. Then ρK
H is decomposed as actions

of H by

(ρK
H , K) =

p∑
j=0

⊕ (ρj, S(`j))

where ρj is an irreducible action of H on S(`j) and ρ0 is the regular action

ρH of H.

Remark. Let νj be the invariant probability measure on S(`j) = {s1, s2, · · · ,

sm} under the action ρj of H, which is written by

νj = t1εs1 + t2εs2 + · · ·+ tmεsm

where ti > 0 (i = 1, 2, · · · ,m) and
∑m

i=1 ti = 1. Then we note that the

weight w(si) is given by w(si) = tiw(S(`j)) = tiw(`j)w(H), refer to [IK2].

Our strategy.
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(1) The irreducible action ρj gives the convolution εh ∗ εs of h ∈ H and

s ∈ S(`j) by εh ∗ εs := ρj(h)εs.

(2) The invariant probability measure νj under ρj gives each weight w(s)

for s ∈ S(`j), so that the normalized Haar measure eK of K is deter-

mined.

(3) The other structure comes from the conditions of commutativity of

the regular action ρK of K.

Example 4.10. The case that H = Zq(2) = {h0, h1} (0 < q ≤ 1), L = Z2 =

{`0, `1}, K = H ∪ S(`1) = {h0, h1, s1, s2}.

(1) The case that K is hermitian, namely s−1 = s1 and s−2 = s2.

By Proposition 4.3 and Remark, all two dimensional irreducible

actions ρt of Zq(2) on S(`1) are given by

ρt(h1) =

(
(1 + q)t− q (1 + q)t

(1 + q)(1− t) (1 + q)(1− t)− q

)
,

where q
1+q

≤ t ≤ 1
1+q

and the invariant probability measure ν on

S(`1) under the action ρt is

ν = tεs1 + (1− t)εs2 .

Since w(S(`1)) = 1+q
q

, we have w(s1) = (1+q)t
q

and w(s2) = (1+q)(1−t)
q

.

We obtain the structure equations :

εh1 ∗ εs1 = ρt(h1)εs1 = ((1 + q)t− q)εs1 + (1 + q)(1− t)εs2 ,

εh1 ∗ εs2 = ρt(h1)εs2 = (1 + q)tεs1 + ((1 + q)(1− t)− q)εs2 ,

εs1 ∗ εs2 = εh1 ,

εs1 ∗ εs1 =
q

(1 + q)t
εh0 +

(
1− q

(1 + q)t

)
εh1 ,

εs2 ∗ εs2 =
q

(1 + q)(1− t)
εh0 +

(
1− q

(1 + q)(1− t)

)
εh1

where q
1+q

≤ t ≤ 1
1+q

.

(2) The case that K is not hermitian, namely s−1 = s2 and s−2 = s1. In

this case it is easy to see that w(s1) = w(s2). Hence we get t = 1
2
, so

the structure equations are

εh1 ∗ εs1 = ρ
1
2 (h1)εs1 =

1

2
(1− q)εs1 +

1

2
(1 + q)εs2 ,

εh1 ∗ εs2 = ρ
1
2 (h1)εs2 =

1

2
(1 + q)εs1 +

1

2
(1− q)εs2 ,

εs1 ∗ εs2 =
2q

1 + q
εh0 +

1− q

1 + q
εh1 , εs1 ∗ εs1 = εs2 ∗ εs2 = εh1 .
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Example 4.11. The case that H = Zq(2) = {h0, h1} (0 < q ≤ 1), L =

Zp(2) = {`0, `1} (0 < p ≤ 1), K = H ∪ S(`1) = {h0, h1, s1, s2}. By similar

arguments to Example 4.10, we have the following.

(1) The case that K is hermitian, namely s−1 = s1 and s−2 = s2.

We have the irreducible action αt of Zq(2) on S(`1) with q
1+q

≤ t ≤
1

1+q
, w(s0) = (1+q)t

pq
and w(s1) = (1+q)(1−t)

pq
. We put

εs1 ∗ εs1 =
pq

(1 + q)t
εh0 + (p− pq

(1 + q)t
)εh1

+(1− p)d0εs1 + (1− p)d1εs2 ,

εs2 ∗ εs2 =
pq

(1 + q)(1− t)
εh0 + (p− pq

(1 + q)(1− t)
)εh1

+(1− p)f0εs1 + (1− p)f1εs2 ,

εs1 ∗ εs2 = pεh1 + (1− p)g0εs1 + (1− p)g1εs2

where the parameters satisfy that di, fi, gi ≥ 0 (i = 0, 1), d0 + d1 =

1, f0 + f1 = 1 and g0 + g1 = 1. Then the regular action ρK(s1) and

ρK(s2) are given by

ρK(s1) =




0 0 pq
(1+q)t

0

0 0 p− pq
(1+q)t

p

1 (1 + q)t− q (1− p)d0 (1− p)g0

0 (1 + q)(1− t) (1− p)d1 (1− p)g1




,

ρK(s2) =




0 0 0 pq
(1+q)(1−t)

0 0 p p− pq
(1+q)(1−t)

0 (1 + q)t (1− p)g0 (1− p)f0

1 (1 + q)(1− t)− q (1− p)g1 (1− p)f1




.

One can determine the structure by applying the commutativity con-

dition ρK(s1)ρ
K(s2) = ρK(s2)ρ

K(s1) as follows.

εs1 ∗ εs1 =
pq

(1 + q)t
εh0 +

(
p− pq

(1 + q)t

)
εh1

+(1− p)

(
1− (1− t)r

t

)
εs1 +

(1− p)(1− t)r

t
εs2 ,

εs2 ∗ εs2 =
pq

(1 + q)(1− t)
εh0 +

(
p− pq

(1 + q)(1− t)

)
εh1

+(1− p)
t(1− r)

1− t
εs1 + (1− p)

(
1− t(1− r)

1− t

)
εs2 ,

εs1 ∗ εs2 = pεh1 + (1− p)(rεs1 + (1− r)εs2)



68

where q
1+q

≤ t ≤ 1
2

and 0 ≤ r ≤ t
1−t

, or 1
2
≤ t ≤ 1

1+q
and 2t−1

t
≤ r ≤ 1.

We denote K by K = K(t, u).

(2) The case that K is not hermitian, namely s−1 = s2 and s−2 = s1. In

this case it is easy to see that w(s1) = w(s2) and t = 1
2
. Therefore

we obtain the structure equations :

εs1 ∗ εs2 =
2pq

1 + q
εh0 +

(
p− 2pq

1 + q

)
εh1 +

1− p

2
εs1 +

1− p

2
εs2 ,

εs1 ∗ εs1 = εs2 ∗ εs2 = pεh1 +
1− p

2
εs1 +

1− p

2
εs2 .

Example 4.12. The case that H = G = {h0, h1, h2}, L = Z2 = {`0, `1}, K =

H ∪ S(`1) = {h0, h1, h2, s1, s2}.
(1) By Example 4.7, a two-dimensional irreducible signed actions αt of

H are given by

αt(h1) =

(
a + (1− a)t (1− a)t

(1− a)(1− t) 1− (1− a)t

)
,

αt(h2) =

(
b + (1− b)t (1− b)t

(1− b)(1− t) 1− (1− b)t

)

where a = −1+
√

5
4

, b = −1−√5
4

and −b
1−b

≤ t ≤ 1
1−b

.

(a) The case that K is hermitian, namely s−1 = s1 and s−2 = s2. We

obtain the structure equations :

εs1 ∗ εs2 =
2

5
(1− a)εh1 +

2

5
(1− b)εh2 ,

εs1 ∗ εs1 =
1

5t
εh0 +

2

5

(
(1− a) +

1

t
a

)
εh1

+
2

5

(
(1− b) +

1

t
b

)
εh2 ,

εs2 ∗ εs2 =
1

5(1− t)
εh0 +

2

5

(
1 +

at

1− t

)
εh1

+
2

5

(
1 +

bt

1− t

)
εh2

where −b
1−b

≤ t ≤ 1
1−b

.

(b) The case that K is not hermitian, namely s−1 = s2 and s−2 = s1.

In this case it is easy to see that the structure equations are

εs1 ∗ εs2 =
2

5
εh0 +

2

5
(1 + a)εh1 +

2

5
(1 + b)εh2 ,

εs1 ∗ εs1 = εs2 ∗ εs2 =
2

5
(1− a)εh1 +

2

5
(1− b)εh2 .



69

(2) By Example 4.7, the other two-dimensional irreducible signed actions

βr of H are given by

βr(h1) =

(
b + (1− b)r (1− b)r

(1− b)(1− r) 1− (1− b)r

)
,

βr(h2) =

(
a + (1− a)r (1− a)r

(1− a)(1− r)r 1− (1− a)r

)

where a = −1+
√

5
4

, b = −1−√5
4

and −b
1−b

≤ r ≤ 1
1−b

.

(a) The case that K is hermitian, namely s−1 = s1 and s−2 = s2. We

obtain the structure equations :

εs1 ∗ εs2 =
2

5
(1− b)εh1 +

2

5
(1− a)εh2 ,

εs1 ∗ εs1 =
1

5r
εh0 +

2

5

(
(1− b) +

1

r
b

)
εh1

+
2

5

(
(1− a) +

1

r
a

)
εh2 ,

εs2 ∗ εs2 =
1

5(1− r)
εh0 +

2

5

(
1 +

br

1− r

)
εh1

+
2

5

(
1 +

ar

1− r

)
εh2

where −b
1−b

≤ r ≤ 1
1−b

.

(b) The case that K is not hermitian, namely s−1 = s2 and s−2 = s1.

In this case it is easy to see that the structure equations are

εs1 ∗ εs2 =
2

5
εh0 +

2

5
(1 + b)εh1 +

2

5
(1 + a)εh2 ,

εs1 ∗ εs1 = εs2 ∗ εs2 =
2

5
(1− b)εh1 +

2

5
(1− a)εh2 .

Example 4.13. The case that H = K(S3) = {h0, h1, h2}, L = Z2, K =

H ∪ S = {h0, h1, h2, s1, s2}.

(1) By Example 4.7, a two-dimensional irreducible signed actions α of H

are given by

α(h1) =

(
1 0

0 1

)
, α(h2) =

(
0 1

1 0

)
.
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(a) The case that K is hermitian, namely s−1 = s1 and s−2 = s2. We

obtain the structure equations :

εs1 ∗ εs2 = εh1 ,

εs1 ∗ εs1 =
1

3
εh0 +

2

3
εh1 , εs2 ∗ εs2 =

1

3
εh0 +

2

3
εh1 .

(b) The case that K is not hermitian, namely s−1 = s2 and s−2 = s1.

In this case it is easy to see that the structure equations are

εs1 ∗ εs2 =
1

3
εh0 +

2

3
εh1 , εs1 ∗ εs1 = εs2 ∗ εs2 = εh2 .

(2) By Example 4.7, the other two-dimensional irreducible signed actions

βr of H are given by

βr(h1) =

(
−1

2
+ 3

2
r 3

2
r

3
2
− 3

2
r 1− 3

2
r

)
, βr(h2) =

(
r r

1− r 1− r

)

where 1
3
≤ r ≤ 2

3
.

(a) The case that K is hermitian, namely s−1 = s1 and s−2 = s2. We

obtain the structure equations :

εs1 ∗ εs2 =
1

2
εh1 +

1

2
εh2 ,

εs1 ∗ εs1 =
1

6r
εh0 +

(
1

2
− 1

6r

)
εh1 +

1

2
εh2 ,

εs2 ∗ εs2 =
1

6(1− r)
εh0 +

(
1

2
− 1

6(1− r)

)
εh1 +

1

2
εh2

where 1
3
≤ r ≤ 2

3
.

(b) The case that K is not hermitian, namely s−1 = s2 and s−2 = s1.

In this case it is easy to see that the structure equations are

εs1 ∗ εs2 =
1

3
εh0 +

1

6
εh1 +

1

2
εh2 ,

εs1 ∗ εs1 = εs2 ∗ εs2 =
1

2
εh1 +

1

2
εh2 .

Example 4.14. The case that H = K(Ŝ3) = {h0, h1, h2}, L = Z2 =

{`0, `1}, K = H ∪ S = {h0, h1, h2, s1, s2}.
(1) By Example 4.8, a two-dimensional irreducible signed actions αt of

H are given by

αt(h1) =

(
1 0

0 1

)
, αt(h2) =

(
−1

2
+ 3

2
t 3

2
t

3
2
− 3

2
t 1− 3

2
t

)

where 1
3
≤ t ≤ 2

3
.



71

(a) The case that K is hermitian, namely s−1 = s1 and s−2 = s2. We

obtain the structure equations :

εs1 ∗ εs2 = εh2 ,

εs1 ∗ εs1 =
1

6t
εh0 +

1

6t
εh1 +

(
1− 1

3t

)
εh2 ,

εs2 ∗ εs2 =
1

6(1− t)
εh0 +

1

6(1− t)
εh1 +

(
1− 1

3(1− t)

)
εh2

where 1
3
≤ t ≤ 2

3
.

(b) The case that K is not hermitian, namely s−1 = s2 and s−2 = s1.

In this case it is easy to see that the structure equations are

εs1 ∗ εs2 =
1

3
εh0 +

1

3
εh1 +

1

3
εh2 , εs1 ∗ εs1 = εs2 ∗ εs2 = εh2 .

(2) By Example 4.8, the other two-dimensional irreducible signed actions

β of H are given by

β(h1) =

(
0 1

1 0

)
, β(h2) =

(
1
2

1
2

1
2

1
2

)
.

(a) The case that K is hermitian, namely s−1 = s1 and s−2 = s2. We

obtain the structure equations :

εs1 ∗ εs2 =
1

3
εh1 +

2

3
εh2 , εs1 ∗ εs1 =

1

3
εh0 +

2

3
εh2 ,

εs2 ∗ εs2 =
1

3
εh0 +

2

3
εh2 .

(b) The case that K is not hermitian, namely s−1 = s2 and s−2 = s1.

In this case it is easy to see that the structure equations are

εs1 ∗ εs2 =
1

3
εh0 +

2

3
εh2 , εs1 ∗ εs1 = εs2 ∗ εs2 =

1

3
εh1 +

2

3
εh2 .
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5. Conditional entropy associated with hypergroups

5.1. Entropy of hypergroup. Let X = {x1, x2, · · · , xm} be a finite set.

For a probability measure µ = a1δx1 + a2δx2 + · · ·+ amδxm on X, Shannon’s

entropy H(µ) of µ is

H(µ) =
m∑

j=1

η(aj),

where η(x) is the entropy function i.e.

η(x) =




−x log x 0 < x ≤ 1,

0 x = 0.

Let K be a finite signed hypergroup and X be a finite set. For an irre-

ducible signed action α of K on X, there exists the unique invariant proba-

bility measure µα on X under α by Proposition 4.2. We define the entropy

H(α) of the irreducible signed action α of K on X by

H(α) := H(µα).

Moreover, we denote the entropy H(ρK) by H(K) for the regular action ρK

of K.

Let M be a finite commutative ∗-algebra with unit 1 which is generated

by minimal projections e0, e1, · · · , en such that
∑n

i=0 ei = 1. For a state φ of

M , the entropy Hφ(M) of φ is given by

Hφ(M) =
n∑

i=0

η(φ(ei)).

Let K = (K,M b(K)) be a signed hypergroup. For the canonical state φ

of M b(K), we denote Hφ(M
b(K)) by Hφ(K).

Proposition 5.1. Let K = (K,M b(K)) be a finite commutative signed hy-

pergroup and K̂ be the dual signed hypergroup of K. Let φ and φ̂ be the

canonical state of M b(K) and M b(K̂) respectively.

Then, the following formulae hold.

(1) Hφ(K) = log w(K̂)−
∑

χ∈K̂

w(χ)

w(K̂)
log w(χ),

(2) H(K) = log w(K)−
∑
c∈K

w(c)

w(K)
log w(c),

(3) Hφ(K) = H(K̂), H(K) = Hφ̂(K̂).
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Proof. (1) Let K̂ = {χ0, · · · , χn} be the dual signed hypergroup of K. We

denote the minimal projection by ei corresponding to each χi ∈ K̂. Since

φ(ei) = w(χi)
w(K)

and w(K̂) = w(K), we have

Hφ(K) =
n∑

i=0

η(φ(ei)) =
n∑

i=0

η

(
w(χi)

w(K)

)

=
n∑

i=0

w(χi)

w(K)
log w(K)−

n∑
i=0

w(χi)

w(K)
log w(χi)

= log w(K̂)−
∑

χ∈K̂

w(χ)

w(K̂)
log w(χ).

(2) Since the regular action ρK of K is irreducible and the ρK-invariant

probability measure µρK
on K is the normalized Haar measure

eK =
∑
c∈K

w(c)

w(K)
δc

of K, we have

H(K) = H(ρK) = H(eK) =
∑
c∈K

η

(
w(c)

w(K)

)

= log w(K)−
∑
c∈K

w(c)

w(K)
log w(c)

in a similar way to the above.

(3) Applying the formula (1) to K̂, one can obtain

H(K̂) = log w(K̂)−
∑

χ∈K̂

w(χ)

w(K̂)
log w(χ).

Hence it is clear that Hφ(K) = H(K̂) by the formula (2).

Moreover, we have

Hφ̂(K̂) = H(
ˆ̂
K) = H(K)

by the above equality and the duality
ˆ̂
K ∼= K. ¤

Remark. It is easy to check that

H(K) ≤ log |K|.
The entropy H(K) attains the maximum value log |K| if and only if K is a

group.
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Example 5.2. Let K = {0, 1} be a signed hypergroup of order two with unit

0 where the structure is characterized by a parameter q (0 < q) as follows.

δ1 ◦ δ1 = qδ0 + (1− q)δ1.

We often denote this hypergroup K by Zq(2). Let α be an m-dimensional

irreducible signed action of Zq(2) on X = {x1, x2, · · · , xm}. Then the repre-

senting matrix of the action α associated with the basis δx1 , δx2 , · · · , δxm in

M b(X) is given by

Tα(δ0) = I, Tα(δ1) =




(1 + q)t1 − q (1 + q)t1 . . . (1 + q)t1
(1 + q)t2 (1 + q)t2 − q . . . (1 + q)t2

...
...

. . .
...

(1 + q)tm (1 + q)tm . . . (1 + q)tm − q




where 0 < ti < 1 and
∑m

i=1 ti = 1 by Proposition 4.3.

The above action α is determined by the parameters t := (t1, t2, · · · , tm)

so that we denote the action α by αt.

In the case that K = Zq(2) is a hypergroup, namely 0 < q ≤ 1, the

signed action αt of K is an action if and only if dim αt = m ≤ 1+q
q

and
q

1+q
≤ ti ≤ 1

1+q
(m ≥ 2).

Proposition 5.3. Let αt be an m-dimensional irreducible action of Zq(2)

on X where a parameter t = (t1, t2, · · · , tm) satisfies that q
1+q

≤ ti ≤ 1
1+q

for

all i and
∑m

i=1 ti = 1.

Then the following hold.

(1) H(αt) =
∑m

i=1 η(ti).

(2) H(αt) attains the maximum value log m if and only if αt is a ∗-action.

(3) For a two-dimensional irreducible action αt of Zq(2), H(αt) has the

minimum value if and only if αt is equivalent to the regular action of

Zq(2).　
(4) For two-dimensional irreducible actions αt and αt′ of Zq(2), αt is

equivalent to αt′ as actions if and only if H(αt) = H(αt′).

Proof. (1) Since the invariant probability measure µαt
under the action αt

of Zq(2) on X is

µαt

= t1δx1 + t2δx2 + · · ·+ tmδxm ,

we see that the entropy of αt is

H(αt) = H(µαt

) =
m∑

i=1

η(ti).

(2) It is known thatH(αt) ≤ log m. MoreoverH(αt) =
∑m

i=1 η(ti) = log m

if and only if t1 = t2 = · · · = tm = 1
m

. This condition is equivalent to
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Tαt(δ1)
∗ = Tαt(δ1), namely, αt is a ∗-action of Zq(2) in the sense of Sunder-

Wildberger [SW].

(3) The two dimensional irreducible action αt is parameterized by t =

(t, 1− t) such that q
1+q

≤ t ≤ 1
1+q

. Under the condition that q
1+q

≤ t ≤ 1
1+q

,

it is easy to see that H(αt) has the minimum value if and only if t = q
1+q

or

t = 1
1+q

. This condition implies that αt is equivalent to the regular action of

Zq(2).

(4) It is easy to see the statement (4) by the fact that αt ∼= αt′ if and only

if t = t′ or t = 1− t′, by Proposition 4.3. ¤

Remark. Let αt (0 < t < 1) be a two-dimensional irreducible signed action

of Zq(2) = {0, 1} and πt be the representation of Zq(2) associated with the

action αt. The representing matrix of πt(δ1) is given by

Tπt(δ1) =

(
(1 + q)t− q (1 + q)

√
t
√

1− t

(1 + q)
√

t
√

1− t (1 + q)(1− t)− q

)
.

Let ut be the unitary matrix such that

(ut)∗Tπt(δ1)u
t =

(
1 0

0 −q

)
.

Then ut is given by

ut =

( √
t −√1− t√

1− t
√

t

)
.

The entropy H(bt) of the unistochastic matrix bt defined by ut is

H(bt) = η(t) + η(1− t).

Let At be the maximal abelian ∗-subalgebra of M2(C) which is generated

by Tπt(δ0) and Tπt(δ1), and B be the diagonal algebra of M2(C). Here

we note that B = (ut)∗Atut. By the paper [C], M. Choda introduced the

conditional entropy h(At|B) and showed that h(At|B) = H(ut) under the

above situation. Then we have a remarkable fact :

H(αt) = H(ut) = h(At|B).

5.2. Conditional entropy associated with a subhypergroup. First,

we recall the classical conditional entropy. Let µ be a probability measure

of a finite set X = {x0, x1, · · · , xn}. For a mapping ψ from X onto Y =

{y0, y1, · · · , ym}, we have a decomposition {B0, B1, · · · , Bm} of X by Bj =

ψ−1(yj) and the conditional probability measure µj on Bj by

µj(x) =
µ(x)

µ(Bj)
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for x ∈ Bj. Then the conditional entropy of the decomposition of (X, µ)

given by ψ : X −→ Y is defined by

Hµ(ψ : X|Y ) =
m∑

j=0

µ(Bj)H(µj)

where

H(µj) =
∑
x∈Bj

η(µj(x)) =
∑
x∈Bj

η

(
µ(x)

µ(Bj)

)
.

Let M be a finite commutative ∗-algebra with unit 1 such that M consists

of linear hulls of the minimal projections e0, e1, · · · , en such that
∑n

i=0 ei = 1.

Let N be a ∗-subalgebra of M with the unit 1 of M . We denote the minimal

projections of N by f0, f1 · · · , fm such that
∑m

j=0 fj = 1. For each minimal

projection ei of M , there exists the unique minimal projection fj of N such

that ei ◦ fj = ei. Then, we define a mapping σ from {0, 1, · · · , n} onto

{0, 1, · · · ,m} by ei ◦ fσ(i) = ei. We note that fj =
∑

i∈σ−1(j) ei. Let φ be a

state of M . Then, the conditional entropy of the conditional expectation E

from M onto N such that φ ◦ E = φ is defined by

HE
φ (M |N) =

n∑
i=0

φ(η(E(ei))) =
m∑

j=0

φ(fj)Hφ(σ
−1(j))

where

Hφ(σ−1(j)) :=
∑

i∈σ−1(j)

η

(
φ(ei)

φ(fj)

)
.

Let H, K, L be finite commutative hypergroups. Let H be a subhyper-

group of K and ϕ be a hypergroup homomorphism from K onto L such that

Kerϕ = H, namely,

1 −→ H −→ K
ϕ−→ L −→ 1

is exact. Then the hypergroup K is called an extension of L by H. Let eK

be the normalized Haar measure of K.

Under the above situation, we define the conditional entropy H(K|L) of

the decomposition of (K, eK) given by ϕ : K −→ L by

H(K|L) := HeK
(ϕ : K|L).

We denote the conditional entropy HE
φ (K|H) of the conditional expectation

E from M b(K) onto the ∗-subalgebra M b(H) such that φ ◦ E = φ for the

canonical state φ of M b(K) by

HE
φ (K|H) := HE

φ (M b(K)|M b(H)).
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Remark. In the case that K, H,L are finite commutative signed hyper-

groups, the above two definitions of conditional entropy are also well-defined.

Let Ĥ, K̂, L̂ be the dual signed hypergroups of H, K, L respectively. Then,

we have the dual exact sequence:

1 −→ L̂ −→ K̂
ϕ̂−→ Ĥ −→ 1.

Let Ê be the conditional expectation from M b(K̂) onto M b(L̂) such that

φ̂ ◦ Ê = φ̂ for the canonical state φ̂ of M b(K̂).

Theorem 5.4. Let H be a subhypergroup of a finite commutative hypergroup

K and L be the quotient hypergroup K/H of K by H. Under the above

situation, the following formulae hold.

(1) HE
φ (K|H) =

∑

τ∈Ĥ

∑

χ∈ϕ̂−1(τ)

w(χ)

w(K̂)
log

w(τ)w(L̂)

w(χ)
= Hφ(K)−Hφ(H).

(2) H(K|L) =
∑

`∈L

∑

c∈ϕ−1(`)

w(c)

w(K)
log

w(`)w(H)

w(c)
= H(K)−H(L).

(3) HE
φ (K|H) = H(K̂|Ĥ) and H(K|L) = HÊ

φ̂
(K̂|L̂).

Proof. (1) Let K̂ = {χ0, · · · , χn} and Ĥ = {τ0, · · · , τm}. Then we have

minimal projections {ei}n
i=0 in M b(K) and {fj}m

j=0 in M b(H) which satisfy

χp(ei) = δp,i, τq(fj) = δq,j

for χp ∈ K̂ and τq ∈ Ĥ respectively. We note that φ(ei) = w(χi)

w(K̂)
and

φ(fj) =
w(τj)

w(Ĥ)
. Let σ be the mapping from {0, 1, · · · , n} onto {0, 1, · · · ,m}

given by ei ◦ fσ(i) = ei. Hence,

HE
φ (K|H) =

m∑
j=0

φ(fj)
∑

i∈σ−1(j)

η

(
φ(ei)

φ(fj)

)
=

m∑
j=0

∑

i∈σ−1(j)

φ(ei) log
φ(fj)

φ(ei)

=
m∑

j=0

∑

i∈σ−1(j)

w(χi)

w(K̂)
log

(
w(τj)

w(Ĥ)
· w(K̂)

w(χi)

)
.

It is easy to see that ei ◦ fj = ei if and only if ϕ̂(χi) = τj. This means that

i ∈ σ−1(j) if and only if χi ∈ ϕ̂−1(τj). By the fact that w(K̂) = w(Ĥ)w(L̂)

(see [IK2]), we get the desired conclusion.

(2) For each ` ∈ L, the conditional probability measure µ` of eK on ϕ−1(`)

is given by

µ` =
∑

c∈ϕ−1(`)

w(c)

w(ϕ−1(`))
δc.
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Then we have

H(K|L) =
∑

`∈L

eK(ϕ−1(`))H(µ`) =
∑

`∈L

∑

c∈ϕ−1(`)

w(ϕ−1(`))

w(K)
η

(
w(c)

w(ϕ−1(`))

)

=
∑

`∈L

∑

c∈ϕ−1(`)

w(c)

w(K)
log

w(ϕ−1(`))

w(c)
.

By the fact that w(ϕ−1(`)) = w(`)w(H) (see [IK2]), we get the desired

formula.

(3) Applying the formula (1) to the exact sequence: 1 −→ L̂ −→ K̂
ϕ̂−→

Ĥ −→ 1, one can obtain

H(K̂|Ĥ) =
∑

τ∈Ĥ

∑

χ∈ϕ̂−1(τ)

w(χ)

w(K̂)
log

w(τ)w(L̂)

w(χ)
.

Hence it is clear that HE
φ (K|H) = H(K̂|Ĥ) by the formula (2).

Moreover, we have

HÊ
φ̂
(K̂|L̂) = H(

ˆ̂
K| ˆ̂L) = H(K|L)

by the above formula and the duality. ¤

Remark. (1) In the category of finite commutative signed hypergroups, the

above statements are also valid.

(2) For the regular action ρK of a finite hypergroup K, let ρK
H be the

action of K which is the restriction of ρK to H. Then ρK
H is decomposed as

(ρK
H , K) =

∑

`∈L

⊕(ρ`, ϕ
−1(`))

where ρ` is an irreducible action of H on ϕ−1(`) for each ` ∈ L and ρ`0 =

ρH because ϕ−1(`0) = H for the unit `0 of L. Then, we know that the

invariant probability measure under the action ρ` on ϕ−1(`) is the conditional

probability measure of eK on ϕ−1(`). Therefore, the conditional entropy

H(K|L) of the decomposition can be rewritten as

H(K|L) =
∑

`∈L

w(`)

w(L)
H(ρ`).

An application and an example for the extension problem.

We consider the exact sequence

1 −→ H −→ K
ϕ−→ L −→ 1

in the case of H = Zq(2)(0 < q ≤ 1) and L = Zp(2)(0 < p ≤ 1) where

the order of an extension hypergroup K is four. In Chapter 4, an extension

K = K(t, r) is determined by two-dimensional irreducible actions ρt and ρr
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of Zq(2) and Zp(2) which are parameterized by q
1+q

≤ t ≤ 1
1+q

and p
1+p

≤ r ≤
1

1+p
respectively. Let φ and φ′ be the canonical states of M b(K) and M b(L)

respectively. By the formula in Theorem 5.4, we have

Hφ(H) = H(H) = log(1 + q) +
1

1 + q
η(q),

Hφ′(L) = H(L) = log(1 + p) +
1

1 + p
η(p),

Hφ(K) = HE
φ (K|H)+H(H) =

q

1 + q
Hφ′(L)+

1

1 + q
(η(r)+η(1−r))+Hφ(H),

H(K) = H(K|L) +H(L) =
p

1 + p
H(H) +

1

1 + p
(η(t) + η(1− t)) +H(L).

Proposition 5.5. Under the above situation, For two extensions K1 =

K(t1, r1) and K2 = K(t2, r2) of Zp(2) by Zq(2), K1 is equivalent to K2 if

and only if Hφ(K1) = Hφ(K2) and H(K1) = H(K2) hold.

Proof. By the paper [IK1], it is known that K1 = K(t1, r1) is equivalent

to K2 = K(t2, r2) if and only if t2 = t1 or t2 = 1 − t1, and r2 = r1 or

r2 = 1 − r1. The latter condition is equivalent to H(K1) = H(K2) and

Hφ(K1) = Hφ(K2). ¤

Remark. Two extensions K(t) and K(t′) of Z2 by Zq(2) are equivalent as

extensions if and only if H(K(t)) = H(K(t′)) holds.

5.3. Conditional entropy associated with a generalized orbital hy-

pergroup. We modify the definition of a generalized orbital hypergroup in

[FK].

Definition. Let K = (K,M b(K)) be a finite hypergroup and φ be the

canonical state of M b(K). Let N be a ∗-subalgebra with the unit of M b(K).

Let E be the conditional expectation from M b(K) onto N such that φ◦E =

φ. For a finite hypergroup K1 = (K1,M
b(K1)), if M b(K1) is isomorphic

to N by a ∗-isomorphism Ψ from M b(K1) onto N and for c ∈ K there

exists b ∈ K1 such that E(c) = Ψ(b), then we say K1 a generalized orbital

hypergroup of K by E and denote K1 by KE.

We note that the above definition of a generalized orbital hypergroup is

well-defined for a finite signed hypergroup.

In this Chapter, we identify N with M b(KE) hereafter.

Lemma 5.6. Let ψ be a mapping from K onto KE which is the restriction

to K of the conditional expectation E. Then we have,
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(1) w(ψ−1(b)) = w(b) for b ∈ KE,

(2) w(K) = w(KE).

Proof. Take the Haar measure µK =
∑

c∈K w(c)δc of K and µKE =
∑

b∈KE w(b)δb

of KE respectively. For any ν ∈ M b(KE), ν ◦ E(µK) = E(ν ◦ µK) =

E(µK) holds. Hence one can write E(µK) = aµKE for some a ≥ 0. Since

φ(E(µK)) = φ(µK) = 1 and φ(µKE) = 1, we get a = 1, namely E(µK) =

µKE . We obtain

E(µK) =
∑
c∈K

w(c)E(δc) =
∑

b∈KE

∑

c∈ψ−1(b)

w(c)δb,

so that we arrive at the equation (1). Moreover, it is easy to see the equality

(2) by (1). ¤

In a similar way to the Section 5.2, two kinds of entropy associated with

a generalized orbital hypergroup KE of K are defined by

H(K|KE) := HeK
(ψ : K|KE) and HE

φ (K|KE) := HE
φ (M b(K)|M b(KE)).

Let K̂ and K̂E be the dual signed hypergroups of K and KE respectively.

Then we have a conditional expectation Ê from M b(K̂) onto M b(K̂E) given

by Ê(χ) = χ|Mb(KE) for a character χ of M b(K) and a mapping ψ̂ from K̂

onto K̂E by the restriction of Ê to K̂. We note that φ̂ ◦ Ê = φ̂ for the

canonical state φ̂ of M b(K̂).

Theorem 5.7. Let KE be a generalized orbital hypergroup of a finite com-

mutative hypergroup K by the conditional expectation E such that φ ◦E = φ

for the canonical state φ of M b(K). Under the above situation, the following

formulae hold.

(1) HE
φ (K|KE) =

∑

τ∈dKE

∑

χ∈ψ̂−1(τ)

w(χ)

w(K̂)
log

w(τ)

w(χ)
= Hφ(K)−Hφ(K

E).

(2) H(K|KE) =
∑

b∈KE

∑

c∈ψ−1(b)

w(c)

w(K)
log

w(b)

w(c)
= H(K)−H(KE).

(3) HE
φ (K|KE) = H(K̂|K̂E) and H(K|KE) = HÊ

φ̂
(K̂|K̂E).

Proof. (1) Let K̂ and K̂E be K̂ = {χ0, · · · , χn} and K̂E = {τ0, · · · , τm} re-

spectively. Then we have minimal projections {ei}n
i=0 in M b(K) and {fj}m

j=0

in M b(KE) which satisfy

χp(ei) = δpi, τq(fj) = δqj
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for χp ∈ K̂ and τq ∈ K̂E respectively. We note that φ(ei) = w(χi)

w(K̂)
and

φ(fj) =
w(τj)

w(dKE)
. Let σ be the mapping from {0, 1, · · · , n} onto {0, 1, · · · ,m}

given by ei ◦ fσ(i) = ei. Hence,

HE
φ (K|KE) =

m∑
j=0

φ(fj)
∑

i∈σ−1(j)

η

(
φ(ei)

φ(fj)

)
=

m∑
j=0

∑

i∈σ−1(j)

φ(ei) log
φ(fj)

φ(ei)

=
m∑

j=0

∑

i∈σ−1(j)

w(χi)

w(K̂)
log

(
w(τj)

w(K̂E)
· w(K̂)

w(χi)

)
.

It is easy to see that ei ◦ fj = ei if and only if ψ̂(χi) = τj. This means

that i ∈ σ−1(j) if and only if χi ∈ ψ̂−1(τj). Since w(K) = w(KE) by (2) of

Lemma 5.6, we get the desired conclusion.

(2) For each b ∈ KE, the conditional probability measure µb of eK on

ψ−1(b) is given by

µb =
∑

c∈ψ−1(b)

w(c)

w(ψ−1(b))
δc.

Then we have

H(K|KE) =
∑

b∈KE

eK(ψ−1(b))H(µb) =
∑

b∈KE

∑

c∈ψ−1(b)

w(ψ−1(b))

w(K)
η

(
w(c)

w(ψ−1(b))

)

=
∑

b∈KE

∑

c∈ψ−1(b)

w(c)

w(K)
log

w(ψ−1(b))

w(c)
.

Since w(ψ−1(b)) = w(b) by (1) of Lemma 5.6, we get the desired formula.

(3) We can show that K̂E = K̂Ê holds. Applying the formula (1) to

ψ̂ : K̂ → K̂Ê, one can obtain

H(K̂|K̂E) = H(K̂|K̂Ê) =
∑

τ∈K̂Ê

∑

χ∈ψ̂−1(τ)

w(χ)

w(K̂)
log

w(τ)

w(χ)
.

Hence it is clear that HE
φ (K|KE) = H(K̂|K̂E) by the formula (2).

Moreover, we have

HÊ
φ̂
(K̂|K̂E) = HÊ

φ̂
(K̂|K̂Ê) = H(

ˆ̂
K|̂̂KÊ) = H(

ˆ̂
K|̂̂KE) = H(K|KE)

by the above equality and the duality
ˆ̂
K ∼= K and

̂̂
KE ∼= KE. ¤

Remark. Let Kα = {b0, b1, · · · , bm} be the orbital hypergroup by an action

α of a finite group G on a finite commutative hypergroup K. Let α̂ be the ac-

tion of G on the dual signed hypergroup K̂ defined by α̂g(χ)(c) := χ(αg−1(c))

for g ∈ G,χ ∈ K̂ and c ∈ K. We denote by Oj α-orbit corresponding to

bj ∈ Kα. Let ψ be a mapping from K onto Kα such that ψ−1(bj) = Oj
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and E be the conditional expectation from M b(K) onto M b(Kα) such that

E|K = ψ and φ ◦ E = φ for the canonical state φ of M b(K). We note that

M b(Kα) is equal to the fixed point algebra M b(K)α of M b(K) by α. Let O′
j

be the α̂−orbit in K̂ corresponding to τj ∈ K̂α. We denote |Oj| and |O′
j| by

dj and d′j respectively.

Then we remark the following.

(1) HE
φ (K|Kα) =

m∑
j=0

w(χ(j))

w(K)
d′j log d′j, where χ(j) ∈ O′

j.

(2) H(K|Kα) =
m∑

j=0

w(c(j))

w(K)
dj log dj, where c(j) ∈ Oj.
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