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1. INTRODUCTION

The notion of a hypergroup is one of generalizations of the concept of the
measure algebra on a locally compact group. The axiomatic setting of a
hypergroup was set up by C. Dunkl [D], R. Jewett [J] and R. Spector [S]
around 1975. A hypergroup is suitable for describing a random walk on
symmetric graphs. Some models of a hypergroup are association schemes, a
hypergroup coming from double cosets of a group by a compact subgroup, the
(conjugacy) class hypergroup coming from conjugacy classes of a compact
group, and the character hypergroup coming from irreducible representations
of a compact group.

One of the important problems for a hypergroup is to determine the struc-
tures of hypergroups. N. Wildberger analyzed finite hypergroups in 1995
([W1]) and determined the structures of hypergroups of order three in 2002
([W2]). However the structures of hypergroups of low order, for examples
four and five, has not been determined.

It is important to solve an extension problem in order to determine the
structures of hypergroups. Here we introduce an extension problem in the
category of hypergroups. Let H and L be locally compact hypergroups. A
locally compact hypergroup K is called an extension hypergroup of L by H
if the sequence:

1l —H-“ K211

is exact. An extension problem is to determine all structures of extension

hypergroups K of L by H when L and H are given.

In the present thesis, the author reports to solve some extension problems
and to discover the structures of hypergroups of low order.

We investigate certain extension problems.

First, in the category of finite commutative hypergroups, we considered
the extension problem of the case that H is a finite abelian group and L
is the Golden hypergroup, and we have succeeded in solving it. Moreover,
we characterize splitting extension hypergroups. When N. Wildberger deter-
mined all structures of hypergroups of order three, he pointed out that the
Golden hypergroup was in an interesting position among strong hypergroups
of order three. This is a motivation that we consider an extension problem
of the Golden hypergroup.

Secondly, in the category of locally compact commutative hypergroups,
we considered the extension problem of the case that H is a locally compact
abelian group and L is a hypergroup of order two, and we solved it. As a



2

result, when we set a locally compact abelian group H with the one dimen-
sional torus T, it turns out that the extension hypergroups agree with the
hypergroups on two tori T UT determined by M. Voit [V].

Thirdly, in the category of locally compact commutative hypergroups, we
solved the extension problem of the case that H is a locally compact abelian
group and L is the Golden hypergroup. As a result, when we set a locally
compact abelian group H with the one dimensional torus T, we determine a
part of the structures of hypergroups on three tori TU T U T. This result is
a generalization of the result by M. Voit [V].

As a next step, we considered the duality of extension problems. For a
finite commutative signed hypergroup K, we denote the set of all characters
of K by K. Then, K becomes a signed commutative hypergroup with the
product as functions on K. For a finite commutative hypergroup K, K is
not necessarily to be a hypergroup. In the category of finite commutative
signed hypergroups, the duality of a hypergroup holds, i.e. K =~ K. The
duality of an extension means that the sequence:

1 — L R K N H—1
is exact for the exact sequence:
l1—H- S5 K-S L —1.

This duality always holds in the category of finite commutative signed hy-
pergroups. Therefore we need to consider extension problems in the category
of a signed hypergroups.

Through our research, we noticed that a signed action of a hypergroup
played an essential role to determine extension hypergroups. Hence we in-
troduced a signed action of a signed hypergroup on a finite set referring to
the definition of actions of a hypergroup by Sunder and Wildberger [SW].

We determined all irreducible signed action of a hypergroup of order two.
Applying these actions, one knows that the structures of extensions of a
hypergroup of order two by a hypergroup of order two can be obtained easily
([KSTY]). This is our developed method for solving extension problems for
hypergroups.

Moreover we introduce the notion of entropy of an irreducible signed action
of a signed hypergroup. We show that this entropy is the complete invariant
for two dimensional irreducible signed actions of a signed hypergroup of order
two.

Let K be a commutative signed hypergroup and H a signed subhypergroup
of K. We give the conditional entropy H, (K |H) associated with a canonical
state ¢ of the measure algebra M®(K) of K. Moreover for the quotient
hypergroup L of K by H, we introduce the conditional entropy H(K|L)
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associated with the normalized Haar measure of K. For these entropy, we

show the dual relation:
Hy(K|H) = H(K|H), H(K|L)=H,(K|L)

where ¢ be the canonical state of the measure algebra M?(K).

Applying these entropy to extension problems, we have determined the
equivalence classes of extension hypergroups of a hypergroup of order two
by a hypergroup of order two. This is a new approach for considering the
extension problems for hypergroups.

Moreover for a generalized orbital hypergroup K of a finie commutative
hypergroup K, we also introduce two kinds of conditional entropy H(K|K)
and H,(K|KF), and show the dual relation:

Hy(K|K®) = H(K|KE), H(K|KP)=MH,(K|KF).

The present thesis is organized as follows.

In Chapter 2, we describe fundamental notions for hypergroups.

In Chapter 3, we study three extension problems: the extension of the
Golden hypergroup by finite abelian groups, the extension of hypergroups of
order two by locally compact abelian groups and the extension of the Golden
hypergroup by locally compact abelian groups.

In Chapter 4, we introduce a notion of irreducible signed actions of a
signed hypergroup and apply it to certain extension problems.

In Chapter 5, we introduce two kinds of conditional entropy. One is the
conditional entropy associated with the normalized Haar measure of a finite
commutative signed hypergroup K and the other is the conditional entropy
associated with the canonical state of the measure algebra M°(K) of K.
Moreover, the dual relation of these entropy is discussed.



2. PRELIMINARIES

2.1. Definitions of hypergroups. We recall some notions and facts on
locally compact hypergroups from Bloom-Heyer’s book [BH|. Let K be a
locally compact Hausdorff space, i.e. each point has a compact neighborhood
and any two points can be separated by the compact neighborhoods.

Let C.(K) be the set of all continuous functions with compact supports
on K.

Let 1 be a Radon measure, i.e., p is a continuous linear mapping from
C.(K) to C. Let M(K) be the set of all Radon measures on K. Then M (K)
become a linear space. We denote the norm || - || on M(K) by

[ul] = sup{[p(f)] : f € Ce(K), || flloo < 1} € [0,00]

where || f|| = max{|f(c)| : ¢ € K} is the uniform norm. Let M*(K), M (K)
and M*(K) be the set of all bounded Radon measures, all bounded positive
Radon measures and all probability measures on K respectively i.e.

M*(K) = {n € M(K) : ||p|| < oo},
MY(K) = {p e M*(K) : p(f) > 0 for f >0}
MY K) ={pe MYUK): p(K) =1}

where f >0 (f € C.(K)).
For 1 € M*(K), the support of u is define by

supp(p) = N{F C K : F is closed, |u|(F°) = 0}.

We can make M°(K) a topological vector space with weak topology ob-
tained from o(M(X), C.(X)).
For ¢ € K, we write the Dirac measure at ¢ by €. € M?(K) i.e.

eo(f) = flc) for f € Co(K).

Proposition 2.1. Let ¥(c) = ¢, for ¢ € K. The mapping ¥ is a homeo-
morphism from K to {e.:c€ K}.

Proof. Put ¥(c) = e.. When ¢; — ¢, we have
e, (f) = f¢j) = f(e) =ec(f),
because f € C.(K) is continuous. Hence we get e., — &.. O

Let C(K) is the family of all non-empty compact subsets of K. For open
subsets U and V of K, we denote

Co(V)={CeC(K):CNU£0,C C V}.

Then, the set {Cy(V) : U,V C K, U and V are open.} gives a topology in
C(K). This topology is called Michael topology.
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Definition (locally compact hypergroups). Let K be a non-empty locally
compact Hausdorff space. The quaternary K = (K, M°(K),*,~) will be
called a hypergroup if the following conditions are satisfied.

(1) The vector space M®(K) is a Banach algebra by the binary product
* respect to the norm || - ||. The product * called the convolution.

(2) For 2,y € K, &, x¢, € M*(K) and supp(e, * &,) is compact.

(3) The mapping K x K 3 (x,y) — e, x ¢, € M'(K) is continuous by
weak topology on M°(K).

(4) K x K > (z,y) — supp(e, * &) € C(K) is continuous by Michael
topology.

(5) For any = € K, there exists the element e € K such that e, x e, =

€e % Efp = E.

(6) There exists a homeomorphism K 3 z — z~ € K such that (x7)” =
zand (e,xe,)” = g,-%e,- forallz,y € K, called the involution where
p~ is the image of p under the involution. Moreover, e € supp(e, *e,)
if and only if z = y~.

We note that the involution is weakly continuous.

When ¢, x e, = ¢, * g, for any z,y € K, we call K commutative. When
x~ =z for any x € K, we call K hermitian.
If a hypergroup K is hermitian, then K is commutative because

Ex¥Ey = (Ep%Ey)” =€y *xy- =€y ¥ &

Using the convolution * for point measures of K, we define the convolution

* on M°(K) i.e.
Wk v = / / €5 * gydp(x)dr(y).
K JK

Let K and K3 be hypergroups. We call a mapping ¢ (hypergroup) homo-
morphism from K to K, if ¢ is a mapping from K; to Ky and the mapping
@ from MP(K) to M°(K,) defined p(e,) := ey for x € K satisfies

p(pxv) =) xp(v), (™) =p(p)”
for any p and v € M°(K;).

Moreover, if a homomorphism ¢ from K; to K, is bijection, then ¢ is

called isomorphism.

Lemma 2.2. The homomorphism ¢ maps a point measure of a hypergroup
Ky to some point measure of a hypergroup Ks. FEspecially, the unit ey, is
mapped to the unit ek, .
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Proof. By the simple calculation, we have

plpxv)(f) = i F@)de(p*v)(t') = f( ())d(p * v)(t)

/K /K Kf(so(t))d(é‘x*é‘y)(t)du(:v)dV(y)
/K /K [ )dpte, « ) dut@ivty)
and

(o) * oW)(f) = /K /K [ @) =2 (s )

- /K/K | It o)) ()

Hence we have ¢(e, * £) = €4(2) * Eg(y)-
For the involution, we can calculate that

P )(f) = i f@)de(u) (') = i F(())dpu™(t)
= Kf(so(t)_)du(t),

and
e (1) = | F®)deln)= ()= | FE)de)(t)
= [ flet))dpu(d).
K

Hence ey~ = ey¢-) 1.e. @(e)” = e,4-) because we know f(p(t)”) =
o~ (f) and f(p(t)7) = epu)(f)-

Moreover, for unit ex, of K1, p(€ey,) = (e, *€er,) = P(Eer, ) *P(Eey,)-
Since there exists k € K such that ¢(ce, ) = ek, we have

supp(ey, *€x) D ek,

by the axiom of a hypergroup. Therefore, we have p(eg,) = ek, because the
element k such that e, = ¢, * € is the unit eg,. O

Example 2.3. Let G be a locally compact group with unit e and H be
a compact group. A continuous affine action of H on G is a continuous
mapping (x,s) — z° from G x H to G satisfying that z¢ = z, ()" = 2
and there exists ¢ € G and ¢ € Aut(G) such that z* = cp(x). We denote
the normalized Haar measure of H by wg.
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Then, we have the hypergroup G¥ with the quotient topology whose con-
volution structure is given by

€4l * EyH :/H/Hg(xsyt)fzde(s)de(t).

Next we introduce the finite case conforming to the axiom of locally com-
pact hypergroups referring to Wildberger [W1].

Let K be a finite set. The sets M°(K), Mi(K), M'(K) of all measures,
all probability measures and all non-negative probability measures on K are
described as follows respectively.

Mb(K) = {Zacsc Da. € (C},

ceK
Mg (K) = {Zacsc fa, € ]R,Zac = 1} ,
ceK ceK
MYK) = {Zacsc D e > O,ZaC = 1}
ceK ceK

where ¢, is the Dirac measure on ¢ € K. The support of the element y =
Y ek Qe 18

supp(u) = {c € K : a. # 0}.
Definition (generalized (finite) hypergroup). Let K = {cg,c1, -+ ,¢,} be

a finite set. The quaternary (K, M®(K),*,” ) is called a generalized (finite)
hypergroup if K satisfies the following conditions.

(1) The triple (M®(K),,7) is a x-algebra with unit e,,.
@) K- = K.

(3) The structure constant nf; € C is defined as follows.

n
_ k
¢ ¥ E¢; = nii€e-
k=0

The constant nfj satisfies the following conditions.

¢; = ¢; if and only if n); >0 and

¢; # c; if and only if n% =0.

We denote (K, M®(K),,~ ) by K simply and we say that the order of K
is n+ 1. For any 1, j, if ., * ., belongs to Mg (K) then K is called a signed
hypergroup and if €., * €., belongs to M L(K) then K is called a hypergroup.

In this paper, ¢;- means ¢; . The weight w(c¢;) of ¢; € K is defined by

0 )—1

174

w(c) = (n
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The total weight w(K) of K is

3

w(K) =Y w(g).

1=0

We note that a generalized hypergroup K become a group if and only if
w(c;) =1 for all 4.

Example 2.4. Consider the symmetric random walk on the edge of a regular
triangle. Fix a vertex xy as the origin. A vertex x is said to have the
distance i from the origin x if there exists a minimal i-step path of edges
which connects zy and x. Let ¢., be the random walk which comes from a
movement from a vertex to another vertex having the distance . We denote
the walk ¢; after the walk c; by e, x &.;. Then, using the probability, we can
write that
1 1
€y ¥E¢p = TE¢ T ZE¢; -

2 2

Hence we have the hypergroup K = {co, ¢;} of order two with above struc-
ture. If we consider the symmetric random walk on the edge of a regular
pentagon, then we have the Golden hypergroup G = {co, c1, ca} which has
the following structures:

1 1

861 * 651 = 5500 + 55027
1 1

Eeg ¥ Ecy = 5500 + 5561,
1 1

€y ¥ Ecy = 5561 + 5602.

Example 2.5. By the definition of finite signed hypergroup, we have all
hypergroups Z,(2) = {co,c1} of order two with a parameter ¢ (¢ > 0) and

the following structure.
€cp ¥ Ec; = (E¢y + (1 - q)ECI.

We note that if the parameter ¢ satisfies 0 < ¢ < 1 then the signed hyper-
group Z,(2) becomes a hypergroup, and if the parameter ¢ equals to 1 then
we have Z,(2) = Zs.
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2.2. Harmonic analysis of a finite commutative signed hypergroup.
We generalized the some results of Sunder-Wildberger’s work [SW] and Wild-
berger’s work [W1] in the category of finite signed hypergroups.

Hereafter, let K be a finite signed hypergroup.

Lemma 2.6. We define the constant n ER bye., xe; = cheK nfjgck for
ci,c; € K. Then, we have

(1) nk =nh"_

ij =i
(2) = ;
w(cy)  wlcy)
nfj nijj_

_ koo _ k™
(57*5 <E n__sck) = E N €. = g N5 i—Eep -

ceEK c€K cLEK

. _ - [
Since €., * €.; = (50]_7 * 56;) , we have ng; =nj_,_.

(2) By simple calculation,

(ack *E¢,) ¥ Ec; = (E nk Zacl> * €, = ”k i€c; * Ec; + E n,c i€a * €

I#5~
= nk Zn 6CO+"'

o - — k0 '
In the similar way, we have e_ x (e, * &.;) = njjn,_,€c, + -+ . Comparing

: ; k0 07 0
the coefficient of the unit e.,, we get njn,_, = ny_n; .

(3) In the similar calculation of (2), we have

(e * ;) * €5 = NGTY—Eco + -
and
Ec; * (5c] * 5 ) ]k— 'i‘gCO AR
Since nfy, = nj; by (1), we have nf;nQ, - =nj, nj . O

We call ex € M'(K) the normalized left Haar measure if i * e = eg for
any u € Mg(K).

Lemma 2.7. The normalized left Haar measure ex of K is uniquely given

by
w(c)
CK — E M&fc.

ceK
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Proof. Suppose that the measure e € M'(K) is a normalized Haar measure.
Put e =), i aige,. For any ¢; € K,
X e = ; K
Eer ¥ OK = a; ni-i€e-
eEK cpeK

Here, the coefficient of the unit €., of above measure is a]n _ .. On the other

hand, .- * ex = ex by the supposition. Comparing the coefﬁments of the
J

unit, we get a; = ao(n)_ ;)" = apw(c;). Hence we have

ex = Z apw(cj)ec; -
CjEK

Since ek is a probability measure, 37 - aow(c;) = ao 3, cre w(c;) = aow(K) =

_ 1
1. Therefore ag = o B
Conversely, we suppose that ex = cheK ZE%ECJ‘ For any ¢; € K, we
have
rer = 3 DS e,

CjEK CZEK

For any ¢, € K,

€om (g, xep) = Z Z nZJ o *Eq = Z % Z nﬁj Z Ny Ec,-

chK cleK c;eK ceEK cpEK

Here, the coefficient of the unit ., of above measure is

wie) o M”_Z: w(c;) nf gL
2 Wi 2 Ry wle) Z w(K) w(e;) ~ w(K)

c;eK c;eK

by Lemma 2.6 (2). On the other hand, when we put e, xex = cheK bje.; €

Mg(K),
€., * (€c; ¥ ex) Z b; Z nh i€
c;EK ek
The coefficient of the unit e, of above measure is bynj_, = ( . Comparing
the coefficients of the unit, we have b, = :ZEK; Le. e, xex = cheK ZEK; E¢ =
CK. |

Proposition 2.8. Forc; € K,
w(e;) = w(e).

Proof. Since the left normalized Haar measure eg satisfies the condition
w*ex = ek for any p € M(K), it is obvious that ey is a projection.
Using Lemma 2.7, for ¢; € K, we have

Ef * Ep. = Zmn’?.gc = Z wci) nf; w(cg)ee,-
P2 (R 2 Ry wlen)

)
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Since we can calculate that

i .
nz_] . n._

W)~ wle) - wle) wle)  wie) wl(e)

by Lemma 2.6, we have

_ w(ci) nkj (¢;
eK *Ec; = () w(ck)ee,

Here we have known that ex = ex * ex = e * (e, xex) = (ex *e.,;) ¥ ex =

:j(( ))eK * ex. Since ex # 0, we have ((C;)) = 1, namely, w(c; ) = w(c;).
J

O

Corollary 2.9. The normalized left Haar measure ex is an orthogonal pro-

jection of M®(K) and the normalized right Haar measure.

Proof. For any ¢; € K, it is obvious that ex * €., = ex by the proof of
Proposition 2.8 and the normalized right Haar measure is unique. Since
ex = (ex * &) = €., * e, we have e, = ex because of the uniqueness of
the normalized Haar measure. 0

Let K be a finite signed hypergroup. We define a linear mapping ¢ from
M*(K) to C by

¢(n) = ao
for any p =73 _x arec,. Obviously,

Pe, *ec,) = ¢ (ﬁs + - ) = w(lcz) > 0 and ¢(cp) = 1

When ¢(pu~ x ) = 0, we have p = 0 because

o™ * ) ( Z are,, *%) = Z |ak’2w(1ck)'

ck,cq €K creK

Hence ¢ is a faithful positive state of M*(K). We call ¢ the canonical state.
We define the inner product (-|-) of M*(K) by

(nlv) = o(v™ * ).

Proposition 2.10. (1) (e

Ec;) = ﬁéﬂi where 9, ; is Kronecker’s delta.

(2) (Eck * €Ci|€cj) = (€Ci|gc; * ECJ')'
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Proof. (1) Tt is easy to see that gb(egj % g.,) = 0 for i # j by the axiom of a
hypergroup.

(2) By the definition, we have

(ECk * & €Cj) = ¢(5c_] * (5% * 5%)) = ¢(<Ec_k * 5Cj)_ * 5@-) = (EC@' 5,;_,C * 5Cj)'

[
Corollary 2.11. For =73, . are, € M*(K), we have

ar = (plex)w(ck).

Proposition 2.12. M*(K) is a C*-algebra.

Proof. For i € MY(K), we denote ||p||2 :== (p|p)2. Then M?(K) becomes a
finite dimensional Hilbert space. We denote a Hilbert space M°(K) by H.
Let £(H) be a set of all linear mapping from M°(K) to M*(K). For
p € MYK) and x € H, we put m(p)z = p* x. We know that 7 is a -
isomorphism from M°(K) into £(H). Since w(M®(K)) is a *-subalgebra of
C*-algebra L(H), 7(M®(K)) is a C*-algebra with the norm ||-|| by ||« (1)|| =
SUD e g7 ||ofl<1||T(10)2||2. Hence M*(K) becomes a C*-algebra with the same
norm of 7(M°(K)). O

We call a complex valued function y on a finite commutative signed hy-
pergroup K a character of K if y satisfies

X(co) = T and x(c:)x(e;) = D niyx(cr)

where e *e., = che K nfj ¢k There exists the character y such that x(¢;) =1

for all ¢; € K; we write it by xo. Let K be the set of all character of K
We can expand x on K into M°(K) by

x(ae, + ajgcj) = a;x(ci) + ajx(cj)
for a;,a; € C and ¢;,¢; € K.

Proposition 2.13. Let e be the normalized Haar measure of K. For any

Js
xj(ex) = do ;-

Proof. For any ¢; € K,
Xj(ee,)xj(ex) = xj(ec; * ex) = x;(ex).

Hence we get x;(e.,) = 1 or x;(ex) = 0. When x;(c) = 1 for all c € K
namely x; = xo, we have

1 1
Xo(ex) = m Z w(ck)Xo(Ee,) = m Z w(cg) = 1.

cr,eEK
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Since for x; (j # 0), there exists ¢; such that x;(c;) # 1, we get x;(ex) =
0. O

Proposition 2.14. When K = {cy, c1,- - , ¢, }, we have K = {x0, X1, ", Xn}-

Proof. For a character ¥ on M°(K), the restriction x of ¥ to K is a character
of K. Conversely, for a character x of K, the value of character y of yu =
ek cEe € MP(K) is given by X(1) = Y ,cx @cEx(c)- Hence we see a
one-to-one correspondence between K and ]\W ). For x; € W ), we
can take the minimal projection e; on M°(K) such that x;(e;) = d;; and
>t _ge; = 1. Since the numbers of minimal projections on M*(K) is n + 1,
we have W) = {X0,X1:" - » Xn}. Therefore we know that the order of K
isn+ 1. O

Hereafter, Let {e;}; be the minimal projections of M°(K) such that
Xi(6j> = 51'7]‘, €j*x€; = €5, ej_ = €;.
Proposition 2.15.
Ee ¥ €5 = X,(c)e;.

Proof. By the fact that M°(K) = > ; Cej, we can write ., = >, ageg. Then

we have

Ec; €5 = E A€ * €5 = ;€5
k

from the property of projections.
On the other hands, x;(c;) = x; Q- arer) = D arXx;j(ex) = a;, so we get

xj(ci)e; = ajej; = e, * e;.

Proposition 2.16.

Proof. For M*(K) 2 p =Y, ayey, it is easy to see that p= = (3., arer)” =
dopare, = D parex and xi(p) = xi Qg arex) = Yoy arxi(er) = a;. Hence

we have
Xi(W™) = X (Za_kek> =a; = Xi(p).

This conclusion holds if we restrict x; on K.
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Let A(K) be the *-algebra generated by K with following product and
involution:
(xix;)(c) = xi(c)x;(c) and x; (c) = xi(c)
for xi,x; € A(K) and ¢ € K. Then any complex valued function on K
belongs to A(K).
For xi,x; € K’, we put

<X1|XJ = Z Xz Ck ( k)

CkGK

Then we define the inner product of A(K) as follows:
Fora=73" croixi,b=230 cxBix; € A(K),
(ap) ==Y Bi(xilx)-
XirXj €K
Proposition 2.17. K is a finite commutative signed hypergroup with unit
Xo-

Proof. By the definition, we know that
(xilxi) = Z |xi () [P ()
CkEK
For x, € K (i # j), since x;x; belongs to A(k), we can write x;x; =
Z ap Xk For the normalized Haar measure ex of K, we have

Xkef(

XiX; (ex) E arXr(er) = ao
xr€K

by Proposition 2.13. On the other hands, we have

XiX; (ex) = xi(ex)x; (ex) =0

because i # 7. Hence we get oy = 0, namely, supp(xix;) Z xo- We also get
(Xilx;) = 0 because

_ _ 1
xix; (ex) = MC; w(er)xix; (cx) = ) C;{ w(cr)x(cr)x;(cr)

= (xilx)-

Therefore {y;}; are orthogonal basis of A(K), so we can write

XlX] Z mz]Xk
xkEK

where mfj e C.

W note that (o) = T, () and xg(er) = Sy

ko— mk ie. m . € R because of Proposition 2.16.

Hence we have mg;
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Since xi(co)x;(co) = > mixk(co) and x(co) = 1 for all x € K, we get

kafj =1.
|

We identify x € A(K) with e, € M(K).
Corollary 2.18.

XilXi) = .
W) =50
Proposition 2.19. )

K~K.

Proof. Since we already know that M°(K) is a commutative C*-algebra by

Proposition 2.12, we can see that the set M b(f( ) generated by all character
of K is isomorphic to M ’(K) by Gelfand representation. O

We call K the dual signed hypergroup of a finite commutative signed
hypergroup K.

For a commutative hypergroup K, when the dual signed hypergroup K
satisfies the hypergroup conditions, we call that K is strong. For a commu-
tative signed hypergroup K, when the dual signed hypergroup K satisfies
the dual relation K = K , we call that K is self-dual.

Proposition 2.20.

~—

w(x;
€; = (f(j'

Z w(ci)x;(ci)ee -

%

~—

g

Proof. Put e; = ), ake,, for a; € C. For any ¢; € K, we have
_ 1
(ejle) = awlerle) = ardle,, * ) = ai
k k

w(ei)
On the other hands, we have

(ejlei) = @le., * e5) = d(x;(c; )ej) = x;(ci)ao

by Proposition 2.15 and Proposition 2.16. Hence, we have a; = x;(c;)w(¢;)ao.
Then we have

xile) = X (me(@)ao%> = ag ZWX;‘(@)UJ(CO

(]

w(K)
= aow(K)(xi|x;) = ag -
0 ( )( J| ]) 0 w(X])
by Corollary 2.18. Since x,(e;) = 1, we get ap = w%;;
w
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Next, we introduce some methods of making new hypergroups from the

materials of given hypergroups.

(1)

Direct product hypergroup H x L.

Let H and L be locally compact commutative signed hypergroups
with unit hg € H and [y € L respectively. The direct product hyper-
group H x L = {(h,l) : h € H,l € L} is defined as follows.

The point measure €, of an element (h,l) € H x L is identified
with e, ® & € M®(H) ® M*(L). The convolution - on H x L is
calculated as follows.

Enl) " EMW 1) = (epxep) @ (e % ep).

Then we immediately know that the unit is (hg, ly) and involution ~
is given by (h,0)” = (h~,17).

For vy € H and 7 € L, we define the double character (x,7) by
(x,7)(h,1) :== x(h)7(l). Then it is obvious that (x,7) is a character
ofoLnamelyH/Q/:fIxﬁ.

Let H be a compact commutative signed hypergroup and L be a
finite commutative signed hypergroup. We denote L \ {unit of L}
by Ly. The a hypergroup join HV L := H U Ly of H by L is defined
as follows.

(a) epxeg=¢ for h € Hand [ € Ly.

(b) - * &, = ﬁ@q + Zniﬂielk for [; € Ly where ey is the

k0
normalized Haar measure of H.

Let H be a finite signed hypergroup and G be a finite abelian group.
Let a be a homomorphism from G to Aut(H), called (group) action of

1
G on H. We denote an a-orbit by C; and ¢, := m Z g.. Then the
g ceCy

set K = {Cy,C1,---,C,} of all orbits by o become a commutative
signed hypergroup, called orbital hypergroup of H by G and denoted
by H®.

Especially, when H is a group and an action « is the adjoint action

of H, K is called the (conjugacy) class hypergroup and denoted by
K(H).

Example 2.21. Let S3 = {e, h,h? g,hg,h?g} be the symmetric
group of order three where h® = e, ¢> = e and gh = h?g.

The classes are as follows:

CO = {6}7 Cl = {h7 h2}7 02 = {ga h97 h2g}
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Let ¢; = C;/|C;|. The set K(S3) of class hypergroup of Sz is K (S3) =
{co, 1, c2} and the structure constants are seen to be

1 1 1 2
€cp ¥ E¢ = 5800 + 5801, Eeg ¥ Ecy = gé‘co + g&?cl,

Ecy ¥ Ecy = Ecy-

Let K be alocally compact signed hypergroup. Let N be a subalgebra
of M°(K) with unit of M°(K). For a state ¢ of M®(K), there exists
the unique conditional expectation E from M®(K) onto N such that
¢ o E = ¢ namely E satisfies following conditions.

(a) E is a linear mapping from M°(K) to N.

(b) E(cq * e, %) = €4 % E(ey) x & for a,b € N and z € M*(K).
(c) po E = 0¢.

If for a locally compact signed hypergroup K’, there exists the iso-
morphism ¥ from M°(K') onto N and for any x € K there exists
¢ € K’ such that E(e,) = U(ev), then K is called the generalized
orbital hypergroup of K by the conditional expectation £ and denote
by KE.

Remark. Any orbital hypergroup is a generalized orbital hyper-
group.

Let H be a finite group and H be a set of all irreducible representation
of H. For H > i, T, the tensor product of 7; and ; is given by

T Qmj = Z DML
K

where Mi';- is the multiplicity of ;. Remarking the dimension, we can
see that (dimm;)(dimm;) = Y, Mdimm,. We denote the normalized
character of m; by x; namely

= T

M} dimmy,
(dimr; ) (dimr;)

Xixs = ) mipxe Yy mi=1.
k k

The hypergroup is called a character hypergroup and denote by K (H).

If we put mfj = , then we have

Example 2.22. Let S5 = {zo, x1, 7} be the set of all irreducible rep-
resentations of the symmetric group S3 of order three where dimy; =
1 and dimm = 2. We denote the normalized character of m by xs.
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The set K (S5) of character hypergroup of Ss is K(S3) = {xo0, X1, X2}

and the structure is determined by

1 1
Ex1 ¥E€x1 = Expr Ex2 ¥ Exp = ZEXO + ZgXl + §€X27

Ex1 ¥ Exa = Exa-
Remark. For a finite group H, we have

K(H) = K(H).
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3. EXTENSION PROBLEM OF SOME HYPERGROUPS

Let K be a locally compact commutative hypergroup and H C K be a
subhypergroup. It is well-known that the quotient K/H is also a commuta-
tive hypergroup. In order to describe this situation, we often use the form
of short exact sequence:

1 —H-“ K- L1

where L = K/H and ¢ is the quotient mapping. Then, the hypergroup K
is called an extension hypergroup of L by H.

Problem. For given locally compact commutative hypergroups H and
L, find all commutative extension hypergroups K of L by H.

In this Chapter, we consider three extension problems.

3.1. Extensions of the Golden hypergroup by finite abelian groups.

3.1.1. The structures of extension hypergroups. Let L = {lo, l1,ls} be the
Golden hypergroup G where ¢ is the unit of L. The hypergroup structure
of L is determined by

1 1

(5g1 o (5@1 = §5g0 + 5(552, 51_ = gl,
1 1 _

6@2 o (552 = 560 -+ 5(5[1, 62 == fg,

1 1
531 o 542 = 5(5@ + 56[2

where 0y, is the Dirac measure at ¢; € L. Let H = {hg,hq,--- ,h,} be a
finite abelian group where h is the unit of H.

We investigate the structure of extensions K of L by H. Let ¢ be a
homomorphism from K onto L such that Ker ¢ = H, where H is assumed
to be a subhypergroup of K. Then K is written as the disjoint union of
H=p"Yl), S:=¢p 1) and T := ¢~ (f;). Let H(¢;) and H(¢5) denote
the stability group of H at so € S and t; € T respectively, i.e.

H(£1) = {h € H: Ep * Egy = 680}7

H(ly) ={h € H :epxe, = €4}

We note that H(¢1) does not depend on the choice of sy € S but only on
S and H ({s) also depends only on 7.

Proposition 3.1. For each s € S andt € T, there exist h and k € H such
that €5 = €, x €5, and €, = €y, * &4
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Proof. It s € supp(ep, * €5,) for h € H, then supp(e, *¢;) is contained in
supp(e, * €y * £5,). Since H is a group, we have €, * &), = €3, so that

SUPD(€), * En * 59) = SUPD(En, * £5,) = SUPP(£5,) = {50}

Hence we see that €, * €5 = €, namely €, = €, * £5,. By the fact that

S=Hx*ez = U supp(en * €5, ),
heH

we get the desired conclusion. In a similar way, we have the same conclusion
forteT. OJ

Let ey, denote the normalized Haar measure of a subgroup Hy of H. The

next Lemma is useful for our arguments hereafter.

Lemma 3.2. For a subgroup Hy of H, if c € M*(H), supp(c) C Hy and
e, * ¢ = ¢, then we have ¢ = e, .

Proof. For ¢ € M'(H) and supp(c) C Hy, we can write ¢ = Z akep, where
thHo
Zak = 1. Then, we have
k

C=E€g, *xC= E AK€Hy * Ep, = E axeH, = ( E ak> €Hy, = €H,-

thH() thHo thHo

Hence we get the desired conclusion. O

Let w(¢1) denote the normalized Haar measure of H(¢;) and w({s) denote

the normalized Haar measure of H ({s).

Proposition 3.3. For sy € S andty € T, there exist h € H and k € H such
that e, = ep*ey, and ty = ep*ey,. Then we have e xeg, = %w(ﬁl)—i—%cl *Eqy,
€40 * €ty = %w(&) + %CQ k Eg9y Esg ¥ Etg = %Cg * €g, + %c4 * g4, Where ¢; €
MY(H) (i =1,2,3,4) such that c] x e, = ¢; and c; * &, = ¢ and w(ly) *
w(le) *¢; =¢; (i =1,2,3,4). Moreover we have ¢, x ¢; = w(lq) * w(ly) * &,

ok ey =w(ly) *w(ly) xep, cg=1c; and cy =c5 .

Proof. One can take h,k € H such that e, = &j * €5, and t; = & * &, by
Proposition 3.1 because s, € S and t; € T by the relations ¢; = ¢; and

ly = {y. Tt is easy to see that e * &4, is written as

_ 1 1
Eso ¥ Es0 = 50 + 5C1* €t

for some cg,c; € M'(H).
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First, we show the equality co = w(f1). The fact w(fy) * €5, = €5, implies
that w(fy)*cy = ¢p and w(ly)*c; = ¢;. We suppose that ' ¢ H(¢;). Since we
have gj*eg, # €45, We have (ep*e5,)” # 5. Then hy & supp((en*es,) *€s)
by the axiom of hypergroup. Since (gp *e5,)” * €5, = %5,:, *co+ %6}:, * €1 * €y
because K is commutative, we have hy ¢ supp(e,, * ¢g). Therefore h' ¢
supp(cp). Hence we see that supp(cy) is contained in H(¢;). By Lemma 3.2,
we get cg = w(f1). By the fact that w(ly) * g5, = 5, and w(ls) * g4, = &4,

we see that w(l) * w(fy) * ¢; = ¢;. By the equality:

_ _ _ 1 _ 1 _
(€4 ¥ Es0) = §(w(€1)) + 561 * € = 5@0(61) + 56 * Ef % E,
and (g, * €5,)7 = €5, * €5, We get ¢ * &, = c1. In a similar way to the

above, we have g, x g4y = 2w(ly) + 1co * £y where w(ly) * w(le) * 2 = o

—_ . 1 1
and cy * €, = cp. It is easy to see that ey * €4y = 5¢3 % €5 + 5¢4 * £, Where

w(l1) x w(la) * c3 = c3 and w(ly) x w(ly) * ¢y = 4.

Next, we show the equation ¢1 x ¢; = w(ly) * w(ls) * €k, Co * o = w(ly) *
1
2

_ 1 - 1 —~ _
Etg * €1 = zwW(la) ¥ € + 5Co* € * £y, and g4, * &y, =

— — —_ 1 —
w(la)*ep, cg = ¢y and ¢4 = ¢y . We have e, e,, = 3w (l1) %€, +5C1%€, *Eyy,
1 1
3C3 % Egy F 5C4 * Eyy. It

is easy to see by simple calculations that
1 1
(Es9 % Esg) ¥ E4y = 16 ke *€; + ZEL*C ke, kEL *Egy + wal) kw(ly) *e), *ey,

1 _ -
€50 * (Esg % E4y) = —C3 % €}, + 163 % Ca* e + —(c1*c3%e), +eqg*cy)*ey.

4 4
By the associativity: (g5, *€s,) * €1y = Eso * (Eso *Ety ), We have 2w () xw(ls) *
€, = cCclxc3*xe, +caxcygand c3 = ¢ x g, = ¢ . In a similar way, since
we have g5, * (g4, * €1,) = (g5, * €4y) * €1y, We have ¢4 = ca %, = ¢5. By
these relations, we have 2w({y) * w(ly) = ¢ * ¢1 x €, + 2 * ¢ * €, . This
fact implies that supp(w(f;) * w(l2)) = supp(cy * ¢1 * €, )U supp(ce * ca2 * €, ).
Hence we see that supp(cy % ¢ x e, ) C H({y) * H(l3) and supp(cs * ¢y * &)
C H(ly) « H(¢2). Applying Lemma 3.2, we have ¢1 * ¢; x ¢, = w({q) * w({2)
and o * cgx e, = w(ly) *xw(ly). Therefore, we get c1 % ¢; = w(ly) * w(la) * &y,
and cg x co = w(ly) * w(ls) * &p,. O

Remark. If K is an extension of the Golden hypergroup L = G by a finite
abelian group H, we can reformulate Proposition 3.3 as follows.

(0) K is the disjoint union of H = ¢ ~1({y), S = ¢~ (1) and T = ¢~ ({s),
and take s € S, to € T.

(1) e, =cen*eg and g, = e, x &y, for h,k € H.

(2) €5y * €5y = 3w(01) kE) + 501 %, %y, for ¢ € M(H).
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= 1w(l) xe; + e xey xey, for o € MY(H).
1
2

— 1 —
€] * Esy T 5Co * Etp-

6) c; =ci1xg, and ¢, =cp*¢g),.

3)
(4)
(5) wtr) *wlls) + ey = ¢ and w(y) +w(bs) % e = .
(6)
™)

7) cpxep =wly) *w(ly) xep and g x cg = w(ly) * w(ly) * &p.

We remark that it is easy to check that these conditions assure that K is
a commutative hypergroup which is an extension of L by H. Hence we see
that all extensions K of L by H are determined in this way by

s0 €S, tge€T, hyk € H, c1,co € M'(H)

satisfying the above conditions (1) — (7). Therefore we denote such an ex-
tension K by K = K(sg,to, h, k,c1,c2).

Let K1 = HUS;UT) and Ky = H U Sy UT, be two extensions of L by
H and ¢ (resp. ¢2) be a canonical quotient mapping from K; (resp. K5)
onto the Golden hypergroup L = G. Then K is called to be equivalent to

K5 as extensions if there exists a hypergroup isomorphism v from K; onto
K, such that ¢(h) = h for all h € H and ¢y 0 ¢ = ¢;.

When we take ug € S, vg € T, hi,ky € H and dy,dy € M (H) satisfying
the above conditions (1) — (7), we have another extension K (ug, vo, h1, k1, dy, d3)
of L by H.

Proposition 3.4. Two extensions K (sg, to, h, k, c1, o) and K (ug, vo, hy, k1, dy, ds)
of L by H are mutually equivalent as extensions if and only if there exist
bi,b2 € H such that €, = Ep, * Esps Evg = Ep, * Etg, dy = €p, ¥ 1, dy = €y, * Ca,
wW(ly) * ep, = w(ly) * €p, *€p, * € and w(la) * e, = w(la) * €p, * 4, * €.

Proof. Suppose that K; = K(sg,to, h,k,c1,c2) is equivalent to Ky =
K (ug, vo, hy, ky1,dy,dy). Then it is easy to see that both stability groups of
H in Ky and K, at sy and ug coincide and both stability groups of H at t
and vy also coincide. Hence we may assume that ¢, (¢1) = ¢; ' (£1) = S and
05 () = @y (ly) = T. For ug € S and vy € T, there exist b; and by € H
such that e,, = €, * &5, and €,, = €, * &, respectively by Proposition 3.1.
By the relation that e, = ej x €5, and €, = &p, * €4,, We get

Ehy ¥ Egq = Epy ¥ Epy ¥ ER * Egy

Hence we have w(l1) x e, = w(lq) * &p, * €, * £,. In a similar way, we also

obtain w(fy) * ek, = w(ly) * €y, * €4, * 5. Since €, * €y, = €, * €4y, COMPAring
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coefficients of £y of €, * e,, and €, * €,,, We get di = &, * ¢;. In a similar

way, we see that dy = €p, * ca.

Conversely, if there exists by, b, € H such that ¢, = Ep, ¥Es01 Evg = Ep, ¥Etp)
dy = ep, k1, dy = €p, * Co, w(ly) *Ep, = w(ly) *ep, *Ep, xep, and w(ly) * £, =
w(ly) * €y, * £p, * €, it is easy to check that K(sq, o, h, k, c1, co) is equivalent
to K (ug, vo, h, k1, dy, ds). O

Let K be an extension of L by a finite abelian group H. If there exists
injective mapping ¢ from L into K such that

(1) e(e(0)) = ¢,

(2) ¢ler) = ex and (7)) = ()",

(3) The set H({) ={h € H : hx¢({) = ¢(¢)} is a subgroup of H,
(4) @(d¢,) * D(de;) = P(0r, 0 0¢,) * w(li) x w(l;) (0,5 = 1,2),

(5) w(li) * w(ly) * w(l) = w(li) xw(l;) if £ supp(dy, ©dp,),

(6) K =H*¢(L), and H(\o(L) = {ex},
then we call that the extension K of L by H splits or K is a splitting extension
([KSTY).

4
3

Definition (weakly splitting). We call the extension K of L by H weakly
splitting if the conditions (1), (2), (3), (5) are satisfied.

Proposition 3.5. The extension K = K (so, to, h, k, c1, cs) is weakly splitting
if and only if there exist by,by € H such that ¢; = w(ly) * w(ls) * &p,, Co =
w(l) xw(ly) xep,, w(ly) ke, =w(ly) xep, xep, and w(ly) xep = w(ly)ey, * &y, .
Moreover, K is splitting if and only if K is weakly splitting and H (1) =
H(¢5).

Proof. Suppose that the extension K is given by K = K(sg,to, h, k, 1, ¢2).
We assume that ¢(ly) = ho,d(f1) = so and ¢(fy) = t3. Then we have
so = so and t, = to by weakly splitting condition (1). This implies
that we can assume that h = hg and k = kg so that ¢; = ¢ = w(fy) *
w(l2). Since weakly splitting extensions are equivalent to this extension
K = K(so, o, ho, ko, 1, c2), we get the desired conclusion by applying Propo-
sition 3.4.

By the structure equations (2) and (3) as described in Remark combined

14

with splitting condition (4), we get w(l;) = w(ls), i.e. H(y) = H(lz). O
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Theorem 3.6. Let K be a commutative hypergroup extension of the Golden
hypergroup L = {ly, {1,052} by a finite abelian group H, which means that
there exists a hypergroup homomorphism ¢ from K onto L such that Ker
o = H. Let H({y) be the stability group of H at sp € S = ¢ (1) and
H({y) be the stability group of H at ty € T = o' ({y). Let w({;) denote the

normalized Haar measure of H(¢;) (i =1,2).

(1) Then we have S = Upegsupp(ep * €5,) and T = Ugegsupp(ex * &4, ).
When e, = e x €5y and ty = e x &4, for some h,k € H, we have

€ *¥ €5y = swW(l1) + 501 x &y, &y

Eso * €ty = 301 * Eg + 5C5 * &gy for c1,c0 € MY (H) such that w(ly) *

_ 1 1
* £y = FwW(l2) + 562 * €5, and

w(ly)xc; =¢; (i=1,2). Moreover, c; = ci1%€;, ¢; = Ca*e) ,C1%C =

w(ly) * w(ly) x e and cg * 3 = w(ly) x w(la) * &p.

(2) All extensions K of L by H are characterized in this way, so that
we denote such an extension K by K(so,to,h, k,c1,c2). Two exten-
sions K (so,to, h, k,c1,¢9) and K(ug,vo, hi, k1,d1,ds) of L by H are
mutually equivalent as extensions if and only if there exists by, by € H
such that €,, = &, * €y, Evy = €y, * Ety, d1 = Ep, * 1, dg = &, * C2,

wW(ly) xep, = w(ly)xep, *ep, xep, and w(ly) x e, = w(la) * Epy * Ep, * £

(3) Moreover, the extension K = K(sg,to, h, k,c1,¢3) is weakly splitting
if and only if there exist by, by € H such that ¢; = w(ly) * w(ls) * €p,,
o =w(ly) xw(ly) *ep,, wly) xep = w(ly) *ep, *xep, and w(ly) x e =
w(ly)*ep, *ep,. The extension K is splitting if and only if K is weakly
splitting and H(¢1) = H({3).

Proof. These statements follow immediately from Proposition 3.1, 3.2, 3.3,
3.4 and 3.5 so that we omit the details. O

3.1.2. Applications and Examples. Under these preparations we calculate all
extensions K of the Golden hypergroup L by concrete abelian groups H =
Zs, L3, Ly, Zs and Zg. We denote the order of K by |K].

Example 3.7. H = ZQ = {ho, hl}, h% = ho.

(1) Case of |[K| =6, i.e. H({;) = {ho}, H({3) = {ho} and K= H x L.
K = {hg, h1,50,51,t0,t1}, Es, = Eny * Esyy Et, = Ehy * Ety-
So = S0, 81 = S1, tg =to, t; = tq,
Eso * Esy = 3Ehy + 2E40s Et * Etg = 2Ehe + 3Es0

_ 1 1
Eso ¥ €ty = 5530 + §5t0~
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(2) Case of |[K| = 5.

(a) When H(¢,) = H, H({y) = {ho}, i.e.
K? = {ho, h1,50,t0,t1}, €1, = €n, *€yy.
(i) K = K2 (sg = so,ty = to,t; = t1) which is character-
ized by
1 1 1 1
580 * 580 - Zgho + Zgh1 + ZEtO + thla
Ety * Etg = 3Ehy T 3Es0, Eso * Etg = 3Esy T+ 1€t + 31

(ii) K = K2 (sy = So,tg = t1,t; = to) which is character-
ized by
_ 1 1 1 1
8S() * €sg — Zgho + Z€h1 + ZEtO + Z€t17
1 1 1 1 1
Etyg ¥ ¢y = 58}11 + 5550, Esog ¥ &ty = 5580 + Z&go + thl'

(b) When H(¢;) = {ho}, H({3) = H, in a similar way, we have K},
and K},.

(3) Case of | K |=4, ie. H({;)=H, H({s) = H.
K* = HV L = {hg, hi, s0,to} which is the join of H by L and
characterized by
Sa = S0, ta :to,
_1 1 1 1 1 1
Esg ¥ Esg = Zgho + Zghl + §€t07 Eig *¥ €y = Z‘gho + Zghl + 56807

_ 1 1
€s0 *¥ €ty = 5Es9 T 5Eto-

Next, we consider the dual of this model. Let Rgl = { X0, X1, X25 X3, X4},
be the dual of K?,. The character table of K7, is as follows.

ho hl So tO tl
Yo|1]1 1 1 1
—1+V5[-1-v5|-1-+5
xi| 1|1
4 4 4
—1-V5 | —14+V5 | -14+V5
xe| 1|1
4 4 4
I I
1]-1 0 — -
X3 \/5 \/5
1 I
yal| 1 |-1 0 — —

Hence the structure equations of the dual K7 of K5 are given in the
following way:.

Ex1 ¥Ex1 = 5€x0 T §€X2> Ex1 ¥Exa = 56t §€X2> Exz ¥Exa = 5€x0 T §€X1>

2 2 2
3-V5 5+5 _5VA_ 35

Exq1 ¥ Exs = 3 €xs 3 Exar  Exa ¥Exu 3 X3 3 €xa>
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:3+\/§€ 5—+5 5—+5 3+vV5

Exz * Exs 3 xs T T5X47 Exa ¥Exy = Tgxzs + T€x4a
3-V5 3+V5
X3 ¥ T S F A T 5o + 10 “u + 10 o
5+5 55
8X3 * <<’:X4 = 10 <<3X1 + 10 £X2'

By this fact we see that K7, is a strong hypergroup. In a similar way, it
is easy to check that K?2,, K}, and K}, are also strong. It is well known that
H x L and H V L are strong.

Remark. (1) K is a splitting extension of L by H if and only if K =
K=HxLor K*=HVL.

(2) K is a weakly splitting extension of L by H if and only if K = K% =
HxL K‘=HVL, K>, or K},

(3) Above extensions are strong.

Example 3.8. H= Zg = {ho, hl,hg}, h? = h(), hl_ = hg, h2_ = hl-

(1) Case of |K| = 9, ie. H(f1> = {ho}, H(EQ) = {ho}
K9 = {ho, hl,hg, So, S1, Sg,to,tl,tz},
Esp = €y ¥ Eso (K =0,1,2), 6, =en; ¥4, (1 =0,1,2).

(a) K=K)=HXL (s; =80, § = 82, 85 =81, lg =tg, t; =
to, t; = t1) which is characterized by

_1 1 _1 1 _1 1
€s0%Esg = 5Eho T3ty Eto*Ety = 5EReT 550y €so*Ety = 5E€s0T 50

(b) K =K} (sg = s1, 8] = S0, S5 = 82, tg = tg, t] = tla, t5 =1t1)
which is characterized by

1 1 1 1 1 1
€s0%Esg = 5Eha T 5ty Eto*Ety = 5ERgT 552y €so*Ety = 5Es0 T 5E¢; -

(¢) K=K (sg =52, s; =51, 85 = S0, tg =to, t] =1a, t5 =11)

which is characterized by
1 1 1 1 1 1
Esg*Egy = §€h1+§€t1, Eto*Ety = §€h0+§551, Esp*Ety = 5550+§€t2.

(d) K = K3 (sg =s1, 57 =50, 55 =2, tg =1y, 1] =to, t; =1y)
which is characterized by

1 1 1 1 1 1
€s0¥Esy = 5€hyT5Et, Etg*€ty = 5ERyT5Es1s Eso*Ety = 5Es, T 5 -
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(e) K = K (sg = 82, 8] = 81, 85 = 80, tg =11, t] =to, ty = t3)

which is characterized by
_ 1 1 1 1 1 1
Eg9*Egy = §5h1+§5t07 Eto*Ety = 55h2+5550, Eg9*Ety = §5s1+§€t2-
— K9 - _ - _ - _ - _ - _ - _
which is characterized by
_ 1 1 _ 1 1 _ 1 1
Eso*Esy = §€h1+§6t27 Etg*Ety = §€h1+§682a Eso*Ety = 5652+§8t2'
(2) Case of |[K|=T.
(a) When H(¢,) = H, H({3) = {ho}, i.e.

Kg = {h07h’17h2a307t07t1at2} Et;

=€ xey (1=0,1,2).
(i) K = K[} (sg = so, ty = to, t; = tg, t;, = t;) which is

characterized by

_1 1 1 1 1 1
€so ¥ €s9p = §Eho T §ERM T GERa T §Eto T 5EL1 T §Eta>
_1 1 _ 1 1 1 1
Eto ¥ €ty = 5Eho T 5€s0) Eso ¥Ety = 3€s0 T 5Eto T g€t T §E¢t2-
(i) K = KT, (sy = so, tg = t1, t] = to, ty = t3) which is
characterized by

1 1 1 1 1 1
€so ¥ €so = §Eho T §EM T GERa T §Eto T 5EL1 T GEta>

_ 1 1 _1 1 1 1
Eto ¥ €ty = 5Ehy T 5€s0) Eso ¥Ety = 3€s0 T €0 T g€t T §E¢L2-

(iii) K = K73 (sg = 80, tg = tag, t; = t1, t; = to) which is
characterized by

1 1 1 1 1 1
€so ¥ €sg = §Eho T §EM T GERa T §Eto T 5EL1 T GEta>

_ 1 1 _ 1 1 1 1
Eto ¥ €ty = 5Eh1 T 5Es0) Eso ¥Ety = 3€s0 T €0 T €0 T §E¢L2-

(b) When H(¢1) = {ho}, H({5) = H, in a similar way, we have K],
K}, and KJ;.

(3) Case of |[K| =05, i.e. H({;)=H, H({;) = H.
K5 = HV L = {hg, h, ha, so, tg} which is the join of H by L and
characterized by

— — 1 1 1 1
Sog = So, tO = 1y, €so ¥ Esg = §Eho + €M + 6Ehe + 5€t0s
_ 1 1 1 1 1 1
€ty ¥ €tg = Ehy T GEM T §Eha T 5€s0, Eso * €ty = 5Es9 T 5E¢0-

Remark. (1) We remark that H x L = K @ K} ¥ K? @ K > K? =

Ky, K, = K, = Kj; and K} = Kj, = K, as extensions of L by
H.
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(2) K is a splitting extension of L by H if and only if K = H x L or
K°=HV L.

(3) K is a weakly splitting extension of L by H if and only if K = H x L,
KS=HVL, K, or K.

Example 3.9. H = Z4 = {ho, hl,hg, hg}, hil = ho, h; = hg, h; = hg.
(1) Case of |K‘ = 12, i.e. H(gl) = {ho}, H(gg) = {ho}
K12 = {h07 hl; h?v h’37 50, S1, 52, 53, t07 tl; t27 t3}7
€5, = €y ¥ €9 (K =0,1,2,3), &, = e, ¥4, (j =0,1,2,3).
(a) K=K2=HxL (s; =80, ] =83, 8, = 89, 83 = 51, tg =
to, t; =t3, t; =1y, t; =1t;) which is characterized by
Eso*Esy = %€h0+%€to, Eto*Epy = %5h0+%550, Eso*Ety = %530—1—%&0.
(b) K = K}? (s; = s2, 8] = 81, S5 = S0, S3 = 83, tg =tg, t| =
ts,t5 =to, t; =t1) which is characterized by
Eso¥Esy = %ehQ—i—%etQ, Eto*Ety = %5h0+%551, Eso*Ety = %550—1—%&3.
(c) K=K (sg =52, 8 =51, 83 = 80, S3 = 83, tg =1y, t] =
t1,t5 = to, t; =t3) which is characterized by
Eso*Esy = %ehQ—i—%sts, Eto*Epy = %61124-%533, Eso*Ety = %533—1—%&3.
(2) Case of |K| = 10.
(a) When H(6) = {ho, ha}, H(ls) = {ho}, Le.
K;D - {h07 h17 h?u h37 S50, 51, tOu tl? t27 t3}7
Esp = Eny ¥ 5o (K =0,1), 6, = en, x4, (1 =0,1,2,3).

(i) K = K9 (sy = s0, 857 = 51, tg = to, t; =13, t; =
to, t3 =t1) which is characterized by

1 1 1 _1
Ehg T 1€hy T 1€ty + 1Ety, €ty ¥ €tg = 5Eny T
1 1 1 1

5E€s01 €sp ¥ Etg = 5E€s9 T 1€t T 7Eta-

Egg ¥ Esp =

P

(i) K = K9 (sg = So, 87 = 81, ty =tlo, t] = t1, t; =
to, t3 = t3) which is characterized by

Eho + Ehy T 1€t T 1Eta, Eto * Etg = 3Ehy +

25 + 36t + 168,

(b) When H(¢y) = {ho}, H(ls) = {ho,h2}, in a similar way, we
have K}}{ and K}9.

=

Egg ¥ Esp =

1
55807 880 * Et()



(3) Case of |[K| =09.

(a) When H(¢1) = H, H(l3) = {ho}, ie.
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Kc? - {h07 h17 h27 h3730at07t17t2>t3}, Et; = 5hj*5t0 (] = O, 1,2,3)

(1) K = Kgl (SO_ = Sp, t(; = tO; tl_ — t37 tQ_ — t2’ tg — t1>

(iii)

(iv)

a

which is characterized by

1 1 1 1 1 1 1
€so ¥ E€sg = §€ho T §€h1 T g€hy T g€hs T g€ty T g€ty T 512 T

1 1 1 1 1 1
3€tss Eto ¥ €ty = 5Eh0 T 3Es0) Eso ¥ €ty = 3Es0 T 38t T 3601 T

1 1
gEftQ + g&fts .

K =K}, (s =50, tg =t1, t] =1lo, ty =t3, t5 = ty)

which is characterized by

1 1 1 1 1 1 1
€so ¥ Esog = gEho T g€y T g€ho T g€hs T g€t + g€t1 T 5Et2 T+

1 _ 1 1 _ 1 1 1
8€tss Eto ¥ €ty = 5E€h3 T 5E€s0) Esp *¥ €ty = €59 T gCto T 501 T

1 1
§€t2 + §8t3 .

K =K% (s =0, tg =ta, t] = t, t; = to, t5 = t3)

which is characterized by

1 1 1 1 1 1 1
Egg ¥E59 = gﬁho + §€h1 + §€h2 + §6h3 + §5t0 + §6t1 + §€t2 +

1 1 1 1 1 1
3€tss Eto ¥ Etg = 3€hy T 350, €s0 ¥ Etg = 3€s0 1 g€to T 501 T

1 1
§5t2 -+ §5t3 .

K=Ky (sg =50 tg =ts, ty =1y, ty =1, t7 = o)

which is characterized by

_ 1 1 1 1 1 1 1
€50 *E€sg = §€ho T §€h1 T g€hy T g€hs T g€ty T g€t T 5t T

1 _ 1 1 _ 1 1 1
3€tss €to ¥ €t = 5Eh T 5€s0) Eso *¥ €ty = 3850 T gt T 501 T

1 1
§8t2 + §5t3 .

(b) When H(¢,) = {ho}, H(¢y) = H, in a similar way, we have
K3y, Ky, Ky and K3,

(4) Case of |[K| =38, i.e.

K8 = {h07 h17 h27 h37 50, S1, th t1}7

Esp = Eny ¥ sy (K =0,1), &, = en, x4, (1 =0,1).

86 = So, 5; = 51, ta = tO; t; = tl? €30 *€50

H(6,) = {ho, ha}, H(ls) = {ho, hs}.

1 1
= 3€ho T 7Ehy T

1 _ 1 1 1 _ 1 1
2€t0r Eto * Eto = 4€ho + 1Eha + 5€s0s Eso ¥ &ty = 3Es + 5€t-

(5) Case of |[K|=7T.

(a) When H(¢y) = H, H(ly) = {ho, ha}, ie.

KZ = {h07 h17h27 h37 507t07t1}7 gtj = 5h]~ * & (] = 0, 1)
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(i) K=K (sy =S80, ty =tg, t; =t1) which is character-
ized by

1 1 1 1 1 1
E€s9*Esy = §5h0+§5h1+§5h2+§5h3+26t0+15t17 Ety *E¢y =
1 1 1 1 1 1
1€ho + 1E€hs + 5€s01 Eso ¥ Etg = 3Es + 1Eto + 16t

(ii) K = KT, (sqg = 80, tg =t1, t; =to) which is character-
ized by

1 1 1 1 1 1 _
Eso*¥Esg = gEho T g€ T g€y T gERs T 1€ty T 7Et1s Etg*¥Ety =
1

1 1 _ 1 1 1
1€ t 7€hs T €50y Eso * €ty = 5Es0 T 71 T 1E4-

(b) When H (¢1) = {ho, ho}, H({3) = H, in a similar way, we have
K}, and KJ,.

(6) Case of |K| =6, ie. H({;)=H, H({;) =H.

K>=H VL= {ho,hl,hg,hg,So,to} which is the join of H by L
and characterized by

- — 1 1 1 1 1
89 = S0, tg =to, €sg ¥ Esy = gEho T 3€h1 + §€hy T §ERs T 3105

1 1 1 1 1 1 1
Ety ¥ €ty = §5h0 + §€h1 + §€h2 —+ §8h3 + 5850, Eso ¥ €ty = 5630 + §€t0.

Remark. (1) We remark that H x L = K}* 2 K? ~ K K} = K),,
K, > K?, K}, = K}, and K}, & K}, as extensions of L by H.
(2) K is a splitting extension of L by H if and only if K & H x L, K8
or K=HVL.
(3) K is a weakly splitting extension of L by H if and only if K = H x L,

K8 KS=HVL K" K°, K9, K, or KJ,.

Example 3.10. H = Z5 = {ho, hl, hg, hg, h4}, h? = ho, h’l_ = h4, 2_ = h3.

(1) Case of |[K| =15, ie. H(¢1) = {ho}, H(l2) = {ho}.

K;E) = {h())hla h27 h37h47 h5780a 51, 82, 83, 547t07t17t27t37t4}a
Esp = Eny ¥ Esp (K =0,1,2,3,4), ¢, = e, %4, (j =0,1,2,3,4).

(a) K=K®=HxXL (sg =50, S = 84, S5 = 83,15 = tg, t] =
ty, t; =t3) which is characterized by

1 1 1 1 1 1
€s0%Esg = 5Eho T 5Et0s Eto*Ety = 5EReT5Es05 €s0*Ety = 5Es0 T35t
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(b) K = Kgg) (86 = 51, 82_ = 54, S?? = 83, ta = to, tl_ = t4, tQ_ = tg)
which is characterized by

_ 1 1 _ 1 1 1 1
Esp*Esy = §5h4+55t4, Eto*Ety = §€h0+5553, Eso*Ety = 5830+§€t2-

In a similar way we get

K (sy = s9, s7 =81, 85 =84, tg =tg, t] =14, t5 =13),
KP (sqg =83, 8] =82, 85 =84, tg =to, t; =1y, t; =1t3),
K (sy =s4, 57 =83, 85 = 89, tg =tg, t] =14, t5 =13),
K (sg =81, 85 =84, 83 = 83, tg =1, ty =ty4, t3 =13),
K;‘r’ (sg = S2, S = S1, S3 = 84, tyg =11, ty =tg, t3 =t3),
K (sqg =83, 8] =82, 85 = 8u4, tg =11, t5 =1y, t3 =1t3),
K (sy =84, 5] =83, 85 = 89, tg =11, t5 =1y, t3 =13),
K}° (sg =59, 51 = 81, 855 =584, tg =tg, 1] =11, t5 =1y),
K15 (sg = S3, S = S2, S; = 84, tyg =ta, t] =11, t3 =14),
KPP (sqg =84, 8] =83, 85 = S, tg =ta, t] =11, t3 =1t4),
K (sy =s3, 57 =89, 85 =84, tg =13, t] =1y, t; =14),
K (sy = s4, 5] = 83, S5 = 89, tg =13, t] = ta, t; = 1t4)
and

Il

~
no
N—

K (sy =s4, 8] =83, 85 = 89, tg =ty, t] =13, ty
(2) Case of |K| = 11.
(a) When H(gl) = H, H(gg) = {ho}, 1.

Kél = {h07 hl; h27h37 h47 807t07t17t27t37t4}7
€1, = €n; ¥ &g (1 =0,1,2,3,4).

(i) K = KY (sg = so, tg =to, t] = t4, t; =t3) which is
characterized by

_ 1 1 1 1 1 1
€s0 ¥ €59 = 1g€ho -+ 10Em -+ 10Ehs -+ 10Ehs + 10Eha + 10Eto +

1_105151_{_%6752_'_%6@_‘_%081547 Eto*gto = %Eho_‘_%esoy eso*gto =

1 1 1 1 1 1

5650 + Egto + Egtl + 1_05152 + 1_061%3 + E€t4.
In a similar way we get
KL (sg =80, tg =t1, ty =14, t3 =t
KL (sg =80, tg =ta, t] =11, t; =t
Kcﬁ (Sa = S0, ta = t3, tl_ :tQ, t; = t4
Kl (sg =80, tg =ta, t] =13, t; =1t

Moreover, we get K}, Ky, Kj3, K} and K.

(3) Case of |[K| =6 i.e. H({;)=H, H(ly) =H.

K=HVL-= {ho, hl, hg, hg, h,4, So,to} which is the jOiIl of H by L
and characterized by
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Sog = So, tg = o, €sy*Esy = %5h0+%5h1+%05h2+%5h3+%5h4+
€ty Eto *Ety = 165€ho + 15ERL T 15ERs + 19Ehs T 166hs T 5Es0r Eso ¥Etg =
€50 T 3E¢0-

1%

15
Kd

15
Km

11
Kb2

12

Remark. (1) We remark that H x L = K} 2 K°> =2 K%
KP = KpP = KP=Kp®==K°=FK?®=>Kp?=EK
K= K5 KN = K 2 K 2 KL = K ad K
KH =~ Kl = K} as extensions of L by H.

(2) K is a splitting extension of L by H if and only if K = H x L or
HV L.
(3) K is a weakly splitting extension of L by H if and only if K = H x L,

HV L, KXY or K\

1%
1%

I
2

Example 3.11. H = ZG = {ho,hl,hQ,hg,h4,h5}, h? = ho,hf = h5,h5 =
hy, hg = hs.

(1) Case of |[K| =18 i.e. H(¢y) = {ho}, H(l2) = {ho}.
K18 = {h'()?hla h27 h’37h47 h5750a S1, S2, 83, 347557t0at1at27t37t47t5}7
Esp = €y ¥ Esy (K =10,1,2,3,4,5), &y, = e, x4, (1 =0,1,2,3,4,5).
(a) K=KB3=HxL (s; =80, ] =85, S5 = 84, S5 = 83, tg =
to, t; =t5, t5 =14, t; =1t3) = H x L which is characterized
by
_1 1 1 1 _1 1
Esg*Esy = §€h0+§€t0, Eto*Ety = §€h0+§550, Esp*Ety = 5550+58t0.
(b) K = K}® (sy = s9, 5] = 81, S3 = 85, S; = 84, lg = tg, t] =
ts, t5 =14, t; =t3) which is characterized by
_1 1 _1 1 _1 1
Eso*Esg = §€h4+§€t4a Etg*Epy = Egho—l—issla Esp*Ety = §€So+§€t5'
In a similar way we get

18 (o~ _ - _ - _ - _ - _ - _ - _
K.® (sg =S4, S| = S3, Sq = Sa, S5 = S5, tg =to, t] =15, t5 =

t47 t?? :t3)7
K}® (s = s2, 8] =81, 83 =85, S; = 84, tg =ta, 1] =11, t5 =
ts, T4 :t4),

18 (o~ _ - _ - _ _ —_ - _ - _
K:® (sqg =S4, S =83, S = S2, S5 = S5, tg =t2, t] =11, t3 =
t5, tZ:t4) and
18 (o~ _ - _ - _ - _ - _ - _ - _
K;° (89 =84, 51 =83, 85 =S, 85 =85, {g =tu, 1] =13, t5 =

to, t; =15).
(2) Case of |K| = 15.
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(a) When H(El) = {ho,hg}, H(EQ) = {hg} i.e.

K;E) - {h'Oa h17 h27h37 h47 h/5)807 817827t0at1)t27t37t47t5}7
Esp = Eny ¥ Esp (K =0,1,2), 6, =€n, ¥4, (1 =0,1,2,3,4,5).

(1) K = K;ir) (36 = S0, 8; = S2, ta = th t; = t55 t; =
ty, t3 =t3) which is characterized by

1 1 1 1 1
Esg ¥ Esg — Z€h0 + ZE}Lg + Z€t0 + Zeti’)’ Etg ¥ €ty — 58]10 +
1 1 1 1
5830, Eso ¥ Etg = 5650 + Z&Tto + Z_lgtS'

(i) K = K15 (sg = s1, 85 = 89, tg = to, 1] = t5, t; =

ty, t3 =t3) which is characterized by

1 1 1 1 1
€so ¥ €sg = 7€hy T 3Ehs + 7E€t, T 1€ts5, Eto ¥ €ty = 5ERy T
1 1 1 1
5532, Eso ¥ Etg = 5650 + thl + Z€t4'

In a similar way we get

K3 (59 = 82, 57 = 81, tg = lo, 1 =t5, ty = tu, t5 =13),

= S1, Sq = Sg, by =t5, ] =t4, 5 =t3) and

K3 (55 = s0, 81 =80, tg =t 1y =ts,t5 = 1y),
KX (sg =s1, 55 = 89, g =11, ty =t5, ty =14),
KX (s =89, 57 = s1, ty =11, ty =t5, t3 = ty),
K2 (55 =s0, 57 =82, tg =1o, 1] =1, t3 =t5,1] =14),
K13 (sg =81, 83 = s, tg =to, 1] =11, t3 = 15,15 = t4),
K13 (sg = 89, 57 = 81, lg = to, t] =11, t3 =15,t; = t4),
K7y (sg = s0, 87 =82, tg =13, t] =to, t; =15),
K;i (Sg = 81, Sq = Sa, tg =13, t] =to, t; =t5),
K33 (sg = S92, 87 =81, tg =13, t{ =to, t; =t5),
K25 (sg =50, 87 =82, tg =ta, t] =13, ty =1y, t; =1t5),
K3, (s5 =51, 85 = 89, ty =ta, t] =13, ty5 =t t; =t5),
K5 (sg = 89, 57 =81, tg =ta, t] =13, ty =1o, l5 =15),
K75 (sg = s0, 87 =82, tg =15, t] =t4, t5 =13),

(so

(so

= So, 81_ = 51, ta :t5, tl_ :t4, tQ_ :tg).

(b) When H(¢;) = {ho}, H(l2) = {ho,h3}, in a similar way, we
have K2, K12, ..., K}

(3) Case of |K| = 14.
(a) When H (¢y) = {hg, ha, ha}, H(lz) = {ho} 1i.e.

K}* = {hg, h1, ha, hs, ha, hs, S0, $1, to, t1, ta, t3, ta, 5},
Esp = Eny ¥ Eso (K =0,1), 6, = ep, x4, (1 =0,1,2,3,4,5).
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: _ 14 - - - - -
ty, t; =t3) which is characterized by
1 1 1 1 1 1
€sog ¥ Esg = §Eho + 6Ehe + 6Eha + 6Eto + 6Et2 + 6Etas
1 1 1 1 1 1
Etg ¥ €ty = §€h0 + 58307 Eg9 ¥Etyg = 5650 + 68150 + 6€t2 + g€t4.
.. 14 — — — — —
ts, t; =t4) which is characterized by
1 1 1 1 1 1
Eso ¥ Esg = §Eho + 6Ehe + 6Eha + 6Eto + 6Et2 + 6Etas
1 1 1 1 1 1
Etg ¥ €ty — §€h4 + 5830, Eg9 ¥Etyg = 5550 + 65150 + 66152 + 65t4‘
e 14 — — — — —
(i) K = K;5 (Sg = So, 87 = 81, tyg = ta, t] =13, t5 =
to, ts =t5) which is characterized by
Eso%Esg = 5Eho+ 5Ehy T 5Ehs T 5E10 + 5Ety + +E44» Etg *Etg =
S0 S0 T 6 ho 6 ho 6 ha 6 -to 6 to 6 ta to to —
1 1 1 1 1 1
5€hs + 5€s07 €so ¥ €ty = 35Es + GEto + GEt2 + 6Eta-
(b) When H(¢,) = {ho} , H(l3) = {ho, ha, hs}, in a similar way, we
have K}, K} and K.
(4) Case of |K| = 13.
(a) When H(¢,) = H, H({y) = {ho} i.e.

Kég = {h07 h17h27 h?n h’47h57 807t07t1at2at37t47t5}7
€1, = €n; * €1 (1 =0,1,2,3,4,5).

(i) K=K5 (sg = s0, tg =to, t] =t5, ty =t4, t3 =t3)

which is characterized by

€0 ¥ Esg = 1_125h0 + 1_125h1 + %E}u + %Eh?) + %8;14 + éé—?hS +
Lew + 560 + 156 + 156t + 1564 T 13Ets, Eto * Etg =
2Eho T 3Es0s Eso *Etg = 3Es + Eto T 1560 + 3Et; T 1568, +
1—125t4 -+ %5,55.
(i) K = K13 (syg = s0, tg = t1, ty =15, t3 = t4) which is
characterized by
€50 *Esp = 15Ehe T 15EhL T 156k T 15Ehs T 15Ehs T T5Ehs T
Lew + 56 + 56t + 156t + 1564 T 13Et, Eto * Etg =
2ehs  3Es0s Eso ¥ty = 3Es + 13Et0 T 1560 + 13Et T 1564 +
Lew, + et
(i) K = K13 (sy = so, ty = ta, t] = t1, t; = t5) which is
characterized by

_ 1 1 1 1 1 1
6So * 880 - Egho + ﬁgfu + ﬁeha + ﬁ€h3 + ﬁglm + E€h5 +

1 1 1 1 1 1 _
ﬁgto + ﬁgtl + ﬁ€t2 + ﬁ€t3 + ﬁ€t4 + ﬁ5t57 €ty * €y —
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1 1 1 1 1 1 1
5€h + 5€s05 €s0 ¥ &ty = 3Es + 12Et0 + 26t + 1262 + 12€t3 +
1 1
ﬁ€t4 + ﬁ5t5'
(iv) K = K3 (sg = so, ty = t3, t] = t3, t; = t5) which is
characterized by

€sg ¥ Esg = 1—125h0 + 11_25h1 + 1_125}12 + %6}13 + %&?h4 + %6]15 +
Let + 560 + 156t + 156t + 156t T Ets, Eto * €t =
3Ehs + 3Es05 Eso *Etg = 3Es + 13Et0 T 1560 + 136t T 156t +
Lev, + 556t
(v) K = K2 (sy = s0, tg = ta, t] =13, t5 = to, t5 = t5)
which is characterized by

_ 1 1 1 1 1 1
€s9 ¥E€s9 = 13%ho + 13¢h + 15he + 15Shs + 15Chy + 15%hs +

1 1 1 1 1 1 _
Esto + Egtl + ﬁetz + ﬁgt:; + ﬁ€t4 + E€t57 8to * 8t() -
1 1 1 1 1 1 1
5€hs + 5€s07 €s0 ¥ Etg = 3Es0 + 125t + 25t + 126t + 126t; +
1 1
E€t4 + Egts'
(vi) K = K13 (sg = s0, tg = t5, t; = t4, t; = t3) which is
characterized by
_ 1 1 1 1 1 1
€so ¥E€sg = 15€ho T 13€h1 T 15€hy T 15€hs + 15€hs T 15€hs T
1 1 1 1 1 1 —
Egto + ﬁe’ftl + E€t2 + 58753 + E€t4 + Egtm Etg * €y =
1 1 _ 1 1 1 1 1
§€h1 + §€Soa 850 * gto - 5680 + Egto + ﬁetl + ﬁgtz + Eetg +
1 1
126t + 125ts-
(b) When H(¢;) = {ho}, H(¢5) = H, in a similar way, we have K},
13 13 13 13 13
Ky, Kyys Kyp, Ky and Ky
(5) Case of |K| =12 i.e. H(gl) = {ho, hg}, H(ég) = {ho, hg}

K12 = {h()? h’17h27 h37 h’4a h57 50, 51, 827t07t17t2}7
sy = Ehy ¥ €5y (K =10,1,2), &4, =€, %4, (j =0,1,2).

(a) K = K (s; = s9, 8 = 82, t; = to, t; = ta) which is

characterized by

1 1 1 1 1 1
€so * €sg = 7E€ho T 1Eh3 T 5€t0, €ty * €ty = 7Ehe T 7€Rs + 3Es0>

1 1
€50 * Etg = 5Es0 T 3Eto-

(b) K = K/* (sg = s1, 85 = 89, tg = tg, t] = t3) which is
characterized by

1 1 1 1 1 1
Es9 ¥ Esg = Zghz + Zghg, + §5t27 Etg * Etg = Zeho + Zghg + 58807

_ 1 1
€s0 ¥ Etg = 3Es0 + 7€t -
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(c) K = K (sg = s, s = 81, ty = to, t] = t3) which is
characterized by

_1 1 1 _1 1 1
€s0 ¥ €s9 = 7E€hy T 7€hs T 5€t1, €tg * €tg = 7ERe T 7ERs T 5Es0s
1 1
Es9 ¥ Etyg = 5580 + §€t2~

(d) K = K? (sq = s1, 85 = 82, tg = t1, t; = t3) which is
characterized by

1 1 1 1 1 1
Esg ¥ Es9 = Zghg + Z€h5 + §€t17 Etg *¥ €ty = Zghg + ZE}L5 + 56817
1 1
g9 ¥ Etg = 5531 + §5t1-
(e) K = K!* (sg = 89, 5 = 81, tyg = t1, t; = t3) which is
characterized by

1 1 1 1 1 1
€so * €s9 = 7E€Ry T JEhs T 5€tys Etg * Etg = 7ERy T 4Ehs T 3E€s¢)

_ 1 1
€s0 ¥ €ty = 5Es + 5Ety-

(f) K = K§* (sq = 82, s = s1, tg = to, t; = t;) which is

characterized by

1 1 1 1 1 1
Esg ¥ €sg = 7€h T 1€hs T 5E€t, €ty * €ty = 7€ + 7Ehs T €50,

Eso * Etg = 3Es5 T 3Et,-
(6) Case of |[K|=11.
(a) When H(fl) = {ho, hg, h4}, H(fg) = {ho, hg} i.e.

K;l = {ho,hl,hz,hg,h4,h5,80,$1,t0,t1,t2},
Esp = Eny ¥ Eso (K =0,1) , 6, =ep, x4 (1 =0,1,2).

(i) K=KY4 (sg =so0, 5] =51, tg = to, t] =t3) which is
characterized by

1 1 1 1 1 1
Esg*¥Esyg = 6€h0+6€h2+65h4+65t0+68t1+g€t2’ Etog*Etyg =
1 1 1 1 1 1 1
Zgho + Z€h3 + 1580 + 15517 6So * 8to - 1680 + 1551 + ggto +
1 1
68151 + 6€t2.
(i) K = K1 (sg = s1, tg =to, t; = t2) which is character-

ized by

_ 1 1 1 1 1 1 _
€s0*¥E€sy = GER T §ERs T §ERs T 5Eto T 5E1 T 5Etas Etg ¥Ety =

1 1 1 1 _ 1 1 1
ZEhO + Z€h3 + 1850 _I_ 18817 580 * 8to - 1650 + 1551 _I_ Egto +

1 1
68151 + 68,52 .

(iii) K = K2 (sg = s0, 87 = 51, tg = t1, t; =ta) which is

characterized by
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€50 %Esg = §€ho T §€hy + §€hy + 516+ 5E1 T §E1yy Eto*Ety =
16hs + 7Ehs + §E€so + FEs1, Eso * Etg = 1Eso T 1Es1 T §EL T
%&}1 + %&}2.
(iv) K = K!} (sy = s1, tg =t1, t; =t3) which is character-
ized by
Eso*Esy = £y + 5Ehg T ERs + 5E10 + 564 + 5E4,, Etg*Eyy =
7116112 + z_llghs + }1550 + igsu Esg *¥ €t = 411580 + }1551 + %Eto +
56t + 6,
(v) K =K1 (s5 = s0, 57 =81, ty = ta, t7 =t1) which is
characterized by
€50 %Esg = §Eho + §€hy + §Ehy T+ 516+ 56 T §Etys Eto*Ety =
16, F 16y T 35 + 1€, Esp ¥ €ty = 1Esy + 3€5 + 56 +
sy + t€,.
(vi) K = K} (sy = s1, tg =t2, t; =t1) which is character-
ized by
Eso*Esy = £y + §Ehg T ERs + 5E40 + 56 + 5E4, Eto*Eyy =
16hy + §Ehy + §Eso + FEs1, Eso * €ty = $Eso T 1Es1 T 5E4 T
56t + 61,
(b) When H (¢1) = {ho, h3}, H(ly) = {ho, ho, ha}, in a similar way,
we have K}, K, KL, KL, K} and K}
(7) Case of |K| = 10.
(a) When H(El) = H, H(fg) = {h[), hg} ie.

10 _
Ka - {hOa h17 h’27 h3; h47 h’57 S0, th tl) t2}7
€, = €n, ¥ €1, (K =0,1,2).
i) K=K (sy = so, ty =to, t; =t3) which is character-
ized by
Eso * Eso = 75Ehy T 15Ehy T 15Ehs t 15Ehs T 1560y + 15ERs +
s0 T =s0 T 12%ho T 12%h1 T T2<he T 3%k T 13%ha T 12%hs
1 1 1 _ 1 1 1 _
6Eto T §Et1 T §Etas Eto ¥ €ty = Ehe T 7E€hs T 5€s0, Esp ¥ Ety =
1 1 1 1
5650 + Egto + 65751 + 6€t2.
(i) K = K2 (sg = so, ty =t1, t; =t3) which is character-
ized by
Eso * sy = 15€ho T 15Eh1 T 15Ehs + 15Ehs + 15Ehs + 15ERs +
s0 T Ss0 T 12%ho T 12%h1 T T2%he T 13%ha T 13%ha T 12%hs
1 1 1 1 1 1
§€to T €t T §Ctayr Eto ¥ €ty = 7€y + 7E€hs T 5Es0, Esp ¥ Etg =
1 1 1 1
5€s0 + 6Eto + 6t + GEta-
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(iti) K = KX (s = so, tg = ta, t; = t1) which is character-
ized by
oo ¥ Esg = SERy + SER, + SER, + SER, + SER, + SER +
s0 T =s0 T 12%ho T 12%h1 T 13%he T 13%hs T 12%ha T 12%hs
TE1 t 1€, + 261, €1y ¥ Etg = TER, + TER, + 240, Esp ¥ Eyy =
%580 + %&eo + %Etl + %&2.
(b) When H (¢1) = {ho, hs} , H(l2) = H, in a similar way, we have
K9, K19 and K.
(C) When H(gl) = {ho, hg, h4}, H(fz) = {ho, hg, h4} i.e.
KCIO = {h07 hl: h27 h37 h4) h57 S0, S1, tU? tl}a
Esp = Eny ¥ Eso (K =0,1), &, = ep; &4, (1 =0,1).
So = S0, S; = 81, tg =to, t; =11, €5y ¥ gy = %6% + %€h2 +
%8/14_’_%6750—}_%151517 5t0*8t0 = %eho+%€h2+%€h4+i680+i6817 880*
Etg = 1Eso T 3E€s1 + Tt T 3E4-
(8) Case of |K|=09.
(a) When H(El) = H, H(gg) = {ho, hg, h4} i.e.
Kg = {hOa hla h27 h3; h47 h57 SOath t1}7 Etj - ehj * 8Ifo (] = 07 1)
(i) K=K (sy =80, ty =to, t; =t;) which is character-

a

ized by
Eso ¥ Esy = %8}10 + %@u + %5}@ + %5113 + 1_125114 + %6}15 +
€10 T 3641, Etg % Etg = S€hy + 26k, + SER, T 3Esgs Esg ¥ Ety =
€5 + 1€t + 34,
(ii) K = K% (sg = S0, ty = t1) which is characterized by
Es0 % Esp = 15Ehe T 15Eh T 156k T 15Ehs T 15Ehs T 15Ehs T
%Eto + %stl, Eto ¥ €ty = %€h1 + éehs + %ehs + %650, Esg ¥ Ety =
1es + 16t + 1e4,.
(b) When H(¢y) = {hg,ho,hs}, H({3) = H, in a similar way, we
have K}, and Kj).
(9) Case of |[K| =8 ie. H(¢;)=H, H({;) =H.
K=HVL= {h(), hl, hg, hg, h4, h5, SQ,t()} which is the jOiIl of H
by L and characterized by
So = S0, by = to, €5y * Esy = 15Ehe T+ 15E T 15Ehs T 15Ehs T
%6@ + %éfhg, + %&Tto, Eto ¥ Ety = %é?ho + %ghl + 1_125h2 + 1_125h3 + %8@ +

1 1 =1 1
15€hs T 5€s0) €sp ¥ €ty = 5Es9 T 5E¢,-
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Remark. (1) We remark that H x L = K!® @2 K8 2 K!8 >~ K18
KPP = KPP Ky = K3 = K3 = Kf = K2 = K = K2
K8 = Koy = Koio = Kofy = Kohy = Koy = Kofy = Kis = Koig
Kotr = Koiy, K7 = Kp = Kig = Ky = K = K¢ = K2
Kig = Ky = Kyfp = Kopy = Kyl = Koy = Kypy = Ky = K
Koty = Koiy, Kol = Koy = Ko, Ky = Ky = Ky, Kof = K3
Kps, Koy = Ko = Kog, K = Kig = Ky, Kf = K = K,
KP? =K =2 KPP =2 KP?=K?=2KP? Kji = K=Ky and
K} = K} = K5 as extensions of L by H.

(2) K is a splitting extension of L by H if and only if K =~ H x L, K!2,
KXr HV L.

(3) K is a weakly splitting extension of L by H if and only if K = H x L,
K2, KD, VL KN, KIS, KA, K K8 KR, KL Iy K9, K,
K%, K or HV L.
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3.2. Extensions of hypergroups of order two by locally compact
abelian groups.

3.2.1. The structure of extension hypergroups. Let L = Z,(2) = {{y, (1} be
a hypergroup of order two with the convolution o on M®(L) where £, is unit

of L. Since the hypergroup structure of L is determined by
5g1 O(Sgl = qégo + (1 — q)5gl, 0<qg<1

where d, is the Dirac measure at ¢; € L. Let H be a locally compact abelian
group with unit hyg.

We will investigate the structure of extensions K of L = Z,(2) by H. Let
© be a continuous homomorphism from a commutative hypergroup K onto
L such that Ker ¢ = H, where H is assumed to be a closed subgroup of
K. Then K is written as the disjoint union of the sets H = ¢~1({y) and
Sy == ¢~ 1(¢)). Fix sg € S1.

Lemma 3.12. For each s € Sy, there exists h € H such that e = €p, * €5,.

Proof. For s; € S;, there exists h € H such that h € supp(e, * 55;) since
p(e5, ¥ €5) = 0, 0 dy,. Hence we see that hg = h™h € supp((en * €5,)” *€4).
This implies that s; € supp(ey, * €5,). Then

supp(e;, * £4) C supp(e, * €, * €,) = SUPP(En, * €,,) = sUpPp(es,) = {si}.

Hence we see that ¢, * Es) = Es;, namely Esi = Ep * Es;. O
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Let H(¢1) denote the stability group of H at sg € 51, i.e.
H(ly)={h€ H:cp*xes =€g}

Lemma 3.13. H Nsupp(e,, * 5,) = H({1).

Proof. Take h € H Nsupp(e;, * €5,). Then hg = h™h € supp(e, * e, * £4,)
= supp((en * €5,) * £5,). Hence we get so € supp(ey, * €5,). Therefore

supp(e, * €5,) C supp(e;, * €p * €5,) = SUPP(En, * €5,) = supp(es,) = {0},

since H is a group. Then, we see that ¢, * €5, = &5, namely ¢, * €5, = &5,
which implies that h € H({).

Conversely, we show that H({;) C H Nsupp(e,, * €5,). Take k € H({1),
then e, * £,y = €4, Since hg € supp(e, * €,), wWe see

k € supp(e,, * €k * £5,) = supp(e,, * £s,)-

Lemma 3.14. H(¢y) is a compact subgroup of H.

Proof. Since supp(e;, * €4,) is compact by the axiom (3) of locally compact
hypergroups and H is a closed subgroup of K, H Nsupp(e;, * €,,) must be
compact. Hence we have that H(¢;) is a compact subgroup of H by Lemma
3.13. ]

Let w(f;) denote the normalized Haar measure of H(¢;). We note that
w(f1) has the following properties.

(1) w(ty) xep, =w(ly) for h € H(ly).
(2) w(ty) *xw(ly) = w(ty).

(3) w(th)” = w(f).
We denote H/H (¢1) by Q(¢1).

Proposition 3.15. If K is a commutative hypergroup extension of a hy-
pergroup Zq.(2) of order two by a locally compact abelian group H and ¢ a
continuous homomorphism from K onto Z,(2) such that Ker ¢ = H, we
have the conditions (0) — (3) as follows.

(0) K is the disjoint union of the sets H = ¢~ 1({y) and Sy = ¢~ 1(¢1).
(1) &5, =€, x5, for some h € Q(4y).

(2) €5y ¥ 5y = qen * wW(ly) + (1 — Q)en xc x5y for some c € M'(H).
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(3) cxw(ly) =cand c™ =¢p *c.

Proof. (1) Since sy~ € Sp by the relation ¢; = ¢y, one can take h € Q(¢;)
such that

€so = €p * Esp
by Lemma 3.12.
(2) It is easy to see that e * ey, is written as

€4 ¥ Eso = qco + (1 — q)c* &,

for some cy,c € M'(H). By the fact that w(f1)*cy = co and supp(co) = H ()
by Lemma 3.13, we have ¢y = w(¢;). Hence we obtain

€5 ¥ s = qw(ly) + (1 — q)c* 4,
namely e, * 50 = qep x w(l1) + (1 — q)ep * ¢ x g5, by (1).

(3) We can take ¢ € M'(H) as ¢ * w(f;). Then we obtain ¢ * w(f;) = ¢
and ¢~ = ¢y xc. O

We see that all extensions K of Z,(2) by H are characterized by
H(ty), so €Sy, h€ H, c€ M*(H)

satisfying the conditions described in Proposition 3.15. Therefore we denote
such an extension K by K(H({y), sq, h,c).

When we take Hi(¢y), ro € S1, k € H and d € M'(H) satisfying
the conditions (0) — (3) in Proposition 3.15, we have another extension
K(Hl(gl),’l"o,k‘,d) of Zq(2) by H.

Proposition 3.16. Two extensions K(H (¢1), so, h,c) and K(H;({1),r0, k,d)
of Z4(2) by H are mutually equivalent as extensions if and only if H({,) =
H,(¢y) and there exists b € H such that e x w(ly) = e *x € * € * w(l1) and
d=egp*c.

Proof. Suppose that Ky = K(H (1), so, h, ¢) is equivalent to Ky = K(H{(¢),
ro, k,d) as extensions. Let ¢; be a continuous homomorphism from K; onto
Z,2) (i=1,2). Let K; = HUS; and K = HUR; where S; = ;' ({;) and
Ry = @5 '(¢1). Let v be an isomorphism from K to K, such that ¢ (h) = h
for any h € H and @01 = 1. Put ¢(sg) = ug € Ry. Since g, x&,, = €, for
h € H({1), we see that H(¢1) = Hy(¢;). For ug € Ry, there exists b € Q(¢;)
such that e,, = & * £,, by Lemma 3.12. Then, by ¥ (e, * £4,) = & * &y, it
is easy to see that b satisfies e x w(l1) = ey * &y * e * w(ly) and d = €, * c.
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Conversely, we assume that H(¢;) = H,(¢;) and there exists b € H such
that

ep*w(ly) =¢epxepxepxw(ly) and d = g, * .

Take ug € R; given by €,, = € x ,,. We put a map ¢ from K; to K, such
that

¢(€h) =En and 7vz)(550) = Euy

for any h € H. Let ¢; be a continuous homomorphism from K; onto Z,(2)
(1 =1,2). Then it is clear that ¢ is isomorphism from K; to K, such that

p20% = 1. O

3.2.2. Construction of the model. Let H be a locally compact abelian group
with unit hy and L a hypergroup of order two Z,(2) with unit ¢,. Take a
compact subgroup H(¢;) of H and denote the quotient space H/H ({1) by
Q(¢1). The normalized Haar measure of H(¢;) is denoted by w(¢;). Let K
be the disjoint union of the sets H and Q(¢;), namely
K=HUQ(k)
= {(60, hl), (61, hg * H(gl)) . hl, hg < H}
The Dirac measures at (€o, hy) and ({1, he *x H(¢1)) € K are realized respec-
tively in M*(L) ® M*(H) by
0y @ €py and Gy, @ (ep, * w(fy)).

Take and fix f € H. We define the involution ~ of K by

(50, h)_ = (g(), h_l) and (61, h * H(El))_ = (61, h_1 * f_l * H(fl))
Moreover we define the convolution *. of K in M°(L) ® M*(H) associated
with ¢ € M (H) such that ¢ * w(¢1) = ¢ and (84, ® €)” = (04, @ € * C).

(1) (550 ® €h1) *c (550 ® shz) = 550 ® (8h1 * €h2)‘

(2) (550 & ghl) *c (551 ® (5h2 * W(gl))) = (541 ® <€h2 * w(él))) *c (550 ® 5h1)
= 0, @ (epy * py xw(l1)).

(3) (0r, ® (en, * w(f1))) *c (6, ® (€ny * w(l1)))
= qégo ® <6h1 *Ehy *Ef* w(gl)) + (1 - q)éfl ® (‘Ehl *Epg ¥ EF K C)‘

Since the model K is determined by the compact subgroups H (¢;) of H,
f € H and c € M'(H), we denote K by K(H({y), f,c).

Now we arrive at the main theorem of Section 3.2.

Theorem 3.17. Under the preceding arguments we have the following.
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(1) The model K(H((y), f,c) is a commutative hypergroup and an exten-
sion of Z4(2) by H.

(2) All extensions K of L by H are equivalent to K(H (1), f,c) as ex-

tensions.

(3) The extensions K(H((y), f,c) and K(H(¢1),qg,d) are equivalent as
extensions if and only if there exists b € H such that €, x w(ly) =
epxepxep*xw(ly) and d =g, *c.

(4) The extension K(H({y), f,c) is splitting if and only if there exists
b€ H such that e xw(ly) =¢ep* ey xw(ly) and c =&, *w(ly).

Proof. (1) Since H is a locally compact group and H(¢;) is a compact
subgroup of H, the quotient space Q(¢1) = H/H(¢;) is a locally compact
space. Then the disjoint union K(H(¢1), f,c) = H U Q(¢) is also a locally
compact space. It is clear that the definition of the convolution % and the
involution ~ is well defined. By the definition of K(H (¢1), f,c), we know
that the convolution % and the involution ~ are continuous from the fact
that group operation and inverse operation of H as well as an action of H
on Q(¢) are all continuous.

The compactness of the support of (6, ® w(ly)) * (d,, ® w(fy)) is assured
by the fact that H(¢;) is compact. Since it is easy to check other axioms of
hypergroup, we know that K(H (¢;), f,c) holds axioms of a hypergroup.

Let ¢ be a mapping from K(H (¢,), f,c) onto Z,(2) such that (g, h) = 4,
and @(l1,h x H(l1)) = ¢; for h € H. Then it is easy to see that ¢ is a
continuous hypergroup homomorphism from K (H(¢1), f,c) onto Z,(2) such
that Ker ¢ = H. This implies that K(H (¢1), f,c) is an extension of L by H.

(2) Take an extension K of Z,(2) by H. Then K is characterized as K =
K(H(¢,), s, h,c) by Proposition 3.15. Put ¢ be a mapping from K onto
the model K (H ({1), f,c) given by ©(ep) = 04y @ €, and (e, * £5,) = dp, ®
(en *w(ly)) for h € H. It is easy to see that the mapping 1 is an involutive

isomorphism such that @901 = ¢ where s, is the continuous homomorphism

K(H(ly), f,c) onto Z,(2).

(3) We note that Ky = K(H(¢y), f,c) is equal to K(H(¢y), sg,h,c) such
that h = (lo,h),s0 = (l1,H(¢1)) and [h] = [f7] in Q(¢1), and Ky =
K(H(l1),g,d) is also similar. We assume that K is equivalent to K, as
extensions. By Proposition 3.16, there exists b € H such that

Ory @ € *w(l1) = by @ (80 * €y * £, * w(l1)),
dgy ® € = 0y @ (p % d).

Hence we get e, x w(l1) = ep e, x ey xw(fy) and d = g, *c.
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The converse assertion is clear by Proposition 3.16.

(4) We assume that K is a splitting extension. Then, there exists an injective
mapping ¢ from Z,(2) into K(H(¢1), f,c) such that ¢(¢y) = (o, ho) and
d(l1) = (61,0~ x H(¢y)) for some b € Q(¢1). Since

A(0p,) * P(0,) = @O, @ (g5 * € xep*xw(lh)) + (1 —q)dg, @ (g, *&, *ef %)
and
¢(0e, © 0y) x w(lr) = qby, © w(lr) + (1 = q)dp, @ (g, *w(tr)),
we get
g, %y xepxw(ly) =w(ly),
g, x€, xepxc=¢g, *w(l)
by the splitting condition (1). Then we see that e * w(fy) = & * € * w({y)

for the first term. Hence we have ¢, * ¢, * € * ¢ = c¢. Therefore we know
that

er*xw(ly) =epxepxw(ly) and ¢ =g, *w(ly).

It is easy to check the converse. O

3.2.3. Applications and examples. Under these discussions we calculate all
extensions K of hypergroups Z,(2) of order two by concrete locally compact
abelian groups H.

Example 3.18. H = R".
Since the trivial subgroup {0} of R™ is the only compact subgroup of R",
we get extensions K as follows.
K(c) = R*"UR" := {(0,h),(1,s) : h,s € R"}, where ¢ € M'(R") with
c =c.
Eoh) = E0~h)  Eag =E@1-s)  E0h) ¥EOk) = E0h+k)
E(0,h) * €(L,s) = E(Lhts)s  E(Ls) ¥ €1, = q€(0,0) T (1 — @)c x £(1,0)-

Remark. When ¢ € M*(R") is taking by (o), then K(c¢) = H x L which is a
splitting extension. M. Voit determined commutative hypergroup structures
on two disjoint real lines RUR ([V]). We note that the hypergroup structure
obtained here coincide with Voit’s result since the hypergroup structure of
the real line is known to be unique by Hm. Zeuner ([Z]).
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Example 3.19. H =7Z".
Since the trivial subgroup {0} of Z™ is the only compact subgroup of Z",
we get extensions K = Z" U Z" as follows.
Take f = (61,62, -+ ,€,) € Z" where ;, =0 or 1 for j = 1,2,--- ,n and
c € MY(Z"™) such that ¢ =g s * c.
K(f,e)=2"UZ":={(0,h),(1,s): h,s € Z"}.
Eh) = E(0~h)y € = EQ—f—s)s  E(Oh) * EOk) = E(0,h+k);
€(0,n) * €(1,5) = €(1,8) ¥ €(0,h) = E(1,h+s)>
€(1,5) * E(1,t) = GE(0,5+t+f) T (1 —q)ex E(L,s+t+f)-

Remark. If ¢ = £( ), then K(c) = H x L which is a splitting extension.

Example 3.20. H =T.

For a natural number m, a real number h is written in the form h = %’rk—l—r,
where k is an integer and 0 < r < %’r Then we denote the residue r by [h],,
ie. r=[hln.

We identify T with [0, 27) by
T > e «— [0];, € [0,27).

Then the product e®1e?2 in T corresponds to [0; +65]1 in [0, 27). For hy, hy €

[0,27), we can write p, * Epy = E[hy4holy -

(1) Case of H(¢;) = {0}.
Then we get extensions Ki(c) = TUT with ¢ € M*(T) such that
¢~ = ¢, which are similar to the case H = R" in Example 3.18.

(2) Case of H(¢;) = H.
The extension Ky of L by H is the hypergroup join H V L.
Since Q(¢1) = {0}, Ky =TU {0} :={(0,h),(1,0): h € [0,27)}.
€o,n) = EO[=h)>  E(10) T EWO)  EOR) *EQOK) = E(0,[h+k);
E(0,h) ¥ €(1,0) = €(1,0), €10 * €0 = ¢em + (1 — q)e(10)
where ey is the normalized Haar measure of H.

(3) Case of H({y) = Zy,.
Since Q(f1) = [0,127), K3(c) = TUS; := {(0,h),(1,s) : h €
[0,27),s € [0, £27)} where ¢ € M'(T) such that ¢~ = c.
E,h) = EO[-h1)y €5 = El=sln)y  E(0.h) ¥ E(Ok) = E(0,[h+k]1)s
E(0,n) * €(1,5) = E(1,[h+5]n)s
E(Le) * £ = £ Y100 S0, Lamssidy) T (1= @)CH £t fsr).
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Remark. Kj3(c) is homeomorphic with T U T. M. Voit [V] determined all
commutative hypergroup structures on two disjoint tori T U T. We remark
that these extensions obtained here also agree with his result since the hy-
pergroup structure of the one-dimensional torus is known to be unique by
Hm. Zeuner [Z]. When we identify £( ) with Voit’s notation 6 iy and ey 4)
with d(; eins), it is easy to check that the both are same.

Example 3.21. H = T?.
We identify T? = {(e?1, ) : 6,0, € [0,27)} with [0,27) x [0, 27).
(1) Case of H(¢1) ={(0,0)}.
Then we get extensions Ki(c) = T? U T? for ¢ € M'(T?) with
¢~ = ¢, which are similar to Example 3.18 and (1) in Example 3.20.

(2) Case of H(¢;) = H.
The extension Ky of L by H is the hypergroup join H V L.

(3) Case of H(¢1) = Z, x {0}.
Since Sy = [0, £2m)x [0, 27), K3(c) = T?US) := {(0, h1, ha), (1, 51, 52) :
hi, ha, s € [0,27), 51 € [0, £2m)} where ¢ € M*(T?) such that ¢~ = c.
E(0,h1,ha) = EO[=hl1[~hal1)s  E(1,81,50) = E(L[=s1ln.[=s2]1)>
€(0,h1,h2) * €(0,k1,k2) = 5(0,[h1+k1}1,[h2+kg] )s 8(0 hi,he) * €(1,81,82) —
E(L[hi+s1]n,ha+s2]1)s  E(,s1,82) %€ (Lt ,t2) = 45 Z J27r+sl+t1]1,[sz+t2]1)+
(1 — @) * €151 4+t1]m [s2+2]1) -

(4) Case of H(ly) = Zy X Ly,

Since Sy = [0, 227) x [0, £27), K4(c) = T2US; := {(0, hy, ko), (1, 51, 52)

: hy,he € [0,27),51 € [0,127), 5, € [0, =27)} where ¢ € M*(T?)
such that ¢~ = c.

E(0,h1,ha) = EO[=hl1,[~hal1)s  E(1,61,50) = E(L[=s1ln,[=52]m)>
€(0,h1,h2) * €(0,k1,k2) = €(0,[h1+k1]1,lha+k2]1)s
€(0,h1,h2) * E(1,81,82) = €(1, [h1+sl}n,[h2+52]m)
E(Lys1,s2) ¥ E(Ltr,t2) = 4 % > ico Z] =0 E(0,[£2m+s14t1]1,[L 2m+s2+t2]1)

+(1 - q)C * 5(1,[sl+t1]n,[sg+t2}m)
(5) Case of H(¢,) = Z,, x T.
Since Sl [ 127’(’) {0} K5< ) T2U81 = {(O,hl,hQ),(l,Sl,O) :
hi,he € [0,2), 51 € [0, £2m)} where ¢ € M*'(T?) such that ¢~ = c.

(0.1 he) = EO[=hlu[~h2l)s  E(1,5,,0) = EL[-s1]n.0)5
Z':(0 hi,h2) * 8(0 k1,k2) — 5(0 [h1+k1]1,[h2+k2]1)s
€(0,h1,h2) * 6(151, ) = &, [h1+sﬂm )

(

€ 1 »S1, ) * & 1 t17 Zl =0 8 27T+51+t1]1» ) * W(O,O,T)
+ (1 - CI)C * €(1,[s1441]n,0)-
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Remark. For K(c), if ¢ = £(0), then K;(c) = H x L which is a splitting
extension. K5 is also a splitting extension.

3.3. Extensions of the Golden hypergroups by locally compact abelian
groups.

3.3.1. The structures of extension hypergroups. Let L = {lo, l1,ls} be the
Golden hypergroup G with the convolution o on M?%(L) where £, is unit of
L. The hypergroup structure of L is determined by

1 1 _

5@1 (] (5@1 = 5(530 —|— 5(5{2, 61 — gl,
1 1

(ng o 552 = 5(5@() + 5(541, 62_ = fg,

1 1
(541 @) 5g2 — 5[2 O 5@1 = 55[1 —|— 5(5[2,

where ¢, is the Dirac measure at ¢; € L. Let H be a locally compact abelian
group with unit hyg.

We will investigate the structure of extensions K of L by H. Let ¢ be a
continuous homomorphism from a commutative hypergroup K onto L such
that Ker ¢ = H, where H is assumed to be a closed subgroup of K. Then
K is written as the disjoint union of the sets H = ¢~ '({y), S1 := ¢ 1({)
and Sy := ¢~ 1({y). Fix s; € S; and sy € S,.

Let H(¢;) denote the stability group of H at s; € S;, i.e.

H(l;):={h € H:¢cpx*es, =¢}.
We note that H(¢;) does not depend on the choice of s; € S; and that
H(¢;) is a compact subgroup of H by Lemma 3.14 for i = 1, 2.

Let wp, denote the normalized Haar measure of a compact subgroup H
of H. The next lemma is useful for our arguments hereafter.

Lemma 3.22. For a compact subgroup Hy of H, if a probability measure p
on H satisfies that supp(n) C Hy and wy, * i = p, then we have u = wpy, .

Proof. For € M'(H) with supp(u) C Hy, we can write y = / endpu(h).
H
We assume that p = wpg, * p. Then, we have ’

= Wh, * L= W, */ endp(h) = / wh, * epdp(h) = / wr,dp(h)
Hy Hy Hy

o / 1d'u(h) = WH, * IM(HO) = WH, * 1= WH,-
Hp

Hence we get the desired conclusion. 0
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Let w(¢;) (i = 1,2) denote the normalized Haar measure of H(¢;). We
note that w(¥¢;) has the following properties.

(1) w(li) %2 = w(ls) for h e H(L,).
(2) w(t;) = w(ﬁz) = w(l;).
(3) w(ti)” = w().

Proposition 3.23. If K is a commutative hypergroup extension of the Golden

w
w
w

hypergroup G = {ly, l1, 02} by a locally compact abelian group H and ¢ is a
continuous homomorphism from K onto G, we have the conditions (0) — (7)

as follows.
(0) K 1is the disjoint union of the sets H = ¢~ (ly), Sy = ¢ '(¢1) and
Sz =7 (L2).

Let H(¢;) denote the stability group of H at s; € S; and w({;) the normal-
ized Haar measure of H({;) for i =1,2. Fix sy € Sy and sy € Ss.

(1) g5, = &5, * s, and e —5,72*552 for some hy, hy € H.

(2) 531 * 5, = 3Ep, * w(ﬁl) + 2ep, k0L x5, for some ¢ € M(H).
(3) €5, % €5y = 5En, ¥ w(la) + 364, ¥ o x5, for some ¢ € M*(H).
(4) €5, * E5y = 3C1 %€ + 205 % £y,

(5) w(ly) xw(le) xc1 =c1 and w(ly) *w(ls) *x ca = Co.

(6) ¢f =c1%ep, and c; = o * &y .

(7) crxcr =w(lh) xw(ly) xe;,, and coxcy = w(ly) *w(ly) x g .

Proof. (1) Since e, € S; by the relations ¢;~ = ¢; (i = 1,2), one can take
h; € H such that e = Eh; * Esi by Lemma 3.12.

(2) and (3) It is easy to see that €, * g, is written as

1 1

500 + 501 * Egy

for some cy,c; € M*(H). By the fact that w(f;) * e,, = &,,, we have that
w(ly) * co = co and w(ly) * ¢; = c1. Since supp(cy) = HN supp(e;, * €5,) =
H(¢1) by Lemma 3.13 and w(#;) x ¢y = ¢, we get g = w(f1) by Lemma 3.22.
Hence we obtain

€, ¥E5 =

_ 1
g, ¥ s = éw(él) + 501 * €y,

1 1 -
namely e, * €5, = 5€n, ¥ W({1) + 56n, ¥ C1 ¥ €5, by (1) €5, = €4, *¥€;,. In a

similar way, we obtain e, * €4, = %ghQ xw(le) + %5@ * Cg * Eg, .

(5) and (6) We may suppose that w(f;) *x w(f3) * ¢; = ¢1 by the fact that
w(l;) * €5, = €,,. From the equality: e, *&,, = 3w(l1) + 3¢1 * &5, we have

_ _ 1 N T | 1
(65, *€s) = §(w(€1)) + 50 *e,, = §w(€1) + 54 * Ep, % Eay-
Since (g7, *€5,)” = €, * €5, We get ¢; x &, = c1, namely ¢; = ¢ x¢p,. In a

similar way to the above, we have w(f;) *x w(la) * co = ¢ and ¢; = g * €p,.
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(4) and (7) It is easy to see that £, * 5, = 3¢5 % 5, + ¢4 * &, for some
c3,cq4 € MY(H) such that w(f1) x w(fy) * c3 = c3 and w(ly) * w(ls) * ¢y = ¢y.

Then

1 1 1
(€5, %Eg, ) ¥E5, = 1 *Ens *01+Z*5h1 KEp, kO K Co*Ey, +§w(€1)*w(€2)*ghl *E gy s

1 1 1
s, % (€5, ¥ Egy) = —Epy * C3 + JE X Cax s+ Z(ehl % (1 % C3 4 Cq % Cp) * Es,.

4
By the associativity: (e, * €5, ) * €5, = €5, * (€5, * €5,), We have ¢y * €5, = ¢3
from the first term and 2w (l;) * w(ls) * €5, = €1 * €3 * £, + €4 * ¢4 from the
last term. Since ¢; = c¢; * €p,,, we see that cs = ¢; . In a similar way, by the
associativity: eg, * (5, * €5,) = (€5, ¥ €5,) * €5y, We have cqg = co ¥ €y, = 5.
_1

— 1 — o,
Then we see that e,, * €5, = 5¢ * &, + 3¢5 * &,,. From these equalities we

obtain
2w(l) xw(ly) *ep, =cC1*C3%eEp +Caxcy
=1 % (C1 % Epy) *Ep, + (Cakep,) * (Coxep,),

namely
2w(l) x w(ly) = c1 %y ke, + Co % Co *Epy -

This fact implies that supp(w(¢;)*w(ls)) = supp(cy *cq*ep, ) U supp(eg * o *
en, ). Hence we see that supp(cy *xcy*ep,) C H(¢1)H (¢2) and supp(ca*ca*ep, )
C H(¢1)H (l3). Since w(ly)*w(ls)*c; = ¢;, we have ¢y xcy*xep, = w(ly)*w(ls)
and ¢y % cg ¥ €, = w(ly) * w(l2) by Lemma 3.22. Therefore, we get ¢1 * ¢ =
W(l1) *w(ly) * €, and ¢y * o = w(l1) ¥ wW(lz) * €. O

We see that any extension K of L by H is characterized by
H(ly), H(ly), 51 €S1, s5 € Sy, hi,hy € H, c1,c5 € M*(H)

satisfying the conditions described in Proposition 3.23. Therefore we denote
such an extension K by K(H({y), H({3), s1,S2, h1, ha, c1,Ca).

When we take Hl(fl),Hl(fg),tl c Sl, ty € SQ, k?l,k?Q € H and dhdg c
M (H) satisfying the conditions (0)—(7) in Proposition 3.23, we have another
extension K(H1<£1), Hl(gz), tl, tQ, kfl, kg, dl, dQ) of L by H.

Proposition 3.24. Two extensions K(H (¢1), H({3), $1, S2, h1, ha, ¢1,¢2) and
K(Hy(6), Hi(ls), t1,ta, k1, ko, d1,ds) of L =G by H are mutually equivalent
as extensions if and only if H(¢y) = Hy(¢1), H(¢2) = Hi({2) and there exist
bi,by € H such that e, *w(l1) = ey, xep, *ep, *w(l1), €p, xw(la) = €, * &, *
Eny ¥ W(la), dy = &, * c1 and dy = g, * cy.



50

Proof. Suppose that Ky = K(H({1), H(¢3), s1, S2, h1, he, c1, c2) is equivalent
to Ky = K(H1(01), Hi(¢3),t1,ta, k1, ka,dy,ds) as extensions. Let ¢; be a
continuous homomorphism from K; onto L (i = 1,2). Let K3 = HUS; U S,
and Ky = HU T, UT, where S; = ¢, (¢;) and T; = ¢;'(¢;). Let ¢ be an
isomorphism from K to K3 such that ps 01 = 1. Put ¢(s1) = uy € T}
and ¥ (sg) = uy € Ty. Since g, x &,, = &,, for any h € H({;), we see that
H(;) = Hi(¢;)(i = 1,2). For uy € Ty and uy € Ty, there exist b; and by € H
such that e, = ¢, x¢&;, and e,, = &, * &, by Lemma 3.12. Then,
€y = (64, % E1,)” = b, ¥ &, = €y * € ¥ €4y = by ¥ Epy ¥ E, * Eqy-

By the relation that e, = ¢, *¢e,,, we have e, = ¢, *&,, since Y(g;, *e5,) =
V(en,)” *1(es,) = €, * €y, Hence we have

Epy ¥ Euy = Eby * Epy ¥ Ep ¥ Eyy,
namely

Eky ¥ Eyy = Epy ¥ Epy ¥ Epy * Eqy-

Since g, * w(f) = &,,, we obtain

Ery *kw(ly) = ey, * ey, ke, xw(l).
In a similar way, we also get

Eky * W(lo) = €y, * Epy * £y x W(la).

Since €, * £y, = &;, * &, and &, = &, * £,,, we have

1 1 1 1
€y * Euy = §w(€1) + §d1 * £y = iw(&) + 80 ¥ dy * €y
Since
7,/)(55_1 * 581) - 77Z}(851)_ * ¢(5s1) = 51:1 * Euy
and

bleren) = ¥ (500 + jeran, ) = jull) + ja vt
1

1
= 5&)(61) + 501 * Eygy

we have

1 1
8;1 *Eyy = §W(€1) -+ ECI * Eqg-

Hence we get d; * €5, = c; from the last term, namely d; = &, ¥ C1- In a

similar way, we see that dy = Ep, * C2-

Conversely, we assume that H(¢y) = Hy(¢1), H({2) = Hi(¢2) and there
exist by, by € H such that

ek, kw(ly) = €y, *ep, *Ep, xW(l1), gy x wW(la) = €p, * £p, * £y * wW(la),

dlzal;*cl aundalg:asb’1 * Co.
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Take uy € Ty and up € Ty by €., = ¢, *&;, and €., = €, *&;,. Then we have

Cupy = (5b1*5t1) = by ¥Ey T Eby KE KEyy T Epy KE KE KE, KEY KEy, = Ep Ky

by the relation g, * w(l1) =€, *¢, *¢&, *w(l1) and

Euy ¥ Eyy = Ep ¥ ¥ Epy ¥ Eyy

= &y, * &, ¥ € xw(l) +

=3 SEp, ¥y, ¥ Eky xdy X Eyy

2

= 56;“ xw(ly) + 55;” k C1 * Eqy

by the relation d; = Ep, * C1 and €4, = €, * €,,. In a similar way, we have

_ - _ 1 1 _
Euy = Eny ¥ Eups Cuy ¥ Euy = 5Eny * W(la) + 3En, * Co ¥ &y, and &y, ¥ &y, =

%Cf * &y, T %CQ_ * Eqpe
We put a map ¢ from K; to K5 such that

V(ep) =en, (en *es,) = ep ke, and (ep, * €5,) = € * £y

for h € H. It is clear that ¢(S;) = T; for ¢ = 1,2. Since

1 1
Blew x2n) =0 (o xlt) + o0 s xes)

= 5m * w(ly) + Chy % CL* Euy = Euy * Euy,

we have ¢(g,, *€4,) = ¥(gs,) ¥ ¥(gg, ). In a similar way, we know that 1 is a

homomorphism. Since

1/1(68_1) = w(gf; * 551) = 5}:1 * Eyy = 5;1

and Y(ey,)” = g, we get Y(e,.) = ¥(gs,)”. In a similar way, we obtain that
Y(e;,) = ¥(es,)”. Moreover, for a continuous homomorphism ¢; from K;
onto L (i = 1,2), it is easy to check that @9 09 = . O

3.3.2. Construction of the model. Let H be a locally compact abelian group
with unit hg and L = {{g, {1, s} be the Golden hypergroup G with unit ¢,.
Take any compact subgroup H (¢;) of H where H(¢y) = {ho} and denote the
quotient space H/H (¢;) by Q(¥¢;) for i = 1,2. The normalized Haar measure
of H(¢;) is denote by w(¢;) (i = 0,1,2). Let K be the disjoint union of the
sets H,Q(¢1) and Q(¢3), namely
K=HuUQ((t)UQ(l)
The Dirac measure at (¢;,h* H({;)) € K is realized in M°(L) @ M°(H) by

0o, @ (e x w(ty)).
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Take and fix fi, fo € H(¢1)H (2). We define the involution ~ of K by

where fo = hg. Moreover we define the convolution *, of K in M*(L) ®
MP(H) by the following.

(1) (6y ® €ny) *c (0, @ (Eny x w(li))) = (O, @ (eny * w(li))) *c (0y @ €ny)
= 0y, @ (Ep, * Epy *w(l;)) for i =0, 1, 2.

(2) (551 ® (5h1 * w(gl))) *e (541 ® (5}12 * wwl)))
= 100, @ (en, ¥y * e *wW(01)) + 300, @ (Eny * Eny * w(ly) * w(ls)).

(3) (552 ® (5k1 * w@?))) *e (542 ® (5192 * W(EQ)))
= 100, @ (e, *Epy *Epy xw(l2)) + 300, ® (Eny * Epy * W (L) * w(La)).

(4) (0r, @ (en * w(l1))) e (0, @ (€5 ¥ w((2)))
= (0r, ® (e * w(l2))) *e (0, @ (en * w(f1)))
= 100, @ (en x e * w(ly) * w(ls)) + 307, @ (n * & * w(ly) * w(la)).

Since the model K is determined by the compact subgroups H(¢), H ({s)
of H and fl; f2 < H(gl)H<€2), we denote K by K(H(fl), H(fg), fl; fg) Put
P(t) = (HEVH(G)/H(E), PAL) = {1 p € P} and Pyty) =
P(¢;)/P%(¢;) fori=1,2. Now we arrive at the main theorem of the section
3.2.

Theorem 3.25. Under the preceding arguments we have the following.

(1) The model K(H (1), H(¢2), f1, f2) is a commutative hypergroup and
an extension of L by H.

(2) All extensions K of L by H are equivalent to K(H (¢1), H({3), f1, f2)
as extensions.

(3) The extensions K(H({y), H(ls), f1, f2) and K(Hy(¢1), Hi(l2), g1, g2)
are equivalent as extensions if and only if [f;| = [gi] in Pa(¢;) for
i=1,2.

Proof. (1) Since H is a locally compact group and H (¢;) is a compact sub-
group of H, the quotient space Q(¢;) = H/H({;) is a locally compact space.
Then the disjoint union K (H (¢1), H({3), f1, f2) = HUQ(¢1)UQ(l2) is also a
locally compact space. It is clear that the definition of the convolution . and
the involution ~ is well defined. By the definition of K (H (¢1), H(l2), f1, f2),
we know that the convolution %, and the involution ~ are continuous from
the fact that group operation and inverse operation of H as well as an action
of H on Q(¥¢;) are all continuous for ¢ = 1, 2.
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We check the associativity of the convolution. It is easy to see that
{(0, ® w(t1)) *e (0, @ W(l1))} *e (de, @ w(l2))

= 10 ® (e, # wll0) » wl(l2)) 300 © (wl) ¥ ()

¥ 50, ® (e x () * 0(0)
and
(80, @ w(l1)) # {(0e, ® w(l1)) *c (3p, @ w(l2))}
= 100,® (e % (B x(66)) + 10, © ((0) * ()

+ %542 ® (w(l) * w(ly)).

Since f1, fo € H(¢1)H ({5), we obtain {(dy, @ w(l1)) *¢ (07, @ w(€1))} *c (0p, @
w(ly)) = (0g, @ w(l1)) *e { (8o, @ W(£1)) *. (60, @ w(lo))}. In a similar way, we
know that the associativity of other convolutions holds. For the involution,
it is easy to see that

{00, ®w(0)) %e (3, ©W(E0)}™ = 8, ® (e, *wlla)) + 500, @ (wllr) #(£2))
and
(00, @ w(l1))™ *c (6, @ w(l1))”
- %5&) ® (ep, # 25, * 25 * w(ly)) + %5@ @ (e, * e, xw(lh) xw(l)).

Since f1, fo € H({1)H(ls), we have {(dy, @ w(l1)) *c (0, @ w(l1))} ™ = (dg, @
wW(l1))™ *¢ (0p, ®w(¢1))~. In a similar way, we know that the other properties
of the involution hold.

The compactness of the support of (o, ® w(f;)) *. (6, @ w({;)) is assured
by the fact that H(¢;) and H(¢;) are compact and L is finite. It is easy to
check other axioms of a hypergroup. We omit the detail. Hence we see that
K(H(¢y), H(¢2), f1, f2) is a commutative hypergroup.

Let ¢ be a mapping from K (H (¢1), H(¢s3), f1, f2) onto L such that ¢(¢;, hx
H(¢;)) = {; for h € H and ¢; € L. Then it is easy to see that ¢ is a continuous
hypergroup homomorphism from K(H(¢y), H(¢3), f1, f) onto L such that
Ker ¢ = H. This implies that K(H(¢1), H(l2), f1, f2) is an extension of L
by H.

(2) Take an extension K of L by H. Then K is characterized as K =
K(H(ly),H(¢3),s1, 82, h1, he,c1,c2) by Proposition 3.23. By the conditions

(1) and (7) in Proposition 3.23:
53_1 = e,:l X Eg s 55_2 = 5,:2 * Egy,

crxcr =w(lh) xw(ly) xep,, caxco=w(ly)*xw(lz)*¢e,,
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we know that there exist aj,ay € H and fi, fo € H(¢1)H (¢3) such that

g =w(l) *w(ly) xe,,

0y C2 = w(ly) *w(ly) x €,

17
Ehy = €ay ¥ Eaqy ¥ Efyy Ehy = Eag ¥ Eay ¥ Efy.

Put ¢ be a mapping from K to the model extension K(H (¢1), H({3), f1, f2)
such that ¥(g,) = 0, ®ep, V(epkes,) = O0p, @ (Eay *en*w(ly)) and (epxeg,) =
3oy ® (€ay ¥ €p ¥ w(la)) for h € H. It is easy to see that the mapping v is
well-defined and bijective.

We have

1 1
(es *E5,) = 5550 R (ep, *w(ly)) + 5532 R (Epy * Eay * C1)
and
1 1
w(gsl)*c¢(651> - 5540 ®(€a1 *Eaq ¥Ef *w(£1>>+§642 ®(€a1 *Eqy *w(él) *W(KQ))

Since ep,, = €4, * €q, * €5 and g4, * ¢ = wW(l) * w(lz), we have ¥(e;, *
€s,) = Y(gs,) *c P(gs,). In a similar way, we see that 1 is a homomorphism.
Moreover,

Y(e;,) = V(e *€sy) = 00, ® (€a, * €5, * w(l1)).
By the definition of the model K (H (¢1), H({s), f1, f2),

P(Es)” = 00 @ (gq, * 7, ¥ w(h)).

Since €, = g, * &, * €, we have (e ) = 1¥(g5,)”. In a similar way, we
know that v preserves the involution. Hence ¢ is an involutive isomorphism.
If we take a continuous homomorphism ¢y from K(H(¢y), H(¢2), f1, f2)
onto L such that ¢o((¢;, h x H(¢;))) = ¢; for ¢; € L, then it is clear that
209 = .
(3) We note that Ky = K(H (1), H(¢2), f1, f2) is equal to K(H (¢y), H(¢5),
81, 82, h1, he, c1, o) such that h = (bg, h), s1 = ({1, H((1)), so = ({3, H((3)),
hi = fi, ha = fo, c1 = w(l1) xw(l2) and s = w(ly) * w(ly) and Ky =
K(Hy(l1),Hi(l2), 91, g2) is also similar. We assume that K is equivalent to
K5 as extensions. Applying Proposition 3.24, there exists a; € H such that

550 ® (gfl * W(fl)) - 550 ® (eal *Eqy ¥ Eg ¥ w(gl)%

3y @ (W(ly) * w(la)) = dpy @ (Eay ¥ wW(l1) * w(l2)).

Hence we get ay; € H(()H () and f1 * H(¢,) = algy = H(fy) i.e. [fi] = [g1]
in P5(¢;). In a similar way, we obtain [fa] = [g2] in Pa(l2).
The converse assertion is clear by Proposition 3.24. U
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Definition. Let L = {{y,¢1,--- ,¢,} be a finite commutative hypergroup
and H a locally compact abelian group with unit hy. Let K be an extension
of L by a locally compact abelian group H and let ¢ be a continuous ho-
momorphism from K onto L. Let H(¢;) be a compact subgroup of H such
that H(ly) = {ho}, H(¢;) = H(¢;) and let w(¢;) denote the normalized Haar
measure of H({;) for ¢; € L. If there exists an injective mapping ¢ from L
into K such that

(1) The mapping ¢ is a cross section of ¢ i.e. p(¢(¢)) = ¢ for £ € L and

¢(£0) = hy,
(2) @(0¢,) * (6¢,) = @(0¢, 0 ¢;) * w(ls) * w(ly) for £;, 0 € L,

then we call that the extension K of L by H splits or K is a splitting exten-
sion. Moreover, If a splitting extension K has a property:

(1) wt;) *w(l)) * w(l) = w(l;) * w(l;) for £ & supp(dy, o dy;),
then we call that the extension K of L by H is strong splitting.

Theorem 3.26. The extension K(H ((1), H((2), f1, f2) is splitting if and only
if 1fi] = [ho] in Pa(¢;) (i = 1,2) where hg is unit element of H. Moreover,
K is strong splitting if and only if K is splitting and H(¢1) = H({s).

Proof. We assume that K is splitting. Then, there exists an injective map-
ping ¢ from L into K (H (¢1), H(l2), f1, f2) such that ¢(ly) = ({o, ho), d(¢1) =
(01,ay * H(4y)), and ¢(l3) = (ly, a5 * H({3)) for some ay,as € H. Since
1 1
O(00) ¥ P(0r,) = 50 ® (g, e, * e *w(l1)) + 50, ® (£, &, xw(ly) xw(L2))
and
1 1 _
d(dg, 0 0p,) xw(ly) xw(ly) = 5550 ®Rwl) + 5552 ® (g, *w(ly) * w(ly)),
we get

€q ¥ Eq, ¥Ep ¥ wW(l1) = w(l),

o ¥ w(lr) * w(l)

a

€4 ¥ Eq ¥ wW(l) xw(ly) = ¢

by the splitting condition (1). Hence we know that

fix H(l)) = a3 * H(t,) and ay € H({1)H ().
In a similar way, we get

fox H(ly) = a3 % H({y) and ay € H(¢,)H(ls)

by the equation ¢(ds,) *. ¢(ds,) = ¢(de, © dg,) * w(ls). Therefore, we obtain
[fl] == [ho] n PQ(&) for 1 = 1,2
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Conversely, we assume that [f;] = [ho] in Py(¢;) for i = 1,2. Then there
exist ay,ay € H(¢1)H (¢s) such that

fix H(0y)) = a2+ H(l,) and fo * H({y) = a5 H({).
Put ¢ a mapping from L into K(H (¢1), H(¢3), f1, f2) such that
¢(lo) = (Co, ho), ¢(0r) = (1, ay * H(lh)), d(la) = (La, ay * H(Ly)).
It is clear that ¢ is a cross section of . It is easy to see that
&(0,) % d(04,) = %5&) ® (5, *eg, *eq *w(fh)) + %552 ® (eg, x5, *w(ly) xw(ls))
and
BB, 000 () = 566 D) + 300, ® (e, * wlla) » w(82))
Since e, * e, x5, * w(l1) = w(ly) and ay € H({)H({3), we get
$(02,) *c #(0e,) = P(bey © b¢,) * w(ly).
In a similar way, we obtain ¢(dy,) *. @(ds,) = @(dp, 0 0g,) * w(l2) and G(dp, ) *.
&(de,) = &(8p, 0 9p,) *xw(ly) *w(ly). Therefore K(H (¢1), H(l2), f1, f2) is split-
ting.
Suppose that K(H(¢y), H(ls), f1, f2) is strong splitting. Then we have
w(ly) * w(ly) xw(la) = w(ly) xw(ly).

Since

supp(de, © dg, ) = {lo, Lo},
we get w(ly) xw(le) = w(fy). In a similar way, we get w(fy) *x w(ly) = w(ls).
Therefore we obtain

w(ly) = w(ls).

The converse is clear. O

3.3.3. Applications and examples. Under these discussions we calculate all
extensions K of the Golden hypergroup L by concrete locally compact abelian
groups H.

Example 3.27. H = R".
Since the trivial subgroup {0} of R™ is the only compact subgroup of R",
we get only one extension K which is H x L.

Example 3.28. H = 7Z".
Since the trivial subgroup {0} of Z™ is the only compact subgroup of Z",
we get only one extension K which is H x L.



57

Example 3.29. H =T.

For a natural number m, a real number h is written in the form h = 2—”k+7’
where k is an integer and 0 < r < . Then we denote the residue r by [h],,
i.e. r = [h]y. For hy, hy € [0, 27r),€h1 * Ehy = E[hy+ha): -

We identify T with [0, 27) by

T3> e? 0 c0,2n).

Then the product e? 2 in T corresponds to [0 + 651 in [0, 27).
(1) Case of H(¢;) = {0} and H(¢y) = {0}.
The extension K of L by H must be H x L.

(2) Case of H(¢1) = H and H({y) = H. Then K = TUS; USy; =
T U {0} U{0}.
The extension K of L by H is the hypergroup join H V L.
We identify T, S; and Sy with {(0,h) : h € [0,27)}, {(1,0)}, and
{(2,0)} respectively. We denote by €(; 5y a Dirac measure of (j,h) €
K and by ey the normalized Haar measure of H.
€10 TEWO  E20) T EQ@0)  E(Oh) ¥ EOh2) T E(O[ha+hah)s
€(0,h) * €(1,0) = £(1,0)s  E(0,h) * €(2,0) = €(2,0),
E(L,0) ¥ E(L0) = 360 T 5E20),  £20) *£20) = €1 + 3E(10);
E(1L0) ¥ £2,0) = 3E(1.0) T 3E(20)-
(3) Case of H({1) = Zy,, and H(ly) = Zy,,. Then K = TU S; U Sy =
TUTuUT.
We identify Sy and Sy with {(1,s1) : 51 € [0, m%QW)} and {(2, s2) :
sy € 0, mi227r)} respectively. Let d be the greatest common divisor
of m; and my and put p; = ZLand py = ©2.
(a) Case that both p; and py are odd numbers.
We get one extension which is given by
€t T EW=silmy)r E2p50) T E@I-s2lmy)s
€(0,h1) * €(0,h2) = E(O.[h1+h2]1)y  E(0,h) * E(L,s1) = E(L[h+s1]my)>
E(0,n) * E(2,82) = E(2 [hts2]my)
E1s)*E(10) = 2m1 ey ' SO 2m s+t )"‘2%1 e 01 S A 2mts1+t1lm,)
E2.52)*E(2i2) = T 2k : C(0,[;5 2mts+tay 2p2 i e (1, [ 2mts-+talm, )
E(1,51)*E(2,52) = 2;172 iz 01 8(1[ 2-2mts1+s2 m1) 2p1 Zil 01 e ~2mts1+52]my )
This extension is splitting.
(b) Case that either p; or py is an even number.
We get two extensions up to equivalence as extensions. One is

the same in the above (1). Another one is given as follows.

We assume that ps is even number. Then we take f; € H(¢1)H ({5)
such that [f1] # [ho] in Py(;), for example, f; = ——27.

pipad
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1 pP1—

6(1 81) = 6(1 [7f1*31]m1)’ 6(_2782) = 8(27[752]777.2)7 g(ovhl) * E(Oth) -
€(0,[h1+h2]1)>
E(0,h) * E(1,51) = 5(1,[h+sl]m1)7 €(0,h) * €(2,s2) = E(2, [h+52]m2)

(

— mi—1
€(1,51)*¥E(1,t1) = 2mi Zk =0 E(0[ k 27r+f1+51+t1]1)+2p1 k 0 5(2[ ke 2n+sl+t1}m2)

_ 1 ma—1 p2
€(2,52)*¥€(2,t2) = 2y Zk =0 E(0[ k 27r+32+t2]1) 2p2 Zk 0 6(1,[%27r+32+t2]m1)’

1 p2—1 1 p1—1

E(1,51)*E(2,50) = 3y 2uk=0 E(1,[-2 2w+sl+52}ml)‘|‘gp1 k=0 E@ [ 2mts1+5lmy)"

(4) Case of H({y) = Z,, and H(l3) = H. Then K = TU S, U {0} =
TUTuU{0}.
We identify Sy with {(1,s1) : s; € [0, =27)}.
E1ysy) = EWl=s1lmy)s  E(2,0) = E@0)s  E(0.h1) * E(0,h2) = E(0,[h1+h2l1)>
E(0,h) * E(1,51) = 5(1 [h+sl}m1) €(0,h) * €(2,0) = 5(2 0)>
E1s1) *¥E(10) = 2m Zk 0 €(0,[E2mts1+t1]1) + 5(2 0)>
€(2,0) * €(2,0) = %61{ + 3 €H * 5(1 0)>
E(Lan) ¥E@20) = 3,,€H *E10) T 5820)-

In the case that H(¢,) = H and H({y) = Z,,, we obtain similar
conclusion for K = TU{0}UT.

Example 3.30. H = Z,, = Z/nZ.
If n is a prime number, then there are two extension i.e. K = H X L or
K = HV L. If n is an odd number, then the extensions are similar to 3-(a)

in Example 3.29. If n is an even number, then the extensions are similar to
3 in Example 3.29.

Example 3.31. H =7y X - -+ X Zso.
—_———

If H(¢;) = H and H(¢3) = {ho}, then we know that P»(¢;) = {po} and
Py(ly) = H = Zg X --- X Zs. In this case we obtain extensions associated
—_—

n
with each element of H, which are not mutually equivalent as extensions.



59

4. SIGNED AcCTIONS OF FINITE HYPERGROUPS AND THE EXTENSION
PROBLEM

4.1. Signed actions of signed hypergroups. For a finite set X = {1, x,
 ZTm}, B(M®(X)) denotes the algebra of all (bounded) linear operators
on the linear space M°(X) over C.

Definition. We call a a signed action of a finite signed hypergroup K on a
set X if « satisfies the following conditions.

(1) a is a homomorphism from M°(K) to B(M(X)) as algebras such
that a(e,,) is the identity mapping on M°(X)
(2) For ¢; € K and p € MY (X), ale,)p € ME(X)
(3) For the normalized Haar measure ex of K and u € M (X), a(ex)p €
MY(X).
Moreover, if the condition
(2) For ¢; € K and p € MY (X), a(e,,)u € M (X)

holds, then we call a an action of K on X.

We denote af(e.,) by a(c;). A subset S of X is called invariant under the
signed action a of K if supp(a(ex)d,) C S for any = € S.

Definition. A signed action « of a finite signed hypergroup K on X is called
irreducible if a non-empty subset S of X which is invariant under the signed
action a must be X.

For a signed hypergroup K, When we take X = K and p* (¢;)e., = e, *&,,
for ¢;,c; € K, we get a signed action p® of K on K. We call this signed
action p’ the (left) reqular action of K. It is easy to check that the regular

action p¥ is irreducible.

Lemma 4.1. If a non-negative measure p on X is invariant under an irre-

ducible signed action o of K on X, then supp(p) =0 or supp(p) = X.

Proof. Let p be a non-negative measure on X such that y is invariant under
an irreducible signed action « of K on X and p # 0. Put S = supp(p).
Then S # () because i # 0. The measure p is written by

,U/:tldazl ++tm5:(:m
where t; >0 (j = 1,2,--- ,m). Then we have

alex)p = alex)(t1dz + -+ tms,,)
= talex)dy + -+ tnalek)o,, .
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Since a(ex )0y, -, a(ex)ds, are non-negative probability measures by the
condition (3) of the definition of a signed action, a(ex)p must be a non-
negative measure. Then for any z € S, we have

supp(av(ex )dz) C supp(a(ex)u) = supp(p) = S.
Hence supp(p) = X by irreducibility of the signed action «. O

Proposition 4.2. An irreducible signed action o of a finite signed hyper-

group K has the unique invariant probability measure on X .

Proof. For the normalized Haar measure ex on K and x € X, put p =
aler)d,. It is easy to check that p is an a-invariant probability measure on
X.
Assume that p; and ps are a-invariant probability measures on X written
by
H1 = tl(;;vl + t25z2 + -+ tm(;zma
Ho = 515:1:1 + 525962 + -+ Sm(sxm-

We note that tq,t5,--- ,t,, and s1,s9, -+, 5, are all positive real numbers
by Lemma 4.1. Take the minimum value % among &4, %2 ... = and put
S; s17 so Sm

p = p — Zpo. Then, p is a non-negative measure on X and x; & supp(p)
by the fact that

t ti ti ti tm tz’
nwo= 31(_1__)5x1+"'+3i(___)5:ti+"'+8m(___>§xm
S1 Si Si Si Sm Si
t t; tm
— 51(_1__)(5ml+..._|_().5xi_|_...+5m(___)5%1.
S1 S; Sm Si

Hence supp(p) # X. It is easy to see that u is a-invariant. Then we have
supp(u) = ¢ by Lemma 4.1. This implies that g = 0. Therefore we obtain

17}

p = Ypy. Since pi(X) = 1 and pe(X) = 1, we obtain & = 1. Hence
M1 = H2- H

Remark. When the a-invariant probability measure g on X is written by
m = tldm + tz(st 4+ -+ tméxm,

where t; >0 (j =1,2,--- ,m) and Z;n:l t; = 1, the representing matrix of

a(eg) associated with the basis 0z, 04y, -+, 0y, 1S
ot o 1

to ty -+t

alex) = . .
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by the fact that a(ex)d,, = p, a(ex)dz, = p, -+, alex)d,,, = p. We note
that a(eg) is a rank one projection.

Definition. A signed action « of a finite signed hypergroup K on X is called
to be equivalent to a signed action  of K on Y if there exists a bijection ¥
from X to Y such that

B(cj) = Yo aufcy) o

for all ¢; € K where v, is a linear isomorphism from M°(X) to M®(Y") given
by ¢*(5m) = (5¢($) for z € X.

In this Chapter we report to succeed to determine all irreducible signed
actions of signed hypergroups Z,(2) (¢ > 0) of order two and all two dimen-
sional irreducible signed actions of hypergroups of order three.

4.2. Irreducible signed actions of signed hypergroup of order two.
Let K = {co, c1} be a signed hypergroup of order two with unit ¢y where the
structure is characterized by a parameter ¢ (¢ > 0) given by

Eey ¥ Ecp = €y + (1 — q)eq, .

We denote this hypergroup K by Z,(2). The total weight w(K) of K is
w(K) = % and the normalized Haar measure ex of K is given by

¢ 1
ex = e €¢; -
® I+gq C14+ q '
Let « be an irreducible signed action of K on X = {z1, 29, - ,2,,} and p

the unique a-invariant probability measure on X which is written by
n = tldm + t25xg + -+ tméxm

where 0 < t; <1 (j =1,2,---,m)and t; +to+---+t, = 1. Fort =
(t1,ta,+ -+ ,tm),  is characterized by a parameter t. We denote « by a.
Then we see that

al(er) = (14 g)a'(ex) — qa'(co)

and the representation matrices of of(ex) and a'(cy) associated with the
basis 0z, 04y, 5 0g,, in M°(X) are

ty t - 1 10 - 0
ty to -ty :
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Then we obtain

I+gti—q (A+ts - (I+9th
by (I+qts (I+qgta—qg -+ (1+qkt
o) = . . . - (%)
(1+Q)tm (1+Q)tm (1+Q)tm_q

with a parameter t = (ty, 2, ,ty,), where 0 < t; <1 (j=1,2,--- ,m) and
ti+to+---+t,, = 1. Let S, be the symmetric group of order m. For o € §,,
and t = (t1,t2, -+ ,tn), we denote (ty(1),to(2),  * ,to(m)) by o(t). Then we

have the following proposition on irreducible signed actions of Z,(2).

Proposition 4.3. (1) Whenm >2,0<t; <1 (j=12,---,m) and
ty +to+ -+t =1, the action o' given by (x) with the parameter
t = (t1,t2, -+ ,tm) is an irreducible action of Z,(2).
(2) All irreducible signed actions of Z4(2) are obtained in this way.
(3) For two irreducible signed actions ot and o' of Z,(2), ot is equivalent
to o if and only if there exists ¢ € Sy, such that t = o(t').

Remark. The signed action o of a hypergroup Z,(2) (0 < ¢ < 1) is an
_1

T when m > 2.

action if and only if m < 2% and L < ¢, <
q 1+q J

4.3. Two-dimensional irreducible signed action of a signed hyper-
group of order three. Let K = {¢g, ¢, o} be a signed hypergroup of order
three with unit ¢y and K = {xo, x1, x2} where yo(c) = 1 for ¢ € K. Let
a be an irreducible two dimensional signed action of K on X = {x1,z5}
and p = td,, + (1 —t)d,, (0 <t < 1) be the unique a-invariant probability

measure on X.

Lemma 4.4. Under the above situation there exists a measure v on X such
that a(c)v = x(c)v for some x € K where x # xo. Moreover, aleg)y =0
for the normalized Haar measure ex of K.

Proof. We may assume that there exists an eigen vector v € M°(X) with an
eigen value A(c1) # 1 such that a(c;)v = A(cp)v for ¢; € K by irreducibility
of the action o of K on X. Then we see that

aleg)v = aleg)a(cr)v = Mey)a(ex)v.

The fact A(c1) # 1 implies that a(ex)v = 0. Since a(e) is a linear combina-
tion of a(cp), a(c1) and a(cy), we obtain a(c)v = A(cg)v for some A(cs) € C.

By the fact that a(cic;) = a(c)alc;), we see that A(cic;) = Aci)A(cj).
Hence A(c) = x(c) for some x € K such that x # yo. O
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The representing matrices of a(eg ), a(cy), a(c1) and a(cy) associated with

eigen vectors p and v on M°(X) are

10 10
a(eK>=<0 0>,a<co>=(0 1>,

1 0 1 0
04(61)—<0 )\1>a04(02)_<0 )\2)7

where A\; = x(¢1) and Ay = x(c2).
The representing matrix F(t) of a(ef) associated with d,, and J,, is

E(t):<1it 11&)'

Take a matrix T'(¢) which satisfies that

ﬂ@:ﬂﬂ(éS)T@%

t -1
For example, we take T'(t) = ( L1 > and put

A@m:T@<1O>T@¥
Then we have

B A (1= N\t (L=t
A(t,\) = ( (1—\) — (1 =\t 1—(1—)\)t).

We note that A(t, ) does not depend on the choice of T'(t). Hence we
obtain irreducible signed actions o! and o} of K on X = {x;, 79} whose

representing matrices associated with ¢,, and d,, are respectively

(1) ai(er) = A(t, xa(c1)) and aj(ep) = A(t, x1(c2)),
(2) ag(er) = A(r, x2(c1)) and ag(cz) = A(r, xa(c2)).

Proposition 4.5. (1) The action « given by o*(¢;) = A(t, x(c;)) with the
parameter 0 < t < 1 is a two-dimensional irreducible signed actions
of K on X.

(2) All two dimensional irreducible signed actions of K are obtained in
this way.

(3) For the character x1, x2 € K, the actions o and 8" given by al(e;) =
A(t, x1(c;)) and B'(c;) = A(t, x2(c;)) respectively are never mutually
equivalent.

(4) The action ot (resp. [7) is equivalent to o (resp. 57 ) if and only
ift' =tort' =1—t (resp. ¥ =1 orr'=1-r).
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Example 4.6. The case that K is the Golden hypergroup G = {cg, c1, 2}
with unit ¢y. The structure equations of G are given by

Eoy * Ec; = 5o + 3¢y, oy * Ecy = 3Ecy + 3y Ecr ¥ €y = 3Ee; + 3Ees-
Let G = {xo0,x1, X2} be the dual of G such that xi(c;) = a = =5

1
X1(ca) =b= _11\/5, X2(c1) = b and x2(c2) = a. Then we have

at(c):< a+(1—a)t (1—a)t )
! (l—a)—(1—a)t 1—(1—a)t |’

oo b+ - (1- bt
e = e 1- (1 by

rry b+ (1 —b)r (1—=0)r
Frle) = ( (1—b)—(1—b)r 1—(1—b)r>’

ﬁr(02)2<( a+(1—a)r (1—a)r )

and

l—a)—(1—a)r 1—=(1—a)r
where 0 <t <land 0 <r < 1.

Remark. The signed action o' (resp. 37) of G is an action if and only if

—b 1 —b 1
Tp St g (vesp. 7 <7< 5.

Example 4.7. The case that K is the conjugacy class hypergroup K(S3) =

{co, c1, 2} of S3 with unit ¢. The structure equations of K (S3) are
€ep ¥E€¢p = 2600 + 25017 €eg ¥ Ecp = 3500 3€C1a €cy ¥ Ecy = €y

—

Let K(Sg) = {Xo, X1, X2} be the dual of K(Sg) such that X1 (Cl) = 1, X1 (CQ) =
—1, x2(c1) = —% and x2(c2) = 0. Then we have

10 142t 2t
toy o) —
o'(er) (0 1)"“02) <2—2t 1—2t>

1 3 3

—= 4 2r =T r r
TC = 2 2 2 ) TC =
o= (5 ) e (1)

where 0 <t <land 0 <r < 1.

and

Remark. The signed action o' of K(S3) is an action if and only if ¢ = 3.
The signed action 3" of K(S3) is an action if and only if § <r < 2.

A

Example 4.8. The case that K is the character hypergroup K(S3) =
{co, c1, o} of S3 with unit ¢q. The structure equations of K (5’3) are

1 1 1 _
€y ¥ E€cy = Ecyy Ecg ¥ Ecy = 1€co T 7€c1 T 5Ecas €ci ¥ €y = Ecy-
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—

Let K(gg) = {XQ, X1, XQ} be the dual of K(gg;) such that X1 (Cl> = ]_, XI(CQ) =
_%7 x2(c1) = —1 and x2(c2) = 0. Then we have

10 143 &
al(ey) = , of(cy) = 202 2
={o 1)@= s 1oy

. o —1+2r 2r . B r r
ﬁ(q)—( 29 1—2r)’ﬁ(c2>_<1—r 1—r)

where 0 <t <land 0<r < 1.

and

Remark. The signed action ! of K(S3) is an action if and only if 1 <¢ < 2.

1

The signed action 3" of K(S3) is an action if and only if r = 3

4.4. Applications to the extension problem. Our strategy to solve the
extension problem is to apply irreducible actions which are already deter-
mined. Let H and L be finite commutative hypergroups and K be an ex-
tension of L by H, i.e. the sequence

l1—H K2 L1

is exact. We note that K is a finite commutative hypergroup. We denote
L = {ly, 01, ,£,} and the unit by ¢y. Put S(¢;) = ¢7'(¢;) for ¢; € L.
Then K is decomposed as K = [JI_, S(¢;) where S({y) = H.

Next proposition plays an essential role to our strategy.

Proposition 4.9. Let p™ be the regqular action of K and p% be the action

of H which is the restriction of p’ to H. Then p% is decomposed as actions
of H by

(pip, K) = Z ® (pj; S(45))

where p; is an irreducible action of H on S({;) and pg is the reqular action
pt of H.

Remark. Let v; be the invariant probability measure on S(¢;) = {s1, 52, -,
Sy} under the action p; of H, which is written by

Vi =t1&s + 1285, + - + s,
where t; > 0 (¢ = 1,2,--- ,m) and > ;" ¢; = 1. Then we note that the
weight w(s;) is given by w(s;) = t,w(S(¢;)) = tyiw(¢;)w(H), refer to [IK2].

Our strategy.



66

(1) The irreducible action p; gives the convolution ¢j, * ¢, of h € H and

s € S;) by ep *e5:= pj(h)es.

(2) The invariant probability measure v; under p; gives each weight w(s)

for s € S(¢;), so that the normalized Haar measure ex of K is deter-
mined.

(3) The other structure comes from the conditions of commutativity of

the regular action p of K.

Example 4.10. The case that H = Z,(2) = {ho, i} (0<¢<1),L =7y =
{‘60761}7 K=HU S(El) = {ho,hl,Sl,SQ}.

(1) The case that K is hermitian, namely s; = s; and s; = ss.

By Proposition 4.3 and Remark, all two dimensional irreducible

actions p' of Z,(2) on S(¢;) are given by

thy - [ (T at—a (1+q)t

p ( 1) - )
A+a)(1—t) (1+a01—1)—q

where ﬁ <t < ﬁ and the invariant probability measure v on

S(¢1) under the action p' is
v=teg + (1 —t)e,.

Since w(S(¢)) = %rq, we have w(s;) = (IJ;Q and w(sy) = W.

We obtain the structure equations :

Epy ¥ &5y = pt<h1)551 = ((1 + Q>t - q)gsl + (1 + Q)<1 - t)gsw
€ ¥ = Pl(h)es, = (14 q)tey, + (1 +q)(1 — 1) — q)e,,

Es1 ¥Es9 = Ehys

€s, * Egy i+ ) Ehe (1 § q)t) €hys
q q
Tt (1+Q)(1 )Eho <1 (1+Q)(1—t)) o

where - < t< - +q

The case that K is not hermitian, namely s; = s9 and s, = s;. In

1

55 SO

this case it is easy to see that w(s;) = w(sz). Hence we get t =
the structure equations are

l\‘:h—t

1 1
(h‘l)ssl - 5(1 - q)Esl + 5(1 + q)5827

Epy ¥ &g =
1 1 1
Ehy ¥ &5y = pZ(h1)8$2 - 5(1 + Q)551 + 5(1 - q>552,
2q I—gq
Esy ¥ Egy Ehy T Ehy, €s; ¥ Egy = Egy ¥ Egy = Epy-

14+¢q 1+g¢q
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Example 4.11. The case that H = Z,(2) = {ho, 1} (0 < ¢ < 1), L =
Zp(2) = {lo, 01} (0 <p <1), K=HUS() = {ho,h1,51,52}. By similar
arguments to Example 4.10, we have the following.
(1) The case that K is hermitian, namely s; = s; and s; = ss.
We have the irreducible action of of Z,(2) on S(¢;) with ﬁ <t<

1—J1rq, w(sp) = L9 and w(s;) = BF2U=D We pug

rq prq
. pq . bq
g1 ¥E5 = (1 T q)t€h0 + (p (1 T q)t>€h1
+(1 = p)does, + (1 — p)dics,,
582 * 582 — Lgho _'_ (p — L)ghl
(I+q)(1—1) (1+q)(1—1)

+(1 - p)f0551 + (1 - p)flgszv
€5, ¥ sy = DEny + (1 —p)gocs, + (1 —p)gics,

where the parameters satisfy that d;, fi,g; > 0 (i = 0,1), do + d; =
1, fo+ fi = 1 and gy + g1 = 1. Then the regular action p*(s;) and

p (s9) are given by
0 0 o 0
PO 0 P g P
p (81) - 9
I (I+qgt-q (I—-pdo (1-p)go
0 1+q¢)(1—t) (I1-p)di (1-pa
Pq
0 0 0 o@D
_ pq
() = 0 0 PP gD
0 (14 q)t (1-pg A=p)fo

I I+q)(1—-t)—q (I1-pga (1-ph

One can determine the structure by applying the commutativity con-
dition p¥(s1)p" (s2) = p™(s2)p" (s1) as follows.

€gy ¥ Eg = _pa Ehy T p__pq En
1 1 (1 q)t 0 (1 q)t 1
1—t)r 1—p)(1—1t)r
+(1—p)(1—( t))ssl+( )i )532,

gy ¥Egy =

pq pPq
TET D (p_ (1 +q)(1 —t))
+<1 _p)M681 + (1 _p) <1 - t<1 — T)> 5527
)

€sy ¥ Esy = PEpy T (1 - p)(rgsl + (1 - T)ESQ
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Whereﬁqgtgéand()grgl%t,or%§t§ﬁand%ﬁrﬁl.

We denote K by K = K(t,u).
(2) The case that K is not hermitian, namely s; = s, and s, = s7. In
this case it is easy to see that w(s;) = w(s2) and ¢ = 3. Therefore

we obtain the structure equations :

2pq 2pq l1—p 1-p
€1 ¥E5y = 1 +q€h0 + (p_ 1——’—(] €hy + 9 Es1 + 9 €529
l—p 1—-p
€gy ¥ &5y = Egy ¥Egy = PERy + Tf‘fsl + TEST

Example 4.12. The case that H = G = {ho, h1, ha}, L = Zo = {ly, (1}, K =
H U S(ﬂl) = {h(), hl, hg, S1, 82}.
(1) By Example 4.7, a two-dimensional irreducible signed actions o' of

H are given by

. [ a+(1—a)t (1—a)t
a(ln) = ( (1—a)(l—1) 1—(1—a)t)’

oo bra-nt (a-b
O‘(h2)_((1—b)(1—t) 1—(1—b)t>

Wherea:’lzﬁ,b:%gandl’—_bbgtgﬁ.

a) The case that K is hermitian, namely s; = s; and s, = s5. We
Y $1 2

obtain the structure equations :

2 2
Eg ¥ E5y = 5(1 —a)ep, + 5(1 —b)eny,

1 2 1
Esy ¥ E5, = _5h0+5 (1—a)+¥a Ehy

1 2 at
Egg ¥Egy = )€h0+5 1+ Ehy

—b 1
where b S t S 1"

(b) The case that K is not hermitian, namely s; = sy and s; = s;.
In this case it is easy to see that the structure equations are

2 2 2
Eg) ¥ Egy = g&‘ho + 3(1 —+ a)€h1 + g(l + b)ghz,
2 2
Egy ¥ Egy = Egy k&g, = —(1—a)ep, + =(1 — b)ey,.

3 5
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(2) By Example 4.7, the other two-dimensional irreducible signed actions
B" of H are given by

. [ b+ (1 =b)r (1-=0)r
Frih) = ( (1—b)(1—r) 1—(1—b)7’>’

. B a+ (1 —a)r (1—a)r
Fihe) = < (1—a)(1—=r)r 1—(1—a)r>

e VA N e =b 1
where a = =2, b= —= and — <r < .

a) The case that K is hermitian, namely s; = s; and s, = s5. We
y $1 2

obtain the structure equations :

2 2
oy ¥ Esy = 5(1 —b)ep, + 5(1 — a)ep,,
1 2 1
€y ¥E5; = 5_7"€h0 —+ 5 ((1 — b) + ;b) Ehy
+2 (1 )+1
- —a)+-ale
5 r ha)
1 +2 - br
€g, ¥ g, = € - €
27 e 51—r) ™ 5 1—r) ™M
+2 14 ar
- €
5 1—r) "
Wherel_—f’bgrgﬁ.

(b) The case that K is not hermitian, namely s; = s, and s, = s7.

In this case it is easy to see that the structure equations are

2 2
o ¥ €5y = ggho + 5(1 + b)ep, + 5(1 + a)ep,,

€sp ¥Esy = Egy ¥Es5y =

2 2
(1 - (11— :

Example 4.13. The case that H = K(S3) = {ho, h1,ho}, L = Zy, K =
HU S = {ho,hl,hg,sl,SQ}.

(1) By Example 4.7, a two-dimensional irreducible signed actions a of H
are given by

ot = (3§ ) e = (7 1)
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a) The case that K is hermitian, namely s; = s; and s, = s5. We
Y $1 2

obtain the structure equations :

Esy ¥Es9 = Ehyy
1 2 1 2
€ ¥Eg = ggho + gghn Egy ¥ Egy = ggho + §5h1-

b) The case that K is not hermitian, namely s; = s, and s, = s;.
1 2

In this case it is easy to see that the structure equations are

1
€sy ¥ Esy = =E€hg + SEhys Esy ¥ Esy = Esp * Egy = Ehy-
3 3

(2) By Example 4.7, the other two-dimensional irreducible signed actions
(" of H are given by

1,3 3
—5 57 5T r r
"(hy) — 272 2 . B (hy) =
g ) <%—%T 1—%1“) g h2) (1—7’ 1—7’)
where%ﬁrﬁ%.

(a) The case that K is hermitian, namely s; = s; and s; = s5. We
obtain the structure equations :

1 1
€y ¥ Es9 = §€h1 + §€h2,
1 1 1 1
gy ¥E5 — §€h0 —+ <§ — @) Ehy + §€h2,
1 1 1 1
€gp ¥ Egy = mfho -+ (5 — m) En, T §5h2
where % <r< %

b) The case that K is not hermitian, namely s; = s, and s, = s;.
1 2

In this case it is easy to see that the structure equations are

1
gy ¥Egy = geho + aehl + §€h2,
1 1
€sy ¥ Eg = Egy K Egy = §€h1 + §€h2.

Example 4.14. The case that H = K(Sg) = {ho,h1,ha}, L = Zy =
{60,61},[( = HU S = {ho,hl,hg,sl,SQ}.

(1) By Example 4.8, a two-dimensional irreducible signed actions o' of
H are given by

10 —143t 3
thy) = tho) = 2 2 2
@ (fu) (0 1)’0‘(2) (g_gt iy
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a) The case that K is hermitian, namely s; = s; and s, = s5. We
Yy $1 2

obtain the structure equations :

Es1 ¥Esy =  Ehg,
1 1 1
gy ¥E5; = Egho—f‘gﬁhl + 1—§ Ehay

1 1 1
s s = l— o
Eo2 ¥ Eon 6(1—t)€h°+6(1—t)8h1+< 3(1—t))8h2

1 2
where 3St< 3.

(b) The case that K is not hermitian, namely s; = s, and s; = s7.
In this case it is easy to see that the structure equations are

1
€s1 ¥ Esy = €Ny + 5€h + 5Ehyy Esp ¥ Esp = Egy ¥ E5y = Epg-
3 3 3

(2) By Example 4.8, the other two-dimensional irreducible signed actions
6 of H are given by

ﬁ(h)z(? [1)>,6(h2)=( )

a) The case that K is hermitian, namely s; = s; and s, = s,. We
Yy 1 2

N N[+
N[ N[

obtain the structure equations :

€gy ¥ Egy = gehl + §5h2> €gy ¥ Egy = §5h0 + §5h2,
1 2
Esy ¥ Egy = ggho + §€h2.

(b) The case that K is not hermitian, namely s; = sy and s, = sq.
In this case it is easy to see that the structure equations are
1 2 1 2
€g) ¥ Esyg = TERg + TEhy, Es ¥ Eg = Egy ¥Egy = TEp; + TERy-

3 3 3 3
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5. CONDITIONAL ENTROPY ASSOCIATED WITH HYPERGROUPS

5.1. Entropy of hypergroup. Let X = {x1,25, - ,z,,} be a finite set.
For a probability measure 1 = a16,, + a20,, + - - - + a,0,,, on X, Shannon’s
entropy H(u) of p is

where n(z) is the entropy function i.e.

—xlogxr 0<ax<1,

(@) = 0 xz=0.

Let K be a finite signed hypergroup and X be a finite set. For an irre-
ducible signed action « of K on X, there exists the unique invariant proba-
bility measure p® on X under « by Proposition 4.2. We define the entropy
H () of the irreducible signed action o of K on X by

Moreover, we denote the entropy H(p®) by H(K) for the regular action p
of K.

Let M be a finite commutative x-algebra with unit 1 which is generated
by minimal projections ey, €1, - - , e, such that > je; = 1. For a state ¢ of
M, the entropy H,(M) of ¢ is given by

Ho(M) = D" n(o(e:)).

Let K = (K, M°(K)) be a signed hypergroup. For the canonical state ¢
of M*(K), we denote Hy(M°(K)) by He(K).

Proposition 5.1. Let K = (K, M*(K)) be a finite commutative signed hy-
pergroup and K be the dual signed hypergroup of K. Let ¢ and gg be the
canonical state of MP(K) and MY(K) respectively.

Then, the following formulae hold.

() M) = Togae() - 3~ 2 togu).

(2) H(K) =logw(K) — Y 5(([‘?)

log w(c),
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Proof. (1) Let K = {xo, -, X»n} be the dual signed hypergroup of K. We
denote the minimal projection by e; corresponding to each y; € K. Since

P(e;) = % and w(K) = w(K), we have

M) = Yo nfote) = (405

_ ; o(K) logw(K) — ; w(K) log w(x:)

= logw(K) — Z Zj((;f()) log w(x).

(2) Since the regular action p® of K is irreducible and the p'-invariant

xEK
probability measure /H’K on K is the normalized Haar measure
w(c)
ex = ——0c
K Z w(K)
of K, we have

HE) = 1) = e = ()

= logw(K) — Z

ceK

in a similar way to the above.

(3) Applying the formula (1) to K, one can obtain

H(K) = logw(K) — Z w(}% log w(x).

A~

Hence it is clear that H,(K) = H(K) by the formula (2).
Moreover, we have

H(K) = H(K) = H(K)

by the above equality and the duality K~K. 0

Remark. It is easy to check that
H(K) < log |K].

The entropy H(K) attains the maximum value log | K| if and only if K is a
group.
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Example 5.2. Let K = {0, 1} be a signed hypergroup of order two with unit
0 where the structure is characterized by a parameter ¢ (0 < ¢) as follows.

51 o 51 = q50 + (1 — q)(Sl

We often denote this hypergroup K by Z,(2). Let o be an m-dimensional
irreducible signed action of Z,(2) on X = {x, 29, - , 2, }. Then the repre-
senting matrix of the action « associated with the basis d,,,0,,, - ,0,,, in
MP(X) is given by

I+qti—qg (A+qgts ... (1+qght
(I+q)t: (A+gta—qg ... (1+qkt
Ta(ao) — I, Ta(51) — : . X .
A+ tm A+ Ptm . (1+tn—g
where 0 < t; < 1 and > _.", ¢, = 1 by Proposition 4.3.
The above action « is determined by the parameters t := (¢1,ta, -+ , )

so that we denote the action a by a'.
In the case that K = Z,(2) is a hypergroup, namely 0 < ¢ < 1, the
signed action o of K is an action if and only if dima! = m < % and
1
T S < g (m22).
Proposition 5.3. Let o' be an m-dimensional irreducible action of Z,(2)
on X where a parameter t = (t1,to, - ,t,) satisfies that ﬁq <t; < ﬁ for
alli and Y1 t; = 1.
Then the following hold.
(1) H(a") = 325 n(ts).
(2) H(ab) attains the mazimum value log m if and only if o' is a x-action.
(3) For a two-dimensional irreducible action o' of Z,(2), H(a") has the
minimum value if and only if o' is equivalent to the reqular action of
Z,(2).0
(4) For two-dimensional irreducible actions of and ot of Z,(2), ot is
equivalent to o' as actions if and only if H(at) = H(a").
Proof. (1) Since the invariant probability measure u® under the action o
of Zy(2) on X is
,uat = t15x1 + t25x2 +---+ tméxma

we see that the entropy of of is

(2) It is known that H(a') < logm. Moreover H(a') = > n(t;) = logm

if and only if t; =ty = --- = t,, = % This condition is equivalent to
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Tot (01)* = Toe(01), namely, o is a x-action of Z,(2) in the sense of Sunder-
Wildberger [SW].

(3) The two dimensional irreducible action o' is parameterized by t =
(t,1 —t) such that %q <t< ﬁ. Under the condition that ﬁ <t< ﬁq,

it is easy to see that H(a') has the minimum value if and only if ¢t = Tig Or

t= 1—J1rq. This condition implies that o! is equivalent to the regular action of
Z4(2).
(4) Tt is easy to see the statement (4) by the fact that o' = o' if and only

ift=tort=1-—1t, by Proposition 4.3. OJ

Remark. Let of (0 <t < 1) be a two-dimensional irreducible signed action
of Z,(2) = {0,1} and 7" be the representation of Z,(2) associated with the
action a. The representing matrix of 7*(dy) is given by

ray = ATai—a  Q+ovivi—i
=t (01 1+Vtvl—t (1+q¢)(1—t)—q)

Let u' be the unitary matrix such that

() Toe (8 ) = ((1) _Oq> |

Then u! is given by
o Vi V1Tt
Vi—t oVt

The entropy H(b") of the unistochastic matrix b* defined by u’ is
H(©) =n(t) +n(1 —1).

Let A® be the maximal abelian *-subalgebra of M,(C) which is generated
by Tyt(d9) and Tr:(d1), and B be the diagonal algebra of M,(C). Here
we note that B = (u')*A'u’. By the paper [C], M. Choda introduced the
conditional entropy h(Af|B) and showed that h(A'|B) = H(u') under the
above situation. Then we have a remarkable fact :

H(a') = H(u') = h(A'|B).

5.2. Conditional entropy associated with a subhypergroup. First,
we recall the classical conditional entropy. Let p be a probability measure
of a finite set X = {xg, 71, -+ ,2,}. For a mapping ¢ from X onto Y =
{y0,y1," -+ ,Ym}, we have a decomposition {By, By,---, By} of X by B; =
1 !(y;) and the conditional probability measure p; on B; by

PR IC))
1) =B,
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for x € B;. Then the conditional entropy of the decomposition of (X, )
given by ¢ : X — Y is defined by

Hu(y: X|Y) = Zu

where

) = 3 e = 3 0 (455
z€B; weB; (Bj)

Let M be a finite commutative x-algebra with unit 1 such that M consists
of linear hulls of the minimal projections e, ey, - - - , e, such that Y je; = 1.
Let N be a x-subalgebra of M with the unit 1 of M. We denote the minimal
projections of N by fo, fi---, fm such that Z;n:o f; = 1. For each minimal
projection e; of M, there exists the unique minimal projection f; of N such
that e; o f; = e;. Then, we define a mapping o from {0,1,---,n} onto
{0,1,---,m} by €; o fori) = ;. We note that f; = Zi@_l(j) e;. Let ¢ be a
state of M. Then, the conditional entropy of the conditional expectation F
from M onto N such that ¢ o E = ¢ is defined by

HE(MIN) = z¢ NESN LA

where

Holo ') = Y. (i&;) |

ico=1(4)

Let H, K, L be finite commutative hypergroups. Let H be a subhyper-
group of K and ¢ be a hypergroup homomorphism from K onto L such that
Kerp = H, namely,

1—wH— K-> IL—1

is exact. Then the hypergroup K is called an extension of L by H. Let ex
be the normalized Haar measure of K.

Under the above situation, we define the conditional entropy H(K|L) of
the decomposition of (K, ex) given by ¢ : K — L by

H(K|L) = Heyo [ K|L).

We denote the conditional entropy Hf(K |H) of the conditional expectation
E from M°(K) onto the *-subalgebra M°(H) such that ¢ o E = ¢ for the
canonical state ¢ of M°(K) by

HE(K|H) == HE(M"(K)|M°(H)).
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Remark. In the case that K, H, L are finite commutative signed hyper-
groups, the above two definitions of conditional entropy are also well-defined.

Let H, K, L be the dual signed hypergroups of H, K, L respectively. Then,
we have the dual exact sequence:
l—[ K- H -1

Let E be the conditional expectation from M®(K) onto MP(L) such that
¢ o El = ¢ for the canonical state ¢ of Mb(f()

Theorem 5.4. Let H be a subhypergroup of a finite commutative hypergroup
K and L be the quotient hypergroup K/H of K by H. Under the above

situation, the following formulae hold.

(1) HEGEIHT) = 3 Z log W) _ 34,10y — 3 (H).

w(

=

TeH XE€PT

@ HED=Y Y = log wOwH) g5y (n).
teL cepi(e)

(3) HE(K|H) = H(K|H) and H(K|L) = HE(K|L).

Proof. (1) Let K = {xo,--- ,Xn} and H = {79,--- ,7n}. Then we have
minimal projections {e;}7_ in M*(K) and {f;}7", in M*(H) which satisfy
Xp(€i) = Opis Tq(f5) = 0q
for x, € K and T, € H respectively. We note that o(e;) = Z}M and

(K)

o(f;) = ZEZ; Let o be the mapping from {0,1,--- ,n} onto {0,1,--- ,;m}

given by e; o f,i) = e;. Hence,

MEKI = 3 olh) D n(¢ ez) > 3 ot k’gasf))

i€o—1(j) J=0 ieo~1(j)

B w(T)) ‘w(f()
- 55 sy (v ),

7=0 ico—1(5)

It is easy to see that e; o f; = e; if and only if p(x;) = 7;. This means that
i € 07'(j) if and only if x; € ¢~ '(7;). By the fact that w(K) = w(H)w(L)
(see [IK2]), we get the desired conclusion.

(2) For each ¢ € L, the conditional probability measure pi, of ex on o (£)
is given by

_ _wle)
= 2 S

c€p™1(0)
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Then we have

H(KIL) = > ex(e (O)H(ue) = Z (w(?%))

el el cep—1(
:ZZ Clog (90())_
w(c)
el cep—1(¢

By the fact that w(go_l(é)) = wl)w(H) (see [IK2]), we get the desired
formula.

(3) Applying the formula (1) to the exact sequence: 1 — L— K2
H— 1, one can obtain

w(T)w(L
ZZ ;log()().

refl xep™?! T)

Hence it is clear that H} (K|H) = H(K|H) by the formula (2).

Moreover, we have
HE(K|L) = H(K|L) = H(K]|L)

by the above formula and the duality. [

Remark. (1) In the category of finite commutative signed hypergroups, the
above statements are also valid.
(2) For the regular action p¥ of a finite hypergroup K, let p& be the

action of K which is the restriction of p® to H. Then p¥ is decomposed as
pHJ Z EB Pe, P
lel

where py is an irreducible action of H on ¢~ !(¢) for each ¢ € L and py, =
p" because ¢ 1(ly) = H for the unit ¢y of L. Then, we know that the
invariant probability measure under the action p, on ¢ () is the conditional
probability measure of ex on p~!'(f). Therefore, the conditional entropy

H(K|L) of the decomposition can be rewritten as

HKIL) =Y %Hw

An application and an example for the extension problem.
We consider the exact sequence

1—wH KL 1

in the case of H = Z,(2)(0 < ¢ < 1) and L = Z,(2)(0 < p < 1) where
the order of an extension hypergroup K is four. In Chapter 4, an extension
K = K(t,r) is determined by two-dimensional irreducible actions p* and p"
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of Z,(2) and Z,(2) which are parameterized by %q <t< ﬁ and ﬁ <r<

135 respectively. Let ¢ and ¢ be the canonical states of M°(K) and M"(L)

respectively. By the formula in Theorem 5.4, we have

Ho(H) = H(H) = log(1 + ) + ——(q).

1+gq
Hor(L) = H(L) = log(1 +p) + (o)
Ho(I) = HEK )+ () = T (L) (n(r) +n(1=) P 1),
H(K) = H(K|L) + H(L) = 1%%(}1) + 5 (000 (1= 1) + (L)

Proposition 5.5. Under the above situation, For two extensions K, =
K(t1,7m) and Ky = K(ta,r2) of Z,(2) by Z,(2), K is equivalent to Ky if
and only if Hy(K1) = He(Ks) and H(K,) = H(K2) hold.

Proof. By the paper [IK1], it is known that K; = K(t1,7r1) is equivalent
to Ky = K(ta,79) if and only if ¢t = ¢ or t5 = 1 —¢;, and ro = 71 or
ro = 1 —r1. The latter condition is equivalent to H(K;) = H(K,) and
Ho (K1) = Hy(Ka). O

Remark. Two extensions K (t) and K (t') of Zy by Z,(2) are equivalent as
extensions if and only if H(K(t)) = H(K(t')) holds.

5.3. Conditional entropy associated with a generalized orbital hy-

pergroup. We modify the definition of a generalized orbital hypergroup in

Definition. Let K = (K, M°(K)) be a finite hypergroup and ¢ be the
canonical state of M®(K). Let N be a x-subalgebra with the unit of M°(K).
Let E be the conditional expectation from M?(K) onto N such that ¢o E =
¢. For a finite hypergroup K; = (K, M*(K,)), if M*(K,) is isomorphic
to N by a #-isomorphism ¥ from M®(K;) onto N and for ¢ € K there
exists b € K such that E(c) = W(b), then we say K a generalized orbital
hypergroup of K by E and denote K; by K.

We note that the above definition of a generalized orbital hypergroup is
well-defined for a finite signed hypergroup.

In this Chapter, we identify N with M°(K) hereafter.

Lemma 5.6. Let 1) be a mapping from K onto K which is the restriction
to K of the conditional expectation E. Then we have,
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(1) w(y™'(b)) = w(b) forbe K*,
2) w(K) = w(KP).

Proof. Take the Haar measure pix = ) ;e w(c)dc of K and piger = >, per w(b)6y
of K¥ respectively. For any v € MY KF), vo E(ux) = E(vo ug) =
E(pg) holds. Hence one can write E(ug) = apgre for some a > 0. Since
P(E(uk)) = ¢(px) = 1 and ¢(uge) = 1, we get a = 1, namely E(ux) =
tie. We obtain

E(ux) =Y _w(c => Z (¢)d,

ceK beKE ceyp—1

so that we arrive at the equation (1). Moreover, it is easy to see the equality

(2) by (1). O

In a similar way to the Section 5.2, two kinds of entropy associated with
a generalized orbital hypergroup K of K are defined by

H(K|K") := He, (v : K|K") and HE (K|K") := HE (M (K)|M*(K")).

Let K and KZ be the dual signed hypergroups of K and K respectively.
Then we have a conditional expectation E from MP(K) onto M b(ﬁ) given
by E(x) = Xlaecey for a character y of MP(K) and a mapping Y from K
onto KE by the restriction of E to K. We note that ggo E = (5 for the
canonical state ¢ of MP(K).

Theorem 5.7. Let K¥ be a generalized orbital hypergroup of a finite com-
mutative hypergroup K by the conditional expectation E such that po E = ¢
for the canonical state ¢ of MP(K). Under the above situation, the following
formulae hold.

(1) HE(K|KP) = Y Z WD 106 ) gy (1) — 0, (KE).

~— | —

= w(K) & w(x
(2) HIK|KP) = Y Z Z)’Ei; = H(K) — H(KE).
beKE cew
(3) HE(K|KP) = (K|KE) and H(K|KE) = HE(K|KF).

Proof. (1) Let K and KE be K = {X0, ", Xn} and KE = {70, , T} TE-
spectively. Then we have minimal projections {e;}7_, in M*(K) and {f;}7,
in M°(K¥) which satisfy

Xp(€i) = Opiy T4(f5) = 0y



for x, € K and Ty € [/(E respectively. We note that ¢(e;) = wé);) and

o(f;) = wI?E)) Let o be the mapping from {0,1,--- ,n} onto {0,1,--- ,m}
given by e; o f,;) = e;. Hence,

HEKIKD) = 3ot 3 77( )=y Y oteon

ico—1(4) J=0 ieo—1(

'lUTj UJK
-3y (Q-U)-

J=0 ico—1(j w(KE) w(XZ)

It is easy to see that e; o f; = e; if and only if zﬂ( ;) = 7j. This means
that i € o~'(j) if and only if y; € ¥"'(7;). Since w(K) = w(K?) by (2) of
Lemma 5.6, we get the desired conclusion.

(2) For each b € K¥ the conditional probability measure s, of ex on

= 1(b) is given by

Then we have

HKIE®) = > ex(v(b) =D Z <w(Z‘(fzb>)>

beKE beKE ceyp—1

w(~'(b

Sy v <w(c§ )
beEKE ceyp—1

Since w(¢~1(b)) = w(b) by ( ) of Lemma 5.6, we get the desired formula.
(3) We can show that KE = KP holds. Applying the formula (1) to
U : K — K%, one can obtain

H(K|IKE) =H(K|EH) =Y Y W) o 2T).

TEKE xep=1(r ) K (X)

Hence it is clear that HJ (K|K”) = H(K|KE) by the formula (2).

Moreover, we have
HE(K|KP) = HE(K|KP) = H(K|KE) = H(K|KE) = H(K|K)

by the above equality and the duality K=K and KE = KF, O

Remark. Let K* = {bg, by, -+ , by} be the orbital hypergroup by an action
a of a finite group G on a finite commutative hypergroup K. Let & be the ac-
tion of G on the dual signed hypergroup K defined by G,(x)(c) := x(a,-1(c))
for g € G,x € K and ¢ € K. We denote by O; a-orbit corresponding to
b; € K* Let ¢ be a mapping from K onto K* such that ¢¥~'(b;) = O;
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and E be the conditional expectation from M°(K) onto M°(K®) such that
Elx =1 and ¢ o E = ¢ for the canonical state ¢ of M°(K). We note that
MP*(K®) is equal to the fixed point algebra M(K)* of M*(K) by a. Let O
be the @—orbit in K corresponding to 7; € K*. We denote 10| and |Oj| by
dj and d respectively.

Then we remark the following.

oy _ x> w(x) -
(1) HE(K|K*) = Z i) d;log d;, where x\) € O,

J=0

m (el
) HKIK =3 e

d;logd;, where c¥) € O;.
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