大阪公立大学
 Osaka Metropolitan University

Some Examples of Galois Coverings over the Complex Projective Plane

メタデータ	言語：eng
	出版者：
	公開日：2013－12－20
	キーワード（Ja）：
	キーワード（En）：
	作成者：Matsuno，Takanori
	メールアドレス：
	所属：
URL	https：／／doi．org／10．24729／00007610

SOME EXAMPLES OF GALOIS COVERINGS OVER THE COMPLEX PROJECTIVE PLANE

Takanori MATSUNO*

Abstract

In this short note, we study finite Galois coverings of the complex projective plane $\mathbf{P}^{2}(\mathbf{C})$ which branch along several lines. We give some examples of Galois branched coverings from $\mathbf{P}^{2}(\mathbf{C})$ to itself.

Key Words : Projective space, Branched covering, Galois group

1 Introduction

In [N2] Namba gave a following problem :
Problem. For $n \geq 2$, determine the equivalence classes of finite Galois coverings $\pi: \mathbf{P}^{n}(\mathbf{C}) \rightarrow \mathbf{P}^{n}(\mathbf{C})$.

For one dimensional case, it is known that, for suitable choice of homogeneous coordinates of $\mathbf{P}^{1}(\mathbf{C})$, a finite Galois covering $\pi: \mathbf{P}^{\mathbf{1}}(\mathbf{C}) \rightarrow \mathbf{P}^{\mathbf{1}}(\mathbf{C})$ of the complex projective line $\mathbf{P}^{1}(\mathbf{C})$ can be given as follows [Ho$][\mathrm{K}][\mathrm{N} 1][\mathrm{N} 2][\mathrm{S}-\mathrm{G}]:$

$$
\begin{aligned}
& \begin{array}{l}
\text { (I) }) \pi\left(\left[X_{0}: X_{1}\right]\right)=\left[X_{0}^{m}: X_{1}^{m}\right] \quad(m=1,2, \ldots) \\
\text { (II) } \pi\left(\left[X_{0}: X_{1}\right]\right)= \\
{\left[-\left(X_{0}-X_{1}\right)^{m}: 4 X_{0}^{m} X_{1}^{m}\right] \quad(m=1,2, \ldots)} \\
(\mathrm{III}) \pi\left(\left[X_{0}: X_{1}\right]\right)= \\
{\left[\left(X_{0}^{4}+2 \sqrt{3} X_{0}^{2} X_{1}^{2}-X_{1}^{4}\right)^{3}:\left(X_{0}^{4}-2 \sqrt{3} X_{0}^{2} X_{1}^{2}-X_{1}^{4}\right)^{3}\right]} \\
(\mathrm{IV}) \pi\left(\left[X_{0}: X_{1}\right]\right)= \\
{\left[\left(X_{0}^{8}+14 X_{0}^{4} X_{1}^{4}+X_{1}^{8}\right)^{3}: 108 X_{1}^{4}\left(X_{1}^{4}-X_{0}^{4}\right)^{4} X_{0}^{4}\right]} \\
(\mathrm{V}) \pi\left(\left[X_{0}: X_{1}\right]\right)= \\
{\left[\left(X_{0}^{2} 0-228 X_{0}^{15} X_{1}^{5}+49 X_{0}^{10} X_{1}^{10}+228 X_{0}^{5} X_{1}^{15}\right)^{3}:\right.} \\
\left.-1728 X_{0}^{5}\left(X_{0}^{10}+11 X_{0}^{5} X_{1}^{5}-X_{1}^{10}\right)^{5} X_{1}^{5}\right] .
\end{array} .
\end{aligned}
$$

Here π branches at
$D=m(\infty)+m(0) \quad$ for (I),
$D=m(\infty)+2(0)+2(1) \quad$ for (II),
$D=3(\infty)+3(0)+2(1) \quad$ for (III),
$D=4(\infty)+3(0)+2(1) \quad$ for (IV),
$D=5(\infty)+3(0)+2(1) \quad$ for (V).
And it is also well known that the covering transformation group (i.e., Galois group) of above finite Galois covering $\pi: \mathbf{P}^{\mathbf{1}}(\mathbf{C}) \rightarrow \mathbf{P}^{1}(\mathbf{C})$ is one of the following groups :
Z_{m} : Cyclic group of order m for (I),
D_{m} : Dihedral group of order $2 m$ for (II),
A_{4} : 4-th alternative group for (III),
$S_{4}: 4$-th symmetric group for (IV),
$A_{5}: 5$-th alternative group for (V).

In this short note, we study coverings of the complex projective plane $\mathbf{P}^{2}(\mathbf{C})$ which branch along several lines and we give some examples of finite Galois branched coverings from $\mathbf{P}^{2}(\mathbf{C})$ to itself.

2 Preliminaries

A branched covering $\pi: X \rightarrow \mathbf{P}^{2}(\mathbf{C})$ of $\mathbf{P}^{2}(\mathbf{C})$ is, by definition, a normal irreducible complex surface X together with a proper finite holomorphic mapping π. The ramification locus R_{π} of π is the set of points $x \in X$ such that π is not biholomorphic locally around x. The branch locus B_{π} of π is the image $\pi\left(R_{\pi}\right)$ under π. It is clear that the restriction $\pi: X-R_{\pi} \rightarrow \mathbf{P}^{2}(\mathbf{C})$ of $\mathbf{P}^{2}(\mathbf{C})-B_{\pi}$ is a topological covering.

Definition 2.1. For a branched covering $\pi: X \rightarrow$ $\mathbf{P}^{2}(\mathbf{C})$, if the covering transformation group acts transitively on every fiber of π, then π is said to be Galois.

Suppose that irreducible curves C_{1}, \ldots, C_{k} of $\mathbf{P}^{2}(\mathbf{C})$ are given. Put $B=C_{1} \cup \cdots \cup C_{k}$. Suppose also that positive integers e_{1}, \ldots, e_{k} are given. Consider the positive divisor $D=e_{1} C_{1}+\ldots+e_{k} C_{k}$ on $\mathbf{P}^{2}(\mathbf{C})$. A finite branched cvering $\pi: X \rightarrow \mathbf{P}^{2}(\mathbf{C})$ is said to branch at D if $B_{\pi}=B$ and, for every j and for every irreducible component $R_{j, l}$ of $\pi^{-1}\left(C_{j}\right)$, the ramification index is e_{j}.

Here we recall Bertini's theorem :

Theorem 2.1. The generic element of a linear system is smooth away from the base locus of the system.

Proof. For the proof, see, for example, [G-H].

[^0]Now we assume that X is non-singular and $\pi: X \rightarrow$ $\mathbf{P}^{2}(\mathbf{C})$ is a finite Galois covering which branches at $D=e_{1} C_{1}+\ldots+e_{k} C_{k}$. Let L be a line of $\mathbf{P}^{2}(\mathbf{C})$ and $\hat{L}=\pi^{-1}(L)$. From Bertini's theorem above, if we take L in general position, \hat{L} is non-singular and irreducible. Self-intersection number $\hat{L} \cdot \hat{L}$ of \hat{L} is equal to the degree of π. From adjunction formula, we have

$$
2 g(\hat{L})-2=\hat{L} \cdot \hat{L}+\hat{L} \cdot K_{X}
$$

where $g(\hat{L})$ is a genus of \hat{L} and K_{X} is a canonical divisor of X. The restriction $\pi_{\mid \hat{L}}: \hat{L} \rightarrow L$ is a finite branched covering of $L\left(\cong \mathbf{P}^{1}(\mathbf{C})\right.$) with its degree $\dot{L} \cdot \hat{L}$.From Riemann-Hurwitz formula, we have :

$$
2 g(\hat{L})-2=-2 \hat{L} \cdot \hat{L}+\sum\left(R_{j, l} \cdot \hat{L}\right)\left(e_{j}-1\right)
$$

where $R_{j, l} \cdot \hat{L}$ is a intersection number of $R_{j, l}$ and \hat{L}. Combining above two equations, we have :

$$
\sum\left(R_{j, l} \cdot \hat{L}\right)\left(e_{j}-1\right)=3 \hat{L} \cdot \hat{L}+\hat{L} \cdot K_{X}
$$

Remark. The degree of $\pi \operatorname{deg} \pi$ is a sqare of some integer d. Because π is given as

$$
\pi\left(\left[X_{0}: X_{1}: X_{2}\right]\right)=\left[F_{0}(X): F_{1}(X): F_{2}(X)\right]
$$

where $X=\left[X_{0}: X_{1}: X_{2}\right]$ is a homogeneous coordinates and F_{0}, F_{1} and F_{2} are homogeneous polynomials of same degree d.

Hree we assume $X=\mathbf{P}^{2}(\mathbf{C})$. Put $b_{j}=\operatorname{deg} C_{j} \quad(=$ $\left.C_{j} \cdot L\right), \operatorname{deg}(\pi)=d^{2}$ and $b=\sum_{j=1}^{k} b_{j}$. Since we assume π is Galois, we have :

$$
\sum_{j=1}^{k} b_{j}\left(1-\frac{1}{e_{j}}\right)=3+\frac{\hat{L} \cdot K_{X}}{\hat{L} \cdot \hat{L}}
$$

Then we have :

Lemma 2.2. If there exists a finite Galois covering $\pi: \mathbf{P}^{2}(\mathbf{C}) \rightarrow \mathbf{P}^{2}(\mathbf{C})$ which branches at D, then $. b \leq$ 5.

Proof. For $K_{\mathbf{P}^{2}(\mathbf{C})}=[-3 H]$, where H is a hyperplane of $\mathbf{P}^{2}(\mathbf{C})$, we have :

$$
\sum_{j=1}^{k} b_{j}\left(1-\frac{1}{e_{j}}\right)=3-\frac{3}{d}
$$

If $b \geq 6, \sum_{j=1}^{k} b_{j}\left(1-\frac{1}{e_{j}}\right) \geq \sum_{j=1}^{k} b_{j} \cdot \frac{1}{2}=\frac{b}{2} \geq 3$, while $3-\frac{3}{d}<3$. It's a contradiction. q.e.d. .

3 Main theorem

Now we consider the line confuigurations of $\mathbf{P}^{2}(\mathbf{C})$ which consists of k lines $B=L_{1} \cup \cdots \cup L_{k}$. Arrangements of lines are discussed in [Hi]. Let t_{r} be the number of r-fold points of lines. The following equation holds $[\mathrm{Hi}]$:

$$
\frac{k(k-1)}{2}=\sum t_{r} \cdot \frac{r(r-1)}{2}
$$

So if $k \leq 5$, the following only 12 cases may occur.
(1) The case $k=1$.
(2) The case $k=2$ and $t_{2}=1$.
(3) The case $k=3$ and $t_{3}=1$.
(4) The case $k=3$ and $t_{2}=3$.
(5) The case $k=4$ and $t_{4}=1$.
(6) The case $k=4, t_{3}=1$ and $t_{2}=3$.
(7) The case $k=4$ and $t_{2}=6$.
(8) The case $k=5$ and $t_{5}=1$.
(9) The case $k=5, t_{4}=1$ and $t_{2}=4$.
(10) The case $k=5, t_{3}=2$ and $t_{2}=4$.
(11) The case $k=5, t_{3}=1$ and $t_{2}=7$.
(12) The case $k=5$ and $t_{2}=10$.

Among above 12 cases, we study the case (3) and (6) in this note.

For the case (3), it is known that there is a Kummer covering :

$$
\pi\left(\left[X_{0}: X_{1}: X_{2}\right]\right)=\left[X_{0}^{m}: X_{1}^{m}: X_{2}^{m}\right] \quad(m=1,2, \ldots) .
$$

Galois group of π is $Z_{m} \times Z_{m}$ in this case.

Next we study the case (6). See Figure 1 below.

Figure1

We may take $L_{1}=\left\{X_{0}=0\right\}, L_{2}=\left\{X_{0}-X_{1}=\right.$ $0\}, L_{3}=\left\{X_{1}=0\right\}$ and $L_{4}=\left\{X_{2}=0\right\}$, because, If we take another 4 lines of type (6), these 4 lines will be mapped to L_{1}, \ldots, L_{4} by a projective linear transfomation. Take $p_{0} \in \mathbf{P}^{2}(\mathbf{C}) \backslash\left(L_{1} \cup \cdots \cup L_{4}\right)$ and fix it. Then fundamental group of the complement $\pi_{1}\left(\mathbf{P}^{2}(\mathbf{C}) \backslash\left(L_{1} \cup \cdots \cup L_{4}\right), p_{0}\right)=<\gamma_{1}, \gamma_{2}, \gamma_{3}, \delta \mid \delta=$ $\gamma_{3} \gamma_{2} \gamma_{1}, \delta \gamma_{j}=\gamma_{j} \delta($ for $j=1,2,3)>$. For calculation of the fundamental group, see $[\mathrm{M}]$ for example.

Lemma 3.1. If G is one of $Z_{m}, D_{m}, A_{4}, S_{4}, A_{5}$, there is a central extension by cyclic group Z_{d} :

$$
1 \rightarrow Z_{d} \rightarrow Z_{d} \rtimes G \rightarrow G \rightarrow 1 \text { (exact) }
$$

where d is a order of G.

Proof. We show the existence of a cyclic extension by giving permutations directly. For the case $G=D_{3}$, let $A=(a b)(c d)(e f), B=(a c e)(b f d)$ and $C=$ $(a d)(b e)(c f)$. We denote by $\langle A, B, C\rangle$ the group generated by three permutations of six letters A, B and $C . D_{3}$ is generated by these permutations and so $\left.D_{3} \cong<A, B, C\right\rangle$. The order of D_{3} is 6 . Put

$$
\begin{aligned}
& \hat{F}=\left(a_{1} \ldots a_{6}\right)\left(b_{1} \ldots b_{6}\right) \ldots\left(f_{1} \ldots f_{6}\right), \\
& \hat{A}=\left(\begin{array}{ccccc}
\ldots & a_{j} & \ldots & b_{j} & \ldots \\
\ldots & b_{j+2} & \ldots & a_{j+2} & \ldots \\
\ldots & c_{j} & \ldots & d_{j} & \ldots \\
\ldots & d_{j+2} & \ldots & c_{j+2} & \ldots \\
\ldots & e_{j} & \ldots & f_{j} & \ldots \\
\ldots & f_{j+2} & \ldots & e_{j+2} & \ldots
\end{array}\right), \\
& \hat{B}=\left(\begin{array}{ccccccc}
\ldots & a_{j} & \ldots & c_{j} & \ldots & e_{j} & \ldots \\
\ldots & c_{j+3} & \ldots & e_{j+3} & \ldots & a_{j+3} & \ldots \\
\ldots & b_{j} & \ldots & f_{j} & \ldots & d_{j} & \ldots \\
\ldots & f_{j+3} & \ldots & d_{j+3} & \ldots & b_{j+3} & \ldots
\end{array}\right) \\
& \hat{C}=\left(\begin{array}{ccccc}
\ldots & a_{j} & \ldots & d_{j} & \ldots \\
\ldots & d_{j+2} & \ldots & a_{j+2} & \ldots \\
\ldots & b_{j} & \ldots & e_{j} & \ldots \\
\ldots & e_{j+2} & \ldots & b_{j+2} & \ldots \\
\ldots & c_{j} & \ldots & f_{j} & \ldots \\
\ldots & f_{j+2} & \ldots & c_{j+2} & \ldots
\end{array}\right)
\end{aligned}
$$

Here each index of letters should be thought to coincide cyclically with a number in the set $\{1, \ldots, 6\}$. Let $\hat{G}=<\hat{A}, \hat{B}, \hat{C} \hat{F},>$ be a group generated by \hat{A}, \hat{B}, \hat{C} and \hat{F} in S_{36}. Then it is easy to see that $\hat{F}=\hat{C} \hat{B} \hat{A}$ and the group $<\hat{F}>$ is the center of \hat{G}. We can define a surjective homomorphism $\Psi: \hat{G} \rightarrow G$ as follows :

$$
\Psi(\hat{A})=A, \Psi(\hat{B})=B, \Psi(\hat{C})=C
$$

The kernel of Ψ is $<\hat{F}>\cong Z_{6}$. Then $\hat{G} \cong Z_{6} \rtimes G$. For the other cases, the proof is similar and is omitted. q.e.d.

Let $\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$ be one of the followings : (I) ($m, 0, m, m$), (II) $(2,2, m, 2 m)$, (III) $(3,2,3,12)$, (IV) $(3,2,4,24),(\mathrm{V})(3,2,2,60)$.

Then we have the following theorem:
Theorem 3.2. There exists a finite Galois covering $\pi: X \rightarrow \mathbf{P}^{2}(\mathbf{C})$ which branches at $D=e_{1} L_{1}+e_{2} L_{2}+$ $e_{3} L_{3}+e_{4} L_{4}$ and the Glois group of π is one of \hat{G} : (I) $Z_{m} \times Z_{m}$, (II) $Z_{2 m} \rtimes D_{m}$, (III) $Z_{12} \rtimes A_{4}$, (IV) $Z_{24} \rtimes S_{4}$ or $(\mathrm{V}) Z_{60} \rtimes A_{5}$.

Proof. It is given as Kummer coverings for the case (I). For cases (II), (III), (IV) and (V), from Lemma3.1, it is easy to see that there is a surjective homomorphism :

$$
\Phi: \pi_{1}\left(\mathbf{P}^{2}(\mathbf{C}) \backslash\left(L_{1} \cup \cdots \cup L_{4}\right), p_{0}\right) \rightarrow \hat{G}
$$

defined by $\Phi\left(\gamma_{1}\right)=\hat{A}, \Phi\left(\gamma_{2}\right)=\hat{B}, \Phi\left(\gamma_{3}\right)=\hat{C}$, $\Phi(\delta)=\hat{F}$.

Here G is the same as is defined in the proof of Lemma3.1. Corresponding to the kernel $\operatorname{Ker}(\Psi)$ of Ψ, there exists a finite Galois coverings $\pi: X \rightarrow \mathbf{P}^{2}(\mathbf{C})$ which branches at D. q.e.d.

In above cases, by direct calculations, X is nonsingular and $K_{X} \cdot K_{X}=9$ and Euler number $e(X)=3$. And comparing the monodoromy, we have :

Theorem 3.3. There exists a Galois covering π : $\mathbf{P}^{2}(\mathbf{C}) \rightarrow \mathbf{P}^{2}(\mathbf{C})$ which branches at D and the $G a-$ lois group of π is one of (I) $Z_{m} \times Z_{m}$, (II) $Z_{2 m} \times D_{m}$, (III) $Z_{12} \rtimes A_{4},(I V) Z_{24} \rtimes S_{4}$ or $(V) Z_{60 \rtimes} A_{5}$. The mappings are given as follows:
(I) $\pi\left(\left[X_{0}: X_{1}: X_{2}\right]\right)=\left[X_{0}^{m}: X_{1}^{m}: X_{2}^{m}\right] \quad(m=$ $1,2, \ldots)$
(II) $\pi\left(\left[X_{0}: X_{1}: X_{2}\right]\right)=$
$\left[-\left(X_{0}-X_{1}\right)^{m}: 4 X_{0}^{m} X_{1}^{m}: X_{2}^{2 m}\right] \quad(m=1,2, \ldots)$
(III) $\pi\left(\left[X_{0}: X_{1}: X_{2}\right]\right)=$
$\left[\left(X_{0}^{4}+2 \sqrt{3} X_{0}^{2} X_{1}^{2}-X_{1}^{4}\right)^{3}:\left(X_{0}^{4}-2 \sqrt{3} X_{0}^{2} X_{1}^{2}-X_{1}^{4}\right)^{3}:\right.$
$\left.X_{2}^{12}\right]$
(IV) $\pi\left(\left[X_{0}: X_{1}: X_{2}\right]\right)=$
$\left[\left(X_{0}^{8}+14 X_{0}^{4} X_{1}^{4}+X_{1}^{8}\right)^{3}: 108 X_{1}^{4}\left(X_{1}^{4}-X_{0}^{4}\right)^{4} X_{0}^{4}: X_{2}^{24}\right]$
(V) $\pi\left(\left[X_{0}: X_{1}: X_{2}\right]\right)=$
$\left[\left(X_{0}^{2} 0-228 X_{0}^{15} X_{1}^{5}+49 X_{0}^{10} X_{1}^{10}+228 X_{0}^{5} X_{1}^{15}\right)^{3}:\right.$
$\left.-1728 X_{0}^{5}\left(X_{0}^{10}+11 X_{0}^{5} X_{1}^{5}-X_{1}^{10}\right)^{5} X_{1}^{5}: X_{2}^{60}\right]$.

References

[G-H] P. Griffiths \& H. Harris : Principles of Algebraic geometry, John Wiley \& Sons, New York, 1978.
[Hi] F. Hirzebruch : Arrangements of lines and algebraic surfaces, Arithmetic and geometry, Vol. II , 113-140, Progr. Math.,36, Birkhäuser, Boston,Mass.,1983.
[Ho] H. Hochstadt : The functions of mathematical physics, John Wiley \& Sons, New York, 1971.
[K] F. Klein: The Icosahedron, Dover,1956.
[N1] M. Namba : Branched coverings and algebraic functions, Pitman Research Note in Math., Ser. 161, Longman Scientific \& Technical, 1987.
[N2] M. Namba : Finite branched coverings of complex manifolds, Sugaku42(1990), no. 3, 193-205, Iwanami Shoten.
[M] T. Matsuno: On a theorem of Zariski-van Kampen type and its applications, Osaka J. Math. 32 (1995), no. 3, 645-658.
[S-G] G. Sansone \& J. Gerretsen : Lectures on the Theory of Functions of a Complex Variable, Wolters-Noordhoff Pub., Groningen, 1969.

[^0]: (Received April 9, 2008)

 * Dept. of Industrial Systems Engineering : Natural Science

