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SOME EXAMPLES OF GALOIS COVERINGS OVER THE
COMPLEX PROJECTIVE PLANE

Takanori MATSUNO*

Abstract

In this short note, we study finite Galois coverings of the complex projective plane P?(C) which branch
along several lines. We give some examples of Galois branched coverings from P2(C) to itself.
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1 Introduction

In [N2] Namba gave a following problem :
Problem. For n > 2, determine the equivalence
classes of finite Galois coverings = : P*(C) — P"(C).

For one dimensional case, it is known that , for
suitable choice of homogeneous coordinates of P!(C),
a finite Galois covering 7w : P}(C) — P!(C) of the
complex projective line P1(C) can be given as follows
(Ho] [K][N1][N2][S-G]:

([ Xo: X1]) = [XF: XT*] (m=1,2,...)
(I ([Xo : Xa]) =
[(Xo - X1)™ : AXPXP] (m=1,2,...)

(7 ([Xo : X3]) =

(X3 +2v3X3XT? — X1)% : (X3 - 2v3X3XT — XT)?)
(IV)W([XO M Xl]) =

(X8 + 14X XT + X8)3 : 108X H (X — X3)' X3
(Vr([Xo : Xi]) =

(X320 — 228X 15X} + 49X[10X10 4+ 228 X5 X15)3
—1728X3(X30 + 11 X5 XY — X195 X3).

Here 7 branches at

D = m(oo0) + m(0) for (1),

D = m(co) +2(0) +2(1) for (II),
D = 3(00) + 3(0) +2(1)  for (III),
D = 4(00) +3(0) +2(1)  for (IV),
D = 5(00) + 3(0) +2(1)  for (V).

And it is also well known that the covering transfor-
mation group (i.e., Galois group) of above finite Galois
covering m : P1(C) — P!(C) is one of the following
groups :

Zm: Cyclic group of order m  for (I),
D,,: Dihedral group of order 2m  for (II),
Ay: 4-th alternative group for (III),

S4: 4-th symmetric group for (IV),
Ajg:5-th alternative group for (V).
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In this short note, we study coverings of the com-
plex projective plane P?(C) which branch along sev-
eral lines and we give some examples of finite Galois
branched coverings from P2(C) to itself.

2 Preliminaries

A branched covering 7 : X — P2%(C) of P?(C) is,
by definition, a normal irreducible complex surface X
together with a proper finite holomorphic mapping .
The ramification locus R, of n is the set of points
z € X such that 7 is not biholomorphic locally around
z. The branch locus B, of 7 is the image 7(R,) under
. It is clear that the restriction 7 : X — R, — P%(C)
of P2(C) — By is a topological covering.

Definition 2.1. For a branched covering 7 : X —
P?(C), if the covering transformation group acts tran-
sitively on every fiber of #, then = is said to be Galois.

Suppose that irreducible curves Ci,...,Cy of
P2(C) are given. Put B = C; U--- U C. Suppose
also that positive integers ey, ... , e are given. Con-
sider the positive divisor D = €,C + ... + e,C) on
P?(C). A finite branched cvering 7 : X — P?(C) is
said to branch at D if B, = B and, for every j and
for every irreducible component R;; of #=1(C}), the
ramification index is e;.

Here we recall Bertini’s theorem :

Theorem 2.1. The generic element of a linear sys-
tem is smooth away from the base locus of the system.

Proof. For the proof, see, for example, [G-H].



Now we assume that X is non-singular and 7 : X —
Pz(C) is a finite Galois covering which branches at

= €101+ ... + eCy. Let L be a line of P2(C)
and L= 7T_1(L) From Bertini’s theorem above, if
we take L in general position, L is non-singular and
irreducible. Self-intersection number L- L of L is equal
to the degree of m. From adjunction formula, we have

29(L)-2=L-L+1 Ky,

where g(L) is a genus of L and Ky is a canonical
divisor of X. The restriction T L — L is a finite

branched covering of L (= P!(C)) with its degree
L - L.From Riemann-Hurwitz formula, we have :

2g(L) ~2= 2L L+ (Rju-L)(e; - 1),

where R;; - L is a intersection number of R;; and L.
Combining above two equations, we have :

Z(Rj‘l - i/)(ej — 1) = 3L - i/ + i/ . I(X.

Remark. The degree of m degm is a sqare of some
integer d. Because 7 is given as

7T([X0 : Xl : Xg]) = [F()(X) : Fl(X) s FQ(X)],

where X = [Xp : X : X3] is a homogeneous coordi-
nates and Fy, Fy and F5 are homogeneous polynomials
of same degree d.

Hree we assume X = P?(C). Put b; = degC; (=
Cj- L), deg(m) = d* and b = Sk b;.

=1 Since we
assume 7 is Galois, we have :

k ~
L. Ky
Zbal‘_ =3+
= L-L
Then we have :

Lemma 2.2. If there exists a finite Galois covering
7 : P2(C) — P2(C) which branches at D, then . b <
5.

Proof. For Kpz(cy = [-3H]|, where H is a hyper-

plane of P?(C), we have :

k

1 3
> obi(1-—)=3-".
= ej d
Ifb>6, 35 bi(l— )2 Sk bt =12>3 while

3 - % < 3. It’s a contradiction. g.e.d. .

3 Main theorem

Now we consider the line confuigurations of P?(C)
which consists of k lines B = Ly U---U Ly . Ar-
rangements of lines are discussed in [Hi]. Let ¢, be
the number of r-fold points of lines. The following
equation holds [Hi} :

_]_)

Zt

So if k <5, the following only 12 cases may occur.

(1) The case k = 1.

(2) The case k =2 and ty = 1.

(3) The case k = 3 and t3 = 1.

(4) The case k = 3 and t5 = 3.

(5) The case k =4 and ty = 1.

(6) The case k =4, t5 =1 and t> = 3.
(7) The case k = 4 and t3 = 6.

(8) The case k =5 and t5 = 1.

(9) The case k =5, t4 = 1 and t; = 4.
(10) The case k =5, t3 =2 and to = 4.
(11) The case k =5,f3 =1 and t2 = 7.
(12) The case k = 5 and t, = 10.

Among above 12 cases, we study the case (3) and
(6) in this note.

For the case (3), it is known that there is a Kummer
covering :

Galois group of 7 is Z,, X Z,, in this case.

Next we study the case (6). See Figurel below.

L Ly

L,

Figurel



We may take L} = {Xo = 0}, L, = {Xo - X1 =
0}, Ly = {X1 = 0} and Ly = {X3 = 0}, because,
If we take another 4 lines of type (6), these 4 lines
will be mapped to Ly,...,Ls by a projective linear
transfomation. Take py € P2(C)~ (L, U---U Ly4) and
fix it. Then fundamental group of the complement
7T1(P2(C) ~ (L1 U---u L4), p()) =< 71,72,’}’3,(”5 =
Y3v271, 875 = v;6 (for j =1,2,3) > . For calculation
of the fundamental group, see [M] for example.

Lemma 3.1. If G is one of Z,,, D,,, Ay, Ss, 4s,
there is a central extension by cyclic group Zy:

1524 —Z¢gxG— G —1 (exact),

where d is a order of G.

Proof. We show the existence of a cyclic extension
by giving permutations directly. For the case G = Ds,
let A= (ab)(cd)(ef),B=1{(ace)(bfd) andC =
(a d)(b e)(c f). We denote by < A, B,C > the group
generated by three permutations of six letters A, B
and C. D3 is generated by these permutations and so
D3y Z2< A, B,C >. The order of D5 is 6. Put

F:(al...ae)(bl bﬁ)(flfﬁ),
A _ e aj e bj
bj+2 Qj42
Cj ... dj
djs2 Cj42 ’
ej N f]'
fit+e €j+2
B = aj ] €5
Cj+3 €j+3 aj+3
b; f; d;
fi+a dj+3 bj+s
c = aj d;j )
djt2 Q42
b; €j
€j42 bjta
€5 fi
fit2 Cj+2

Here each index of letters should be thought to co-
incide cyclically with a number in the set {1,...,6}.
Let G =< A, B,CF,>bea group generated by A B,
C and F in Sas. Then it is easy to see that F=CBA
and the group < F' > is the center of G. We can define
a surjective homomorphism ¥ : G — G as follows :

U (A)

= A, ¥(B)=B,¥(C) =

The kernel of ¥ is < F' > Zs. Then G =2 Zg x G.
For the other cases, the proof is similar and is omitted.
g.e.d.

Let (e1,e2,e3,e4) be one of the followings : (I)
(m,0,m,m), (II) (2,2, m,2m), (IIT) (3,2,3,12), (IV)
(3,2,4,24), (V) (3,2,2,60).

Then we have the following theorem:

Theorem 3.2. There exists a finite Galois covering
7 : X — P?(C) which branches at D = ey Ly +esLs +
esLls + eyLy and the Glois group of m is one of G :
(I)Zm X Zm, (II)ng X Dy, (HI)Z12 X A4,(IV)ZQ4 X 54
or (V)ZG() el A5.

Proof. Tt is given as Kuminer coverings for the case
(1). For cases (II), (III), (IV) and (V), fromn Lemma3.1,
it is easy to see that there is a surjective homomor-
phism :

@ :m(PHC)~ (L1 U---ULy), po) — G,
defined by ®(y1) = A, ®(12) = B, ®(y3) =
®(8) =F.

Here G is the same as is defined in the proof of
Lemma3.1. Corresponding to the kernel Ker(¥) of ¥,
there exists a finite Galois coverings 7 : X — P?(C)
which branches at D. q.e.d.

In above cases, by direct calculations, X is non-
singular and K x-Kx = 9 and Euler number e(X) = 3.
And comparing the monodoromy, we have :

Theorem 3.3. There exists a Galois covering « :
P2(C) — P2(C) which branches at D and the Ga-
lois group of w is one of (1)Z,, x Z,p,, (II)Z2,, % Dp,,

(III)Zlg Dol A4, (IV)Z24 X S4 or (V)ZGO)QAs’ The map-
pings are given as follows :
Dr([Xo : Xy : Xo) = [XF : X X'l (m =
1,2,...)
(II)W([X() :Xl : Xz]) =
[—(Xo — X1)™ :4AXPXT : X2™ (m=1,2,...)
(ID)m([Xo : Xy : Xo]) =
(X3 +2vV3X2XT?— X1)® - (X¢ —2v3BXEXT - X1
Xz”]

m([Xo: X1 : Xo]) =
[(X8+14X4X4+X8)3 108X HXE — XHixd . X34

(VIm([Xo: Xy : Xo]) =
[(X30 — 228X35X7 + 49X1°X[0 4 228X8 X [5)3
—1728 X5 (X80 + 11X5 X2 — X190 X} : X§0).
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