Some examples of $\mathrm{S} _\mathrm{R}(\mathrm{H})$－blocks 2

メタデータ	言語：eng
	出版者：
	公開日：2013－12－13
	キーワード（Ja）：
	キーワード（En）：
	作成者：Hieda，Yoshimasa
	メールアドレス：
	所属：
URL	https：／／doi．org／10．24729／00007648

Some examples of $S_{R}(H)$-blocks II

Yoshimasa Hieda*

Abstract

$S_{R}(H)$-blocks (of the irreducible characters of G) and their defect groups are defined by G.R.Robinson [R2]. In this note we give some $S_{R}(H)$-blocks for the symmetric group of degree 6 .

Key Words : $S_{R}(H)$-block, Hecke algebra

1 Introduction

Let G be a finite group, p a prime number which divides the order of G and (K, R, k) a p-modular system, i.e., R is a complete discrete valuation ring with maximal ideal (π), K is the quotient field of R of characteristic 0 and $k(:=R /(\pi))$ is the residue field of R of characteristic p. Moreover, we assume that K contains the $|G|$ th roots of unity.
For a subset X of G, \widehat{X} denotes the sum of all elements of X in the group algebra $o G$, where o is R, K or k.
In this paper we consider the Hecke algebra $S_{0}(H)$ $:=\operatorname{End}_{o G}(\widehat{H} \circ G)$ for a subgroup H of G.

As $e_{H}:=\widehat{H} /|H|$ is an idempotent of $K G, S_{K}(H)$ $=e_{H} K G e_{H}$. For $\chi \in \operatorname{Irr}(G)$, let e_{χ} be the central primitive idempotent of $K G$ corresponding to χ and put $\Phi_{H}^{G}:=\left\{\chi \in \operatorname{Irr}(G) ;\left(\left.\chi\right|_{H}, 1_{H}\right)_{H} \neq 0\right\}$. Then we have that $\left\{e_{\chi} e_{H} ; \chi \in \Phi_{H}^{G}\right\}$ is the set of all central primitive idempotents of $S_{K}(H)$ (see [C-R, (11.26) Corollary]).
As $S_{K}(H)=K \otimes_{R} S_{R}(H)$, for a central idempotent ε of $S_{R}(H)$, there exists a non-empty subset β of Φ_{H}^{G} such that $\varepsilon=\sum_{\chi \in \beta} e_{\chi} e_{H}$. Then the element of this form is denoted by ε_{β} and if ε_{β} is a centrally primitive, β (or $\varepsilon_{\beta} S_{R}(H)$) is called an $S_{R}(H)$-block.

On the other hand, the multiplication induces the K-algebra homomorphism $\phi: Z(K G) \longrightarrow Z\left(S_{K}(H)\right)$. Using the map ϕ, G.R.Robinson [R2] has proved that $Z\left(S_{R}(H)\right) \simeq \operatorname{End}_{R[G \times G]}(R G \hat{H} R G)$ as R-algebras and so each $S_{R}(H)$-block corresponds to a unique indecomposable direct summand M_{β} of $R G \widehat{H} R G$. Therefore we can define a defect group for an $S_{R}(H)$-block β (i.e., a vertex of M_{β}) in $G \times G$.

Recall that for any $S_{R}(H)$-block β there exists the unique p-block B such that $\beta \subset \operatorname{Irr}(B)$ (See $[\mathrm{R} 2]$). Also if e_{B} is a block idempotent of $R G$ with the condition $\phi\left(e_{B}\right) \neq 0$, then $\phi\left(e_{B}\right)=\sum_{\beta \in \mathfrak{B}} \varepsilon_{\beta}$, where \mathfrak{B} is the suitable non-empty subset of $S_{R}(H)$-blocks. So $\operatorname{Irr}(B) \cap \Phi_{H}^{G}$ is a (disjoint) union of $S_{R}(H)$-blocks.
(Received April 13, 2005)

* Dept. of Industrial Systems Engineering : Natural Science

Moreover, we have $S_{R}(H) / \pi S_{R}(H) \simeq S_{k}(H)$ as $\widehat{H} R G$ is a permutation module. Hence the set of $S_{R}(H)$-blocks corresponds bijectively to the set of $S_{k}(H)$-blocks.

In $[\mathrm{H} 1] \sim[\mathrm{H} 4]$ and $[\mathrm{H}-\mathrm{T}]$ we gave some examples of $S_{R}(H)$-blocks for the symmetric and alternating groups of degree $3,4,5$. So in this note we show some $S_{R}(H)$-blocks for the symmetric group of degree 6 .

The notation is almost standard. Concerning some basic facts and terminologies used here, we refer to $[\mathrm{C}-\mathrm{R}]$ and $[\mathrm{N}-\mathrm{T}]$ for example.

2 Preliminaries

First we recall the next proposition which tells us some relations between p-blocks and $S_{R}(H)$-blocks.

Proposition 2.1. ([R2, Remark of Lemma 2.1]) If $H=\{1\}$, then $\operatorname{Irr}(B)$ is an $S_{R}(\{1\})$-block for any p-block B of G. Moreover, a defect group of an $S_{R}(\{1\})$-block $\operatorname{Irr}(B)$ is the diagonal subgroup $\delta(B)^{\Delta}:=\{(x, x) \in G \times G ; x \in \delta(B)\}$, where $\delta(B)$ is a (usual) defect group of B.

For any $\chi \in \Phi_{H}^{G}$ there exists a unique $S_{R}(H)$-block β such that $\chi \in \beta$. In particular, the trivial character 1_{G} of G is always in Φ_{H}^{G} for any subgroup H of G. So it lies in a unique $S_{R}(H)$-block of G, which we denote by β_{0} and call the principal $S_{R}(H)$-block.

Now we shall exhibit some results on $S_{R}(H)$-blocks.

Proposition 2.2. ([R2, Lemma 2.1,Lemma 2.3(i)(iv), Corollary 2.4]) Let β be an $S_{R}(H)$-block of G, $\delta_{H}(\beta)$ a defect group of β and $C:=\bigcap_{g \in G} H^{g}$. Then
(1) For any $x, y \in G$,
$\frac{\left|\delta_{H}(\beta)\right|}{\left|C_{G}(x)\right|\left|C_{G}(y)\right|} \sum_{\chi \in \beta} \chi(x) \chi(y) \in R$.
In particular, $\frac{\left|\delta_{H}(\beta)\right|}{|G \times G|} \sum_{\chi \in \beta} \chi(1)^{2} \in R$.
(2) If \widetilde{H} is a subgroup of H, then Φ_{H}^{G} is a subset of $\Phi_{\widetilde{H}}^{G}$ and β is contained in a single $S_{R}(\widetilde{H})$-block $\tilde{\beta}$ of G.
In particular, β is contained in a single p-block B of G in the usual sence, and if B has a defect group D, then $\delta_{H}(\beta)$ is contained (up to conjugacy) in $D \times D$.
(3) There is a bijection between the set of $S_{R}(H)$ blocks of G and the set of $S_{R}(H / C)$-blocks of G / C.
In particular, if H is normal in G (i.e., $C=H$), then the $S_{R}(H)$-blocks of G are precisely the p blocks of $R[G / H]$.
(4) For the principal $S_{R}(H)$-block $\beta_{0}, \beta_{0}=\left\{1_{G}\right\}$ if and only if H contains a Sylow p-subgroup of G.
(5) If $\chi \in \Phi_{H}^{G}$ is in p-block of defect zero of G / C in the usual sence, then $\{\chi\}$ is an $S_{R}(H)$-block of G.

Corollary 2.3. ([H3, Corollary 2.4]) The following hold.
(1) If $\sum_{\chi \in \beta} \chi(1)^{2}\left(=\operatorname{rank}_{R} M_{\beta}\right)$ is prime to p for an $S_{R}(H)$-block β, then a defect group of β is a Sylow p-subgroup of $G \times G$. In particular, if H contains a Sylow p-subgroup of G, then a defect group of β_{0} is a Sylow p-subgroup of $G \times G$.
(2) If $\chi \in \Phi_{H}^{G}$ is in p-block B of defect zero, then $\{\chi\}=\operatorname{Irr}(B)$ is an $S_{R}(H)$-block and its defect group is the trivial subgroup $\{(1,1)\}$ of $G \times G$.

Let B be a p-block of $R G$. If $\phi\left(e_{B}\right) \neq 0$, there is a non-empty subset \mathfrak{B} of $S_{R}(H)$-blocks such that $\phi\left(e_{B}\right)=\sum_{\beta \in \mathfrak{B}} \varepsilon_{\beta}$. Hence $\operatorname{Irr}(B) \cap \Phi_{H}^{G}=\bigcup_{\beta \in \mathfrak{B}} \beta$. So we write $\mathfrak{B}:=\left\{\beta_{1}, \beta_{2}, \cdots, \beta_{t}\right\}$.

In the rest of this section we assume that H is a p^{\prime} subgroup of G and consider only those blocks such that $\phi\left(e_{B}\right) \neq 0$.

In this case $e_{H} \in R G$, i.e., $\widehat{H} R G=e_{H} R G$ is a projective $R G$-module and $k H$ is a semisimple k-algebra.
Now for any $\varphi \in \operatorname{IBr}(G)$, let S_{φ} (resp. P_{φ}) be a simple $k G$-module (resp. an indecomposable projective $R G$-module) corresponding to φ and $\Psi_{H}^{G}:=$ $\left\{\varphi \in \operatorname{IBr}(G) ; k_{H} \mid S_{\varphi_{\perp}}\right\}$. Here we have that $\Psi_{H}^{G}=$ $\left\{\varphi \in \operatorname{IBr}(G) ; P_{\varphi} \mid e_{H} R G\right\}$ by Robinson's reciprocity ([R1, Theorem 3]).

Concerning $S_{R}(H)$-blocks for p^{\prime}-subgroup H, the next proposition is fundamental.

Proposition 2.4. ([H-T]) The decomposition matrix D_{B} of B has the following form:

$$
\begin{align*}
D_{B} & =\left(\begin{array}{cccc|c}
D_{\beta_{1}} & 0 & \cdots & 0 & * \\
0 & D_{\beta_{2}} & \cdots & 0 & * \\
\vdots & \vdots & \ddots & \vdots & * \\
0 & 0 & \cdots & D_{\beta_{t}} & * \\
\hline 0 & 0 & \cdots & 0 & * \\
\vdots & \vdots & \cdots & \vdots & * \\
0 & 0 & \cdots & 0 & *
\end{array}\right) \tag{2.1}\\
& =\left(\begin{array}{ll}
\\
& \left(D_{B}^{\prime} \mid D_{B}{ }^{\prime \prime}\right),
\end{array}\right.
\end{align*}
$$

where $D_{B}{ }^{\prime}$ denotes the set of the first $\left|\operatorname{IBr}(B) \cap \Psi_{H}^{G}\right|$ columns of D_{B} and $D_{B}{ }^{\prime \prime}$ the rest.

For $\chi, \chi^{\prime} \in \Phi_{H}^{G}$, we denote $\chi-{ }_{H} \chi^{\prime}$ if there exists $\varphi \in \Psi_{H}^{G}$ such that $d_{\chi \varphi} \neq 0 \neq d_{\chi^{\prime} \varphi}$. Moreover, if there exists a finite sequence $\chi=\chi_{1}-H \chi_{2}-H \cdots-H \chi_{m}=$ χ^{\prime} in Φ_{H}^{G}, we denote $\chi \sim_{H} \chi^{\prime}$.

Using these notations, we have the following by the form (2.1).

Corollary 2.5. $([\mathrm{H}-\mathrm{T}]) \chi, \chi^{\prime} \in \Phi_{H}^{G}$ are in the same $S_{R}(H)$-block if and only if $\chi \sim_{H} \chi^{\prime}$.

Also we know the following orthogonality relation for the $S_{R}(H)$-block.

Theorem 2.6. ([H-T, Theorem 5]) Let β be an $S_{R}(H)$-block. Then we have
$\sum_{\chi \in \beta} \chi\left(x e_{H}\right) \chi(y)=0$ for any $y \in G-G_{p^{\prime}}$ and $x \in$ $G_{p^{\prime}}$ such that $\langle x, H\rangle$ is a p^{\prime}-subgroup.

Moreover, Y. Tsushima [T] proved the following theorem (cf. [H-T, Proposition 10]).

Theorem 2.7. ([T, Theorem 1]) Let G be the symmetric group on n letters and suppose that H is a subgroup of order 2. If $p>2$, then $\left\{e_{B} e_{H} ; B \in \mathrm{Bl}_{p}(G)\right\}$ is the set of all central primitive idempotents of $S_{R}(H)=$ $e_{H} R G e_{H}$.

3 Some examples of $S_{R}(H)$ blocks for the symmetric group of degree 6

Let n be a natural number and \mathfrak{S}_{n} (resp. \mathfrak{A}_{n}) denote the symmetric (resp. alternating) group of degree n. Also we denote the ordinary irreducible character of \mathfrak{S}_{n} corresponding to $\lambda \in P(n)$, the sets of the partitions of n, by the same notation of the Young diagram
$[\lambda]$ corresponding to λ (for example $[n]:=[(n)]$ means the trivial character $1_{\mathfrak{G}_{n}}$).

In this section let G be the symmetric group of degree $6 \mathfrak{S}_{6}$ and B_{0} the principal p-block of G.

We know that G has the following p-blocks :
$p=2: \operatorname{Irr}\left(B_{0}\right)=\left\{[6],[5,1],[4,2],\left[4,1^{2}\right],\left[3^{2}\right],\left[3,1^{3}\right]\right.$,
$\left.\left[2^{3}\right],\left[2^{2}, 1^{2}\right],\left[2,1^{4}\right],\left[1^{6}\right]\right\}, \operatorname{Irr}\left(B_{1}\right)=\{[3,2,1]\}$.
$p=3: \operatorname{Irr}\left(B_{0}\right)=\left\{[6],[5,1],\left[4,1^{2}\right],\left[3^{2}\right],[3,2,1],\left[3,1^{3}\right]\right.$,
$\left.\left[2^{3}\right],\left[2,1^{4}\right],\left[1^{6}\right]\right\}, \operatorname{Irr}\left(B_{1}\right)=\{[4,2]\}$,
$\operatorname{Irr}\left(B_{2}\right)=\left\{\left[2^{2}, 1^{2}\right]\right\}$.
$p=5: \operatorname{Irr}\left(B_{0}\right)=\left\{[6],[4,2],[3,2,1],\left[2^{2}, 1^{2}\right],\left[1^{6}\right]\right\}$,
$\operatorname{Irr}\left(B_{1}\right)=\{[5,1]\}, \operatorname{Irr}\left(B_{2}\right)=\left\{\left[4,1^{2}\right]\right\}$,
$\operatorname{Irr}\left(B_{3}\right)=\left\{\left[3^{2}\right]\right\}, \operatorname{Irr}\left(B_{4}\right)=\left\{\left[3,1^{3}\right]\right\}$,
$\operatorname{Irr}\left(B_{5}\right)=\left\{\left[2^{3}\right]\right\}, \operatorname{Irr}\left(B_{6}\right)=\left\{\left[2,1^{4}\right]\right\}$.
We mainly consider the principal $S_{R}(H)$-blocks by Corollary 2.3(2).

First we can immediately show the following two examples.

Example 1. (See [H4, Example 3])
Let $H:=\left\langle(126),\left(\begin{array}{ll}2 & 6\end{array}\right),(346),(456)\right\rangle\left(=\mathfrak{A}_{6}\right)$.
(1) $\Phi_{H}^{G}=\left\{[6],\left[1^{6}\right]\right\}$.
(2) (a) If $p=2$, then $\beta_{0}=\Phi_{H}^{G}$.
(b) If $p=3$ or 5 , then $\bar{\Phi}_{H}^{G}=\beta_{0} \cup \beta_{1} \subset \operatorname{Irr}\left(B_{0}\right)$, where $\beta_{0}=\{[6]\}$ and $\beta_{1}=\left\{\left[1^{6}\right]\right\}$.

Example 2. (See [H1, Example 12])
Let $H:=\langle(15),(25),(35),(45)\rangle\left(=\mathfrak{S}_{5}\right)$.
(1) $\Phi_{H}^{G}=\{[6],[5,1]\}$.
(a) If $p=2$ or 3 , then $\beta_{0}=\Phi_{H}^{G}$.
(b) If $p=5$, then $\Phi_{H}^{G}=\beta_{0} \cup \beta_{1}$, where

$$
\begin{equation*}
\beta_{0}=\operatorname{Irr}\left(B_{0}\right) \cap \Phi_{H}^{G}=\{[6]\} \text { and } \beta_{1}=\operatorname{Irr}\left(B_{1}\right) \tag{2}
\end{equation*}
$$

Moreover, we shall give the following examples by using the facts in section 2, the Branching Theorem ([J, Theorem 9.2]) and the value of characters.

Example 3.

Let $H:=\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}2 & 3\end{array}\right),\left(\begin{array}{ll}3 & 4\end{array}\right)\right\rangle\left(=\mathfrak{A}_{5}\right)$.
(1) $\Phi_{H}^{G}=\left\{[6],[5,1],\left[2,1^{4}\right],\left[1^{6}\right]\right\}$.
(2) (a) If $p=2$, then $\beta_{0}=\Phi_{H}^{G}$.
(b) If $p=3$, then $\Phi_{H}^{G}=\beta_{0} \cup \beta_{1} \subset \operatorname{Irr}\left(B_{0}\right)$, where $\beta_{0}=\{[6],[5,1]\}$ and $\beta_{1}=\left\{\left[2,1^{4}\right],\left[1^{6}\right]\right\}$.
(c) If $p=5$, then $\operatorname{Irr}\left(B_{0}\right) \cap \Phi_{H}^{G}=\beta_{0} \cup \beta_{1}$, where $\beta_{0}=\{[6]\}$ and $\beta_{1}=\left\{\left[1^{6}\right]\right\}$.

Example 4. Let $H:=\left\langle(14),\left(\begin{array}{ll}24\end{array}\right),(34)\right\rangle\left(=\mathfrak{S}_{4}\right)$.
(1) $\Phi_{H}^{G}=\left\{[6],[5,1],[4,2],\left[4,1^{2}\right]\right\}$.
(2) (a) If $p=2$, then $\beta_{0}=\Phi_{H}^{G}$.
(b) If $p=3$, then $\beta_{0}=\operatorname{Irr}\left(B_{0}\right) \cap \Phi_{H}^{G}$

$$
=\left\{[6],[5,1],\left[4,1^{2}\right]\right\}
$$

(c) If $p=5$, then $\beta_{0}=\operatorname{Irr}\left(B_{0}\right) \cap \Phi_{H}^{G}$

$$
=\{[6],[4,2]\}
$$

Example 5. Let $H:=\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}2 & 3\end{array}\right)\right\rangle\left(=\mathfrak{A}_{4}\right)$.
(1) $\Phi_{H}^{G}=\left\{[6],[5,1],[4,2],\left[4,1^{2}\right],\left[3,1^{3}\right],\left[2^{2}, 1^{2}\right],\left[2,1^{4}\right]\right.$, $\left.\left[1^{6}\right]\right\}$.
(2) (a) If $p=2$, then $\beta_{0}=\Phi_{H}^{G}$.
(b) If $p=3$, then $\operatorname{Irr}\left(B_{0}\right) \cap \Phi_{H}^{G}=\beta_{0} \cup \beta_{1}$, where $\beta_{0}=\left\{[6],[5,1],\left[4,1^{2}\right]\right\}$
and $\beta_{1}=\left\{\left[3,1^{3}\right],\left[2,1^{4}\right],\left[1^{6}\right]\right\}$.
(c) If $p=5$, then $\operatorname{Irr}\left(B_{0}\right) \cap \Phi_{H}^{G}=\beta_{0} \cup \beta_{1}$, where $\beta_{0}=\{[6],[4,2]\}$ and $\beta_{1}=\left\{\left[2^{2}, 1^{2}\right],\left[1^{6}\right]\right\}$.

Example 6.

Let $H:=\langle(14),(24),(34),(56)\rangle\left(\simeq \mathfrak{S}_{4} \times \mathfrak{S}_{2}\right)$.
(1) $\Phi_{H}^{G}=\{[6],[5,1],[4,2]\}$.
(2) (a) If $p=2$, then $\Phi_{H}^{G}=\beta_{0} \cup \beta_{1} \subset \operatorname{Trr}\left(B_{0}\right)$, where $\beta_{0}=\{[6]\}$ and $\beta_{1}=\{[5,1],[4,2]\}$.
(b) If $p=3$, then $\beta_{0}=\operatorname{Irr}\left(B_{0}\right) \cap \Phi_{H}^{G}$

$$
=\{[6],[5,1]\}
$$

(c) If $p=5$, then $\beta_{0}=\operatorname{Irr}\left(B_{0}\right) \cap \Phi_{H}^{G}$

$$
=\{[6],[4,2]\}
$$

Example 7.

Let $H:=\langle(12),(13),(45),(46)\rangle\left(\simeq \mathfrak{S}_{3} \times \mathfrak{S}_{3}\right)$.
(1) $\Phi_{H}^{G}=\left\{[6],[5,1],[4,2],\left[3^{2}\right]\right\}$.
(2) (a) If $p=2$, then $\beta_{0}=\Phi_{H}^{G}$.
(b) If $p=3$, then $\operatorname{Irr}\left(B_{0}\right) \cap \Phi_{H}^{G}=\beta_{0} \cup \beta_{1}$, where $\beta_{0}=\{[6]\}$ and $\beta_{1}=\left\{[5,1],\left[3^{2}\right]\right\}$.
(c) If $p=5$, then $\beta_{0}=\operatorname{Irr}\left(B_{0}\right) \cap \Phi_{H}^{G}$

$$
=\{[6],[4,2]\}
$$

Example 8. Let $H:=\left\langle(13),\left(\begin{array}{ll}2 & 3)\rangle\left(=\mathfrak{S}_{3}\right) \text {. }\end{array}\right.\right.$
(1) $\Phi_{H}^{G}=\left\{[6],[5,1],[4,2],\left[4,1^{2}\right],\left[3^{2}\right],[3,2,1],\left[3,1^{3}\right]\right\}$.
(2) (a) If $p=2$, then $\dot{\beta}_{0}=\operatorname{Irr}\left(B_{0}\right) \cap \Phi_{H}^{G}$

$$
=\Phi_{H}^{G} \backslash\{[3,2,1]\}
$$

(b) If $p=3$, then $\beta_{0}=\operatorname{Irr}\left(B_{0}\right) \cap \Phi_{H}^{G}$

$$
=\Phi_{H}^{G} \backslash\{[4,2]\}
$$

(c) If $p=5$, then $\beta_{0}=\operatorname{Irr}\left(B_{0}\right) \cap \Phi_{H}^{G}$

$$
=\{[6],[4,2],[3,2, i]\} .
$$

Example 9.
Let $H:=\left\langle\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle\left(=\mathfrak{A}_{3}\right)$.
(1) $\Phi_{H}^{G}=\operatorname{Irr}(G)$.
(2) (a) If $p=2$, then $\Phi_{H}^{G}=\beta_{0} \cup \beta_{1}$, where $\beta_{j}=\operatorname{Irr}\left(B_{j}\right)$ for $j=0,1$.
(b) If $p=3$, then $\Phi_{H}^{G}=\bigcup_{i=0}^{2} \beta_{i}$, where $\beta_{j}=\operatorname{Irr}\left(B_{j}\right)$ for $j=0,1,2$.
(c) If $p=5$, then $\Phi_{H}^{G}=\bigcup_{i=0}^{6} \beta_{i}$, where $\beta_{j}=\operatorname{Irr}\left(B_{j}\right)$ for $j=0,1,2, \cdots, 6$.

Example 10.

Let $H:=\langle(12),(34),(13)(24),(56)\rangle\left(\in S y l_{2}(G)\right)$.
(1) $\Phi_{H}^{G}=\left\{[6],[5,1],[4,2],[3,2,1],\left[2^{3}\right]\right\}$.
(2) (a) If $p=2$, then $\operatorname{Irr}\left(B_{0}\right) \cap \Phi_{H}^{G}=\beta_{0} \cup \beta_{1}$, where $\beta_{0}=\{[6]\}$ and $\beta_{1}=\left\{[5,1],[4,2],\left[2^{3}\right]\right\}$.
(b) If $p=3$, then $\beta_{0}=\operatorname{Irr}\left(B_{0}\right) \cap \Phi_{H}^{G}$

$$
=\left\{[6],[5,1],[3,2,1],\left[2^{3}\right]\right\}
$$

(c) If $p=5$, then $\beta_{0}=\operatorname{Irr}\left(B_{0}\right) \cap \Phi_{H}^{G}$

$$
=\{[6],[4,2],[3,2,1]\} .
$$

Example 11.

Let $H:=\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}4 & 5\end{array}\right)\right\rangle\left(\in \operatorname{Syl}_{3}(G)\right)$.
(1) $\Phi_{H}^{G}=\operatorname{Irr}(G) \backslash\{[3,2,1]\}$.
(2) (a) If $p=2$, then $\beta_{0}=\Phi_{H}^{G}=\operatorname{Irr}\left(B_{0}\right)$.
(b) If $p=3$, then $\operatorname{Irr}\left(B_{0}\right) \cap \Phi_{H}^{G}=\bigcup_{i=0}^{4} \beta_{i}$, where $\beta_{0}=\{[6]\}, \beta_{1}=\left\{[5,1],\left[3^{2}\right]\right\}$,
$\beta_{2}=\left\{\left[4,1^{2}\right],\left[3,1^{3}\right]\right\}, \beta_{3}=\left\{\left[2^{3}\right],\left[2,1^{4}\right]\right\}$ and $\beta_{4}=\left\{\left[1^{6}\right]\right\}$.
(c) If $p=5$, then $\operatorname{Irr}\left(B_{0}\right) \cap \Phi_{H}^{G}=\beta_{0} \cup \beta_{1}$, where $\beta_{0}=\{[6],[4,2]\}, \beta_{1}=\left\{\left[2^{2}, 1^{2}\right],\left[1^{6}\right]\right\}$.

Example 12.

Let $H:=\langle(12345)\rangle\left(\in \operatorname{Syl}_{5}(G)\right)$.
(1) $\Phi_{H}^{G}=\operatorname{Irr}(G)$.
(2) (a) If $p=2$, then $\Phi_{H}^{G}=\beta_{0} \cup \beta_{1}$, where $\beta_{j}=\operatorname{Irr}\left(B_{j}\right)$ for $j=0,1$.
(b) If $p=3$, then $\Phi_{H}^{G}=\bigcup_{i=0}^{2} \beta_{i}$, where $\beta_{j}=\operatorname{Irr}\left(B_{j}\right)$ for $j=0,1,2$.
(c) If $p=5$, then $\operatorname{Irr}\left(B_{0}\right)=\bigcup_{i=0}^{2} \beta_{i}$, where $\beta_{0}=$ $\{[6]\}, \beta_{1}=\left\{[5,1],[3,2,1],\left[2^{2}, 1^{2}\right]\right\}$ and $\beta_{2}=$ $\left\{\left[1^{6}\right]\right\}$.

References

[C-R] C. W. Curtis and I. Reiner : Methods of Representation Theory with Application to Finite Groups and Orders-Volume I, John Wiley and Sons, New York, 1981.
[H1] Y. Hieda: Some examples of $S_{R}(H)$-blocks, Bul. of Osaka Pref. Col. of Tech. 34, 73-76, 2000.
[H2] Hieda, Y. : Some examples of $S_{R}(H)$-blocks, Proc. of the 33rd Symposium On Ring Theory and Representation Theory, 29-35, 2001.
[H3] Y. Hieda: On $S_{R}(H)$-blocks $I I$, Proc. of the 36th Symposium On Ring Theory and Representation Theory, 116-122, 2004.
[H4] Y. Hieda : On $S_{R}(H)$-blocks for finite groups and related theorems, thesis, Osaka City University, 2005
[H-T] Y. Hieda and Y. Tsushima: On $S_{R}(H)$-Blocks for Finite Groups, J. of Algebra, vol.202, 583-588, 1998.
[J] G. D. James : The Representation Theory of Symmetric Groups, Lecture notes in Mathematics 682, 1978.
[N-T] H. Nagao and Y. Tsushima : Representations of Finite Groups, Academic Press, 1989.
[R1] G. R. Robinson : On Projective Summands of Induced Modules, J.of Algebra, vol.122, 106-111, 1989.
[R2] G. R. Robinson : Some Remarks on Hecke Algebras, J. of Algebra, vol.163, 806-812, 1994.
[T] Y. Tsushima: On some $S_{R}(H)$-blocks for the symmetric groups, J.of Algebra, vol.270, 281-287, 2003.

