

Some examples of $S_R(H)$ -blocks 2

メタデータ	言語: eng
	出版者:
	公開日: 2013-12-13
	キーワード (Ja):
	キーワード (En):
	作成者: Hieda, Yoshimasa
	メールアドレス:
	所属:
URL	https://doi.org/10.24729/00007648

Yoshimasa HIEDA*

Abstract

 $S_R(H)$ -blocks (of the irreducible characters of G) and their defect groups are defined by G.R.Robinson [R2]. In this note we give some $S_R(H)$ -blocks for the symmetric group of degree 6.

Key Words : $S_R(H)$ -block, Hecke algebra

1 Introduction

Let G be a finite group, p a prime number which divides the order of G and (K, R, k) a p-modular system, i.e., R is a complete discrete valuation ring with maximal ideal (π) , K is the quotient field of R of characteristic 0 and $k(:= R/(\pi))$ is the residue field of R of characteristic p. Moreover, we assume that K contains the |G|th roots of unity.

For a subset X of G, \hat{X} denotes the sum of all elements of X in the group algebra σG , where σ is R, K or k.

In this paper we consider the Hecke algebra $S_{\mathfrak{o}}(H)$:= End_{$\mathfrak{o}G$}($\widehat{H}\mathfrak{o}G$) for a subgroup H of G.

As $e_H := \widehat{H}/|H|$ is an idempotent of KG, $S_K(H) = e_H K G e_H$. For $\chi \in \operatorname{Irr}(G)$, let e_{χ} be the central primitive idempotent of KG corresponding to χ and put $\Phi_H^G := \{\chi \in \operatorname{Irr}(G); (\chi|_H, 1_H)_H \neq 0\}$. Then we have that $\{e_{\chi}e_H; \chi \in \Phi_H^G\}$ is the set of all central primitive idempotents of $S_K(H)$ (see [C-R, (11.26) Corollary]).

As $S_K(H) = K \otimes_R S_R(H)$, for a central idempotent ε of $S_R(H)$, there exists a non-empty subset β of Φ_H^G such that $\varepsilon = \sum_{\chi \in \beta} e_{\chi} e_H$. Then the element of this form is denoted by ε_β and if ε_β is a centrally primitive, β (or $\varepsilon_\beta S_R(H)$) is called an $S_R(H)$ -block.

On the other hand, the multiplication induces the K-algebra homomorphism $\phi: Z(KG) \longrightarrow Z(S_K(H))$. Using the map ϕ , G.R.Robinson [R2] has proved that $Z(S_R(H)) \simeq \operatorname{End}_{R[G \times G]}(RG\widehat{H}RG)$ as R-algebras and so each $S_R(H)$ -block corresponds to a unique indecomposable direct summand M_β of $RG\widehat{H}RG$. Therefore we can define a defect group for an $S_R(H)$ -block β (i.e., a vertex of M_β) in $G \times G$.

Recall that for any $S_R(H)$ -block β there exists the unique *p*-block *B* such that $\beta \subset \operatorname{Irr}(B)$ (See [R2]). Also if e_B is a block idempotent of RG with the condition $\phi(e_B) \neq 0$, then $\phi(e_B) = \sum_{\beta \in \mathfrak{B}} \varepsilon_{\beta}$, where \mathfrak{B} is the suitable non-empty subset of $S_R(H)$ -blocks. So $\operatorname{Irr}(B) \cap \Phi_H^G$ is a (disjoint) union of $S_R(H)$ -blocks.

(Received April 13, 2005)

* Dept. of Industrial Systems Engineering : Natural Science

Moreover, we have $S_R(H)/\pi S_R(H) \simeq S_k(H)$ as $\widehat{H}RG$ is a permutation module. Hence the set of $S_R(H)$ -blocks corresponds bijectively to the set of $S_k(H)$ -blocks.

In [H1]~[H4] and [H-T] we gave some examples of $S_R(H)$ -blocks for the symmetric and alternating groups of degree 3, 4, 5. So in this note we show some $S_R(H)$ -blocks for the symmetric group of degree 6.

The notation is almost standard. Concerning some basic facts and terminologies used here, we refer to [C-R] and [N-T] for example.

2 Preliminaries

First we recall the next proposition which tells us some relations between p-blocks and $S_R(H)$ -blocks.

Proposition 2.1. ([R2, Remark of Lemma 2.1]) If $H = \{1\}$, then Irr(B) is an $S_R(\{1\})$ -block for any p-block B of G. Moreover, a defect group of an $S_R(\{1\})$ -block Irr(B) is the diagonal subgroup $\delta(B)^{\Delta} := \{(x, x) \in G \times G; x \in \delta(B)\},$ where $\delta(B)$ is a (usual) defect group of B.

For any $\chi \in \Phi_H^G$ there exists a unique $S_R(H)$ -block β such that $\chi \in \beta$. In particular, the trivial character 1_G of G is always in Φ_H^G for any subgroup H of G. So it lies in a unique $S_R(H)$ -block of G, which we denote by β_0 and call the principal $S_R(H)$ -block.

Now we shall exhibit some results on $S_R(H)$ -blocks.

Proposition 2.2. ([R2, Lemma 2.1,Lemma 2.3(i)-(iv),Corollary 2.4]) Let β be an $S_R(H)$ -block of G, $\delta_H(\beta)$ a defect group of β and $C := \bigcap_{g \in G} H^g$. Then

(1) For any
$$x, y \in G$$
,

$$\frac{|\delta_H(\beta)|}{|C_G(x)||C_G(y)|} \sum_{\chi \in \beta} \chi(x)\chi(y) \in R.$$
In particular, $\frac{|\delta_H(\beta)|}{|G \times G|} \sum_{\chi \in \beta} \chi(1)^2 \in R.$

Bul. of Osaka Pref. Col. of Tech. Vol. 39

(2) If \tilde{H} is a subgroup of H, then Φ_{H}^{G} is a subset of $\Phi_{\tilde{H}}^{G}$ and β is contained in a single $S_{R}(\tilde{H})$ -block $\tilde{\beta}$ of G.

In particular, β is contained in a single p-block B of G in the usual sence, and if B has a defect group D, then $\delta_H(\beta)$ is contained (up to conjugacy) in $D \times D$.

(3) There is a bijection between the set of $S_R(H)$ blocks of G and the set of $S_R(H/C)$ -blocks of G/C.

In particular, if H is normal in G (i.e., C = H), then the $S_R(H)$ -blocks of G are precisely the pblocks of R[G/H].

- (4) For the principal $S_R(H)$ -block β_0 , $\beta_0 = \{1_G\}$ if and only if H contains a Sylow p-subgroup of G.
- (5) If $\chi \in \Phi_H^G$ is in p-block of defect zero of G/C in the usual sence, then $\{\chi\}$ is an $S_R(H)$ -block of G.

Corollary 2.3. ([H3, Corollary 2.4]) The following hold.

- (1) If $\sum_{\chi \in \beta} \chi(1)^2 (= \operatorname{rank}_R M_\beta)$ is prime to p for an $S_R(H)$ -block β , then a defect group of β is a Sylow p-subgroup of $G \times G$. In particular, if H contains a Sylow p-subgroup of G, then a defect group of β_0 is a Sylow p-subgroup of $G \times G$.
- (2) If $\chi \in \Phi_H^G$ is in p-block B of defect zero, then $\{\chi\} = \operatorname{Irr}(B)$ is an $S_R(H)$ -block and its defect group is the trivial subgroup $\{(1,1)\}$ of $G \times G$.

Let B be a p-block of RG. If $\phi(e_B) \neq 0$, there is a non-empty subset \mathfrak{B} of $S_R(H)$ -blocks such that $\phi(e_B) = \sum_{\beta \in \mathfrak{B}} \varepsilon_{\beta}$. Hence $\operatorname{Irr}(B) \cap \Phi_H^G = \bigcup_{\beta \in \mathfrak{B}} \beta$. So we write $\mathfrak{B} := \{\beta_1, \beta_2, \cdots, \beta_t\}$.

In the rest of this section we assume that \underline{H} is a $\underline{p'}$ -subgroup of \underline{G} and consider only those blocks such that $\phi(e_B) \neq 0$.

In this case $e_H \in RG$, i.e., $\widehat{H}RG = e_H RG$ is a projective RG-module and kH is a semisimple k-algebra.

Now for any $\varphi \in \operatorname{IBr}(G)$, let S_{φ} (resp. P_{φ}) be a simple kG-module (resp. an indecomposable projective RG-module) corresponding to φ and $\Psi_{H}^{G} :=$ $\{\varphi \in \operatorname{IBr}(G); k_{H}|S_{\varphi \downarrow H}\}$. Here we have that $\Psi_{H}^{G} =$ $\{\varphi \in \operatorname{IBr}(G); P_{\varphi}|e_{H}RG\}$ by Robinson's reciprocity ([R1, Theorem 3]).

Concerning $S_R(H)$ -blocks for p'-subgroup H, the next proposition is fundamental.

Proposition 2.4. ([H-T]) The decomposition matrix D_B of B has the following form :

(2.1)
$$D_B = \begin{pmatrix} D_{\beta_1} & 0 & \cdots & 0 & * \\ 0 & D_{\beta_2} & \cdots & 0 & * \\ \vdots & \vdots & \ddots & \vdots & * \\ 0 & 0 & \cdots & D_{\beta_l} & * \\ \vdots & \vdots & \cdots & \vdots & * \\ 0 & 0 & \cdots & 0 & * \\ \vdots & \vdots & \cdots & \vdots & * \\ 0 & 0 & \cdots & 0 & * \end{pmatrix}$$
$$= (D_B'|D_B''),$$

where D_B' denotes the set of the first $|\text{IBr}(B) \cap \Psi_H^G|$ columns of D_B and D_B'' the rest.

For $\chi, \chi' \in \Phi_H^G$, we denote $\chi -_H \chi'$ if there exists $\varphi \in \Psi_H^G$ such that $d_{\chi\varphi} \neq 0 \neq d_{\chi'\varphi}$. Moreover, if there exists a finite sequence $\chi = \chi_1 -_H \chi_2 -_H \cdots -_H \chi_m = \chi'$ in Φ_H^G , we denote $\chi \sim_H \chi'$.

Using these notations, we have the following by the form (2.1).

Corollary 2.5. ([H-T]) $\chi, \chi' \in \Phi_H^G$ are in the same $S_R(H)$ -block if and only if $\chi \sim_H \chi'$.

Also we know the following orthogonality relation for the $S_R(H)$ -block.

Theorem 2.6. ([H-T, Theorem 5]) Let β be an $S_R(H)$ -block. Then we have

 $\sum_{\chi \in \beta} \chi(xe_H)\chi(y) = 0 \text{ for any } y \in G - G_{p'} \text{ and } x \in G_{p'}$

 $G_{p'}$ such that $\langle x, H \rangle$ is a p'-subgroup.

Moreover, Y. Tsushima [T] proved the following theorem (cf. [H-T, Proposition 10]).

Theorem 2.7. ([T, Theorem 1]) Let G be the symmetric group on n letters and suppose that H is a subgroup of order 2. If p > 2, then $\{e_{Be_H}; B \in Bl_p(G)\}$ is the set of all central primitive idempotents of $S_R(H) = e_H RGe_H$.

3 Some examples of $S_R(H)$ blocks for the symmetric group of degree 6

Let n be a natural number and \mathfrak{S}_n (resp. \mathfrak{A}_n) denote the symmetric (resp. alternating) group of degree n. Also we denote the ordinary irreducible character of \mathfrak{S}_n corresponding to $\lambda \in P(n)$, the sets of the partitions of n, by the same notation of the Young diagram

 $[\lambda]$ corresponding to λ (for example [n] := [(n)] means the trivial character $1_{\mathfrak{S}_n}$).

In this section let G be the symmetric group of degree 6 \mathfrak{S}_6 and B_0 the principal p-block of G.

We know that G has the following p-blocks : $p = 2 : \operatorname{Irr}(B_0) = \{[6], [5, 1], [4, 2], [4, 1^2], [3^2], [3, 1^3], [2^3], [2^2, 1^2], [2, 1^4], [1^6]\}, \operatorname{Irr}(B_1) = \{[3, 2, 1]\}.$ $p = 3 : \operatorname{Irr}(B_0) = \{[6], [5, 1], [4, 1^2], [3^2], [3, 2, 1], [3, 1^3], [2^3], [2, 1^4], [1^6]\}, \operatorname{Irr}(B_1) = \{[4, 2]\}, \operatorname{Irr}(B_2) = \{[2^2, 1^2]\}.$ $p = 5 : \operatorname{Irr}(B_0) = \{[6], [4, 2], [3, 2, 1], [2^2, 1^2], [1^6]\}, \operatorname{Irr}(B_1) = \{[5, 1]\}, \operatorname{Irr}(B_2) = \{[4, 1^2]\}, \operatorname{Irr}(B_3) = \{[3^2]\}, \operatorname{Irr}(B_4) = \{[3, 1^3]\}, \operatorname{Irr}(B_5) = \{[2^3]\}, \operatorname{Irr}(B_6) = \{[2, 1^4]\}.$

We mainly consider the principal $S_R(H)$ -blocks by Corollary 2.3(2).

First we can immediately show the following two examples.

Example 1. (See [H4, Example 3]) Let $H := \langle (1\ 2\ 6), (2\ 3\ 6), (3\ 4\ 6), (4\ 5\ 6) \rangle (= \mathfrak{A}_6).$

- (1) $\Phi_H^G = \{[6], [1^6]\}.$
- (2) (a) If p = 2, then β₀ = Φ^G_H.
 (b) If p = 3 or 5, then Φ^G_H = β₀ ∪ β₁ ⊂ Irr(B₀), where β₀ = {[6]} and β₁ = {[1⁶]}.

Example 2. (See [H1, Example 12]) Let $H := \langle (15), (25), (35), (45) \rangle (= \mathfrak{S}_5)$.

- (1) $\Phi_H^G = \{[6], [5, 1]\}.$
- (2) (a) If p = 2 or 3, then $\beta_0 = \Phi_H^G$. (b) If p = 5, then $\Phi_H^G = \beta_0 \cup \beta_1$, where $\beta_0 = \operatorname{Irr}(B_0) \cap \Phi_H^G = \{[6]\}$ and $\beta_1 = \operatorname{Irr}(B_1)$.

Moreover, we shall give the following examples by using the facts in section 2, the Branching Theorem ([J, Theorem 9.2]) and the value of characters.

Example 3. Let $H := \langle (1 \ 2 \ 5), (2 \ 3 \ 5), (3 \ 4 \ 5) \rangle (= \mathfrak{A}_5).$

- (1) $\Phi_H^G = \{[6], [5, 1], [2, 1^4], [1^6]\}.$
- (2) (a) If p = 2, then $\beta_0 = \Phi_H^G$.
 - (b) If p = 3, then $\Phi_H^G = \beta_0 \cup \beta_1 \subset \operatorname{Irr}(B_0)$, where $\beta_0 = \{[6], [5, 1]\}$ and $\beta_1 = \{[2, 1^4], [1^6]\}.$
 - (c) If p = 5, then $\operatorname{Irr}(B_0) \cap \Phi_H^G = \beta_0 \cup \beta_1$, where $\beta_0 = \{[6]\}$ and $\beta_1 = \{[1^6]\}.$

Example 4. Let $H := \langle (1 \ 4), (2 \ 4), (3 \ 4) \rangle (= \mathfrak{S}_4)$. (1) $\Phi_H^G = \{ [6], [5, 1], [4, 2], [4, 1^2] \}$. (2) (a) If p = 2, then $\beta_0 = \Phi_H^G$.

(b) If
$$p = 3$$
, then $\beta_0 = \operatorname{Irr}(B_0) \cap \Phi_H^G$
= {[6], [5, 1], [4, 1²]}.
(c) If $p = 5$, then $\beta_0 = \operatorname{Irr}(B_0) \cap \Phi_H^G$
= {[6], [4, 2]}.

Example 5. Let $H := \langle (1 \ 2 \ 4), (2 \ 3 \ 4) \rangle (= \mathfrak{A}_4).$

- (1) $\Phi_{H}^{G} = \{[6], [5, 1], [4, 2], [4, 1^{2}], [3, 1^{3}], [2^{2}, 1^{2}], [2, 1^{4}], [1^{6}]\}.$
- (2) (a) If p = 2, then $\beta_0 = \Phi_H^G$. (b) If p = 3, then $\operatorname{Irr}(B_0) \cap \Phi_H^G = \beta_0 \cup \beta_1$, where $\beta_0 = \{[6], [5, 1], [4, 1^2]\}$ and $\beta_1 = \{[3, 1^3], [2, 1^4], [1^6]\}$.
 - (c) If p = 5, then $\operatorname{Irr}(B_0) \cap \Phi_H^G = \beta_0 \cup \beta_1$, where $\beta_0 = \{[6], [4, 2]\}$ and $\beta_1 = \{[2^2, 1^2], [1^6]\}.$

Example 6.

Let $H := \langle (1 \ 4), (2 \ 4), (3 \ 4), (5 \ 6) \rangle (\simeq \mathfrak{S}_4 \times \mathfrak{S}_2).$

 $(1) \ \Phi^G_H = \{[6], [5,1], [4,2]\}.$

- (2) (a) If p = 2, then $\Phi_H^G = \beta_0 \cup \beta_1 \subset Irr(B_0)$, where $\beta_0 = \{[6]\}$ and $\beta_1 = \{[5,1], [4,2]\}.$
 - (b) If p = 3, then $\beta_0 = \operatorname{Irr}(B_0) \cap \Phi_H^G$ = {[6], [5, 1]}. (c) If p = 5, then $\beta_0 = \operatorname{Irr}(B_0) \cap \Phi_H^G$ = {[6], [4, 2]}.

Example 7.

Let
$$H := \langle (1 \ 2), (1 \ 3), (4 \ 5), (4 \ 6) \rangle (\simeq \mathfrak{S}_3 \times \mathfrak{S}_3)$$
.

- (1) $\Phi_H^G = \{[6], [5, 1], [4, 2], [3^2]\}.$
- (2) (a) If p = 2, then $\beta_0 = \Phi_H^G$.
 - (b) If p = 3, then $Irr(B_0) \cap \Phi_H^G = \beta_0 \cup \beta_1$, where $\beta_0 = \{[6]\}$ and $\beta_1 = \{[5, 1], [3^2]\}.$
 - (c) If p = 5, then $\beta_0 = \operatorname{Irr}(B_0) \cap \Phi_H^G$ = {[6], [4, 2]}.

Example 8. Let $H := \langle (1 \ 3), (2 \ 3) \rangle (= \mathfrak{S}_3)$.

- (1) $\Phi_{H}^{G} = \{[6], [5, 1], [4, 2], [4, 1^{2}], [3^{2}], [3, 2, 1], [3, 1^{3}]\}.$
- (2) (a) If p = 2, then $\dot{\beta}_0 = \operatorname{Irr}(B_0) \cap \Phi_H^G$ = $\Phi_H^G \setminus \{[3, 2, 1]\}.$ (b) If p = 3, then $\beta_0 = \operatorname{Irr}(B_0) \cap \Phi_H^G$ = $\Phi_H^G \setminus \{[4, 2]\}.$

(c) If
$$p = 5$$
, then $\beta_0 = \operatorname{Irr}(B_0) \cap \Phi_H^G$
= {[6], [4, 2], [3, 2, 1]}.

Example 9.

Let $H := \langle (1 \ 2 \ 3) \rangle (= \mathfrak{A}_3).$

- (1) $\Phi_H^G = \operatorname{Irr}(G).$
- (2) (a) If p = 2, then $\Phi_H^G = \beta_0 \cup \beta_1$, where $\beta_j = \operatorname{Irr}(B_j)$ for j = 0, 1.
 - (b) If p = 3, then $\Phi_H^G = \bigcup_{i=0}^2 \beta_i$, where $\beta_j = \operatorname{Irr}(B_j)$ for j = 0, 1, 2.
 - (c) If p = 5, then $\Phi_H^G = \bigcup_{i=0}^6 \beta_i$, where $\beta_j = \operatorname{Irr}(B_j)$ for $j = 0, 1, 2, \cdots, 6$.

Example 10.

Let
$$H := \langle (1 \ 2), (3 \ 4), (1 \ 3)(2 \ 4), (5 \ 6) \rangle \ (\in Syl_2(G)).$$

(1) $\Phi_H^G = \{[6], [5,1], [4,2], [3,2,1], [2^3]\}.$

(2) (a) If p = 2, then $\operatorname{Irr}(B_0) \cap \Phi_H^G = \beta_0 \cup \beta_1$, where $\beta_0 = \{[6]\}$ and $\beta_1 = \{[5, 1], [4, 2], [2^3]\}.$

(b) If
$$p = 3$$
, then $\beta_0 = \operatorname{Irr}(B_0) \cap \Phi_H^G$
= {[6], [5, 1], [3, 2, 1], [2³]}.
(c) If $p = 5$, then $\beta_0 = \operatorname{Irr}(B_0) \cap \Phi_H^G$
= {[6], [4, 2], [3, 2, 1]}.

Example 11.

Let $H := \langle (1 \ 2 \ 3), (4 \ 5 \ 6) \rangle \ (\in Syl_3(G)).$

(1) $\Phi_H^G = \operatorname{Irr}(G) \setminus \{[3,2,1]\}.$

- (2) (a) If p = 2, then $\beta_0 = \Phi_H^G = Irr(B_0)$.
 - (b) If p = 3, then $\operatorname{Irr}(B_0) \cap \Phi_H^G = \bigcup_{i=0}^4 \beta_i$, where $\beta_0 = \{[6]\}, \beta_1 = \{[5,1], [3^2]\}, \beta_2 = \{[4,1^2], [3,1^3]\}, \beta_3 = \{[2^3], [2,1^4]\}$ and $\beta_4 = \{[1^6]\}.$
 - (c) If p = 5, then $\operatorname{Irr}(B_0) \cap \Phi_H^G = \beta_0 \cup \beta_1$, where $\beta_0 = \{[6], [4, 2]\}, \beta_1 = \{[2^2, 1^2], [1^6]\}.$

Example 12.

Let $H := \langle (1 \ 2 \ 3 \ 4 \ 5) \rangle \ (\in Syl_5(G)).$

(1)
$$\Phi_H^G = \operatorname{Irr}(G).$$

- (2) (a) If p = 2, then $\Phi_H^G = \beta_0 \cup \beta_1$, where $\beta_j = \operatorname{Irr}(B_j)$ for j = 0, 1.
 - (b) If p = 3, then $\Phi_H^G = \bigcup_{i=0}^2 \beta_i$, where $\beta_j = \operatorname{Irr}(B_j)$ for j = 0, 1, 2.
 - (c) If p = 5, then $\operatorname{Irr}(B_0) = \bigcup_{i=0}^2 \beta_i$, where $\beta_0 = \{[6]\}, \beta_1 = \{[5,1], [3,2,1], [2^2, 1^2]\}$ and $\beta_2 = \{[1^6]\}.$

References

- [C-R] C. W. Curtis and I. Reiner : Methods of Representation Theory with Application to Finite Groups and Orders-Volume I, John Wiley and Sons, New York, 1981.
- [H1] Y. Hieda : Some examples of $S_R(H)$ -blocks, Bul. of Osaka Pref. Col. of Tech. 34, 73-76, 2000.
- [H2] Hieda, Y. : Some examples of $S_R(H)$ -blocks, Proc. of the 33rd Symposium On Ring Theory and Representation Theory, 29-35, 2001.
- [H3] Y. Hieda : On $S_R(H)$ -blocks II, Proc. of the 36th Symposium On Ring Theory and Representation Theory, 116-122, 2004.
- [H4] Y. Hieda : On $S_R(H)$ -blocks for finite groups and related theorems, thesis, Osaka City University, 2005
- [H-T] Y. Hieda and Y. Tsushima : On $S_R(H)$ -Blocks for Finite Groups, J. of Algebra, vol.202, 583-588, 1998.
- [J] G. D. James : The Representation Theory of Symmetric Groups, Lecture notes in Mathematics 682, 1978.
- [N-T] H. Nagao and Y. Tsushima : Representations of Finite Groups, Academic Press, 1989.
- [R1] G. R. Robinson : On Projective Summands of Induced Modules, J.of Algebra, vol.122, 106-111, 1989.
- [R2] G. R. Robinson : Some Remarks on Hecke Algebras, J. of Algebra, vol.163, 806-812, 1994.
- [T] Y. Tsushima : On some $S_R(H)$ -blocks for the symmetric groups, J.of Algebra, vol.270, 281-287, 2003.