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Some examples of Sr(H)-blocks II

Yoshimasa HIEDA*

Abstract

Sr(H)-blocks (of the irreducible characters of G) and their defect groups are defined by G.R.Robinson [R2].
In this note we give some Sg(H)-blocks for the symmetric group of degree 6.

Key Words : Sg(H

1 Introduction

Let G be a finite group, p a prime number which
divides the order of G and (K, R, k) a p-modular sys-
tem, i.e., R is a complete discrete valuation ring with
maximal ideal (), K is the quotient field of R of char-
acteristic 0 and k(:= R/(w)) is the residue field of R
of characteristic p. Moreover, we assume that K con-
tains the |G|th roots of unity.

For a subset X of G, X denotes the sum of all ele-
ments of X in the group algebra oG, where o is R, K
or k.

In this paper we consider the Hecke algebra S,(H)
= Endoc(ﬁoG) for a subgroup H of G.

As ey := H/|H| is an idempotent of KG, Sk (H)
= egKGey. For x € Irr(G), let ey be the central
primitive idempotent of K G corresponding to x and
put ®F = {x € Irr(G ) (x|H,1H)H # 0}. Then we
have that {excH,,( € YHJ’ is the set of all central
primitive idempotents of Sx(H) (see [C-R, (11.26)
Corollaryl]).

As S (H) = K®grSr(H), for a central idempotent
€ of Sr(H), there exists a non-empty subset 5 of %
such that e = }° ;eyen. Then the element of this
form is denoted by €4 and if g is a centrally primitive,
B (or egSr(HY)) is called an Sg(H)-block.

On the other hand, the multiplication induces the
K-algebra homomorphism ¢ : Z(KG) — Z(Sk{H)).
Using the map ¢, G.R.Robinson [R2] has proved that
Z(Sgr(H)) ~ Endgigxc)(RGHRG) as R-algebras and
so each Sr(H)-block corresponds to a unique inde-
composable direct summand Mg of RGHRG. There-
fore we can define a defect group for an Sg(H)-block
B (i.e., a vertex of Mg) in G x G.

Recall that for any Sg(H)-block 3 there exists the
unique p-block B such that g C Irr(B) (See [R2]).
Also if ep is a block idempotent of RG with the con-
dition ¢(ep) # O, then ¢(es) = D gemp €4, Where B
is the suitable non-empty subset of Sg(H)-blocks. So
Irr(B) N ®% is a (disjoint) union of Sg(H)-blocks.
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Moreover, we have Sp(H)/mSr(H) ~ Si(H) as
HRG is a permutation module. Hence the set of

Sr(H)-blocks corresponds bijectively to the set of
Si(H)-blocks.

In [H1]~[H4] and [H-T] we gave some examples
of Sgp(H)-blocks for the symmetric and alternating
groups of degree 3,4,5. So in this note we show some
Sgr(H)-blocks for the symmetric group of degree 6.

The notation is almost standard. Concerning some
basic facts and terminologies used here, we refer to
[C-R] and [N-T] for example.

2 Preliminaries

First we recall the next proposition which tells us
some relations between p-blocks and Sg(H)-blocks.

Proposition 2.1. ([R2, Remark of Lemma 2.1])
If H = {1}, then Irr(B) is an Sg({1})-block for
any p- block B of G. Moreover, a defect group
of an SR({I}) block Irr(B) is the diagonal subgroup
§(B)2 := {(z,z) € Gx G;z € §(B)}, where §(B) is a
(usual) defect group of B.

For any x € ® there exists a unique Sg(H)-block
0 such that x € B. In particular, the trivial character
1 of G is always in % for any subgroup H of G. So
it lies in a unique Sg(H)-block of G, which we denote
by B and call the principal Sp(H)-block.

Now we shall exhibit some results on S r(H)-blocks.

Proposition 2.2. ([R2, Lemma 2.1,Lemma 2.3(i)-
(iv),Corollary 2.4]) Let B be an Sr(H)-block of G,
6u(B) a defect group of B and C := (.o H®. Then
(1) For any z,y € G,

__6u(B)]
Ce@)ICat) - ZX(E)X

IG GlZ

In particular,
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(2) IfH isa subgroup of H, then ®% is a subset of
@% and 3 is contained in a single Sp(H)-block f§
of G.

In particular, [ is contained in a single p-block
B of G in the usual sence, and if B has a defect
group D, then dg(B) is contained (up to conju-
gacy) in D x D.

(3) There is a bijection between the set of Sr(H)-
blocks of G and the set of Sr(H/C)-blocks of
G/C.

In particular, if H is normal in G (i.e., C = H),
then the Sg(H)-blocks of G are precisely the p-
blocks of R[G/H].

(4) For the principal Sgr(H)-block Bo, Bo = {1c} #f
and only if H contains a Sylow p-subgroup of G.

(5) If x € ®5 is in p-block of defect zero of G/C in
the usual sence, then {x} is an Sr(H)-block of
G.

Corollary 2.3. ([H3, Corollary 2.4)) The following
hold.

(1) If 3 ep x(1)*(= rankgMp) is prime to p for an
Sr(H)-block B, then a defect group of 3 is a Sylow
p-subgroup of G x G. In particular, if H contains
a Sylow p-subgroup of G, then a defect group of
Bo is a Sylow p-subgroup of G x G.

(2) If x € % is in p-block B of defect zero, then
{x} = Irx(B) is an Sr(H)-block and its defect
group ts the trivial subgroup {(1,1)} of G x G.

Let B be a p-block of RG. If ¢(ep) # 0, there
is a non-empty subset B of Sg(H)-blocks such that
¢(eB) = )" e €p- Hence Irr(B) N oG = Upem 8- So
we write B := {61,052, -, P}

In the rest of this section we assume that H is a p/-
subgroup of G and consider only those blocks such

that ¢(ep) # 0.

In this case ey € RG, i.e., HRG = eg RG is a pro-
jective RG-module and kH is a semisimple k-algebra.

Now for any ¢ € IBr(G), let S, (resp. P,) be
a simple kG-module (resp. an indecomposable pro-
jective RG-module) corresponding to ¢ and \I/g =
{p € IBr(G); kn|S, 5 }- Here we have that Ve =
{¢ € IBr(G); P,len RG} by Robinson’s reciprocity
([R1, Theorem 3]).

Concerning Sg(H)-blocks for p’-subgroup H, the
next proposition is fundamental.

Proposition 2.4. ([H-T]) The decomposition matriz
Dpg of B has the following form :

Ds, 0 -+ 0 |=

0 D32 0 *
Dg = | 0o o0 Dj,

(2.1) ? 0 0 (f *
0 o --- O
— (DBI‘DBII)’

where Dp’ denotes the set of the first |IBr(B) N ¥§|
columns of Dg and D" the rest.

For x,x’ € @g, we denote x —g x' if there exists
¢ € U§ such that dy, # 0 # dy+,. Moreover, if there
exists a finite sequence x = X1 —H X2 —H " —H Xm =
X' in ®F, we denote x ~g X'-

Using these notations, we have the following by the
form (2.1).

Corollary 2.5. ([H-T]) x,x’ € ®§ are in the same
Sgr(H)-block if and only if x ~u X'

Also we know the following orthogonality relation
for the Sp(H)-block.

Theorem 2.6. ([H-T, Theorem 5]) Let § be an
Sr(H)-block. Then we have

Zx(xey)x(y) =0foranyye€ G— Gy andx €
X€B
Gy such that (z, H) is a p'-subgroup.

Moreover, Y. Tsushima [T] proved the following
theorem (cf. [H-T, Proposition 10}).

Theorem 2.7. ([T, Theorem 1]) Let G be the sym-
metric group on n letters and suppose that H is a sub-
group of order 2. Ifp > 2, then {epen; B € Bl,(G)} is
the set of all central primitive idempotents of Sg(H) =
ey RGey. ‘

of Sgr(H)-

symmetric

3 Some examples
blocks for the
group of degree 6

Let n be a natural number and &,, (resp. ;) de-
note the symmetric (resp. alternating) group of degree
n. Also we denote the ordinary irreducible character
of &, corresponding to A € P(n), the sets of the parti-
tions of n, by the same notation of the Young diagram
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[A] corresponding to A (for example [n] := [(n)] means

the trivial character 1g,).

In this section let G be the symmetric group of de-
gree 6 Gg and By the principal p-block of G.

We know that G has the following p-blocks :

= 2 : Irr(Bo) = {[6], [5, 1], [4,2], 4,12, [3?],[3,13],
[23] 22, 2] [2,14], (1]}, Ire(By) = {[3,2,1]}-
=3 : Irr(Bo) = {[6), 5, 1], [4,17], 3%}, 3,2, 1], [3, 19],

[23] 2,14, [1°]}, Irr(B1) = {4, 2]},
Irr(B,) = {[2%,1?)}.

=5 Irr(Bo) = {[6],[4, 2], (3,2, 1], [22,1%, [1°},

In (B1) = {[5, 1]}, Irr(B2) = {[4,1%]},
Irr(B3) = {[3%]}, Irr(By) = {[3,13]},
Irr(Bs) = {[2%]}, Irr(Bs) = {[2,14]}.

‘We mainly consider the principal SR(
Corollary 2.3(2).

First we can immediately show the following two
examples.

)-blocks by

Example 1. (See [H4, Example 3])
Let H := ((126),(236),(346),(4586))(=%).

{[6, [1°]}-
(2) (a) If p =2, then [p = ®F.

(b) If p = 3 or 5, then @g = fo U Sy C Irr(By),
where i = {[6]} and i = {[1°]}.

(1) ¢ =

Example 2. (See [H1, Example 12])

Let H := {(15),(25),(3 5),(4 5)) (= Gs).
(1) ®F = {[6],[5,1]}-
(2) (a) If p=2or 3, then B, = 0.

(b) If p = 5, then ®F = By U By, where
Bo = Irr(Bo)N @Y = {[6]} and By = Irr(By).

Moreover, we shall give .the following examples by
using the facts in section 2, the Branching Theorem
([J, Theorem 9.2]) and the value of characters.

Example 3.
Let H := ((12 5‘), (235),(345))(=Ys).

(1) @ = {[6],[5,1],[2, 1%, [1%]}-

(2) (a) If p=2, then fy = 9.
(b) If p = 3, then § = BoUB; C Irr(By), where
Bo = {[6],(5,1]} and g1 = {[2,1%],(1°]}.
(c) If p =5, then Irr(By) ﬂtbg = By U [, where
Bo = {[6]} and Br = {[1°]}.

Example 4. Let H := {(1 4),(2 4),(3 4)) (= G4).

(1) @F ={[6],[5,1].(4,2], [4,1%]}.
(2) (a) If p=2, then By = ®%.
(b) If p = 3, then By = Irr(By) N &G
= {(6),[5,1],[4,1%]).
(c) If p =5, then By = lrr(By) N ¥
= {{6],[4,2]}.

Example 5. Let H := ((1 2 4),(2 3 4)) (= 2y)-

(1) @F = {[6],[5,1],[4,2], [4,1%], [3,1°], [22,17}, [2,17],
[1°]}-

(2) (a) If p=2, then By = %.

(b) If p = 3, then Irr(Bo) N®% = B U By, where

Bo = {[6]1 [5? 1]’ [4’ 12]}
and B = {[3,1%],[2,14],[1%]}.

(c) If p = 5, then Irr(Bo) N ® = Bo U By, where
Bo = {[6]7 [41 2]} and f3; = {[22v12]') [16]}

Example 6.
Let H := ({(14),(24),(34),(56)) (>~

(1) oF = {[6],15,1],[4,2]}.

(2) (a) Ifp=2,then @g = FoUBy C Irr(By), where
ﬁO = {[6]} and ﬂl = {[5’ 1]1 [4’ 2]}

64 X 62)

(b) If p = 3, then By = Irr(By) N B
= {[6], 5, 1]}-
(c) If p =5, then By = Irr(By) N @5
= {[6],4,2]}-
Example 7.
Let H := ({1 2),(13),(45),(46)) (=~ 63 x G3).

(1) oF = {(6],15,1), [4,2], 3%}.
(2) (a) If p=2, then By = 0§.
(b) If p = 3, then Irr(By) ﬂ@ﬁ = 3y U B, where
Bo = {[6]} and B, = {[5,1],(3%]}.
(c) If p =5, then By = Irr(By) N ®F
= {[6],[4,2]}.

Example 8. Let H := {(1 3),(2 3)) (= G3).
(1) oF = {[6],[5.1],[4,2], 4,17, (3%, [3,2,1], [3, %]}
(2) (a) If p =2, then By = Irr(By) N &%
= (I)g \ {[37 2, 1]}
(b) If p = 3, then B = Irr(By) N &G
= @%\ {[4,2]}.
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(c) If p =5, then Fy =Irr(By) N @g
= {[6],14,2], 3,2, i]}.

Example 9.
Let H := {(1 2 3)) (= U3).

(1) ®F = Irr(G).
(2) (a) If p=2, then ®§ = o U B,
where g = Irr(B;) for j =0, 1.
(b) If p = 3, then G = |2, B,
where B; = Irr(B;) for j =0,1,2.

(c) If p=>5, then ®§ = U?:o BGi,
where §; = Irr(B;) for j =0,1,2,---,86.

Example 10.
Let H := ((12), (3 4), (1 3)(2 4), (5 6)) (€ Syl2(G)).

(1) oG = {{6]1 [5’ 1]’ [41 2]7 3,2, 1]* [23]}'
(2) (a) If p=2,then Irr(By) N ®F = By U By,where
Bo = {[6]} and g1 = {[5,1},[4,2],[2%]}.
(b) If p = 3, then By = Irr(Bo) N ¥
= {[6]7 [5’ 1]’ [31 2, 1]’ [23]}'
(c) If p= 5, then By = Irr(Bp) N ®F
= {[6]7 [47 2]7 [312’ 1]}

Example 11.
Let H := ((1 23),(4 5 6)) (€ Syl3(G)).

(1) ®F =Irr(G) \ {[3,2, 1]}
(2) (a) If p =2, then By = 9§ = Irr(By).

(b) If p = 3, then Irr(By)N®§ = |Ji_, B;, where
Po = {[6]}7:31 = {[5, 1]’ [32]}1
B = {[4,1%],3,1°]}, Bs = {[2°], [2,1%]}
and B4 = {[19]}.

(c) If p =5, then Irr(Bo) N®F = BoU B, where
o = {[6],[4,2]}, A1 = {[2%,1%), [1°]}.

Example 12.
Let H:= ((12345)) (e Syls(G)).

(1) ¢ =Irr(G).
(2) (a) If p=2, then 8 = f, U By,
where §; = Irr(B;) for j =0, 1.

(b) If p = 3, then ®§ = | J2_, 8,
where §; = Irr(B;) for j =0,1,2.

(c) Ifp = 5, then Irr(By) = U?:o Bi, where By =
{[6]}, 61 = {[5,1],[3,2,1),(2%,1%]} and B2 =
{[1°]3.
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