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Abstract

   SR(H)-blocks (of the irreducible characters of G) and their defect groups are defined by G.R.Robinson
In this note we give some SR(H)-blocks for the symmetric group of degree 6.
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1 Introduction

  Let G be a finite group, p a prime number which
divides the order of G and (K R, k) a p-modular sys-
tem, i.e., R is a complete discrete valuation ring with
ma)cimal ideal (T), K is the quotient field of R of char-

acteristic O and k(:= R/(T)) is the residue field of R

of characteristic p. Moreover, we assume that K con-
tains the ICIth roots of unity.
  For a subset X of G, .5? denotes the sum of all ele-

ments of X in the group algebra oG, where o is R,K
or k.

  In this paper we consider the Hecke algebra S, (H)
:= End,c(fioG) for a subgroup H of C.
  As eH := .iillHl is an idempotent of KC, SK(H)

== eHKGeH. For x E Irr(G), let ex be the central
primitive idempotent of KC corresponding to x and
put OS :== {x E Irr(G);(xlH,IH)H 7C O}. Then we
ii"iery'e that {exeH; )c' E ÅëS} is the set cf a}} central

primitive idempotents of SK(H) (see [C--R, (11.26)
Corollary]).

  As SK(H) = KXR SR(H), for a central idempotent
E of SR(H), there exists a non-empty subset P of ÅëCH

such that e == 2])xEp exeH. Then the element of this
form is denoted by efi and if efi is a centrally primitive,

fi (or EpSR(H)) is called an SR(H)-block.
  On the other hand, the multiplication induces the
K-algebra homomorphism ip : Z(I<G) - Z(SK(H)).
Using the map to, G.R.RDbinson [R2] has proved that
                        AZ(SR(H)) f t EndR[cxG](RGHRG) as R-algebras and
so each SR(H)-block corresponds to a unique inde-
composable direct summand Mp of RGfiRC. There-
fore we can define a defect group for an SR(H)-block
fi (i.e., a vertex of Mp) in G Å~ C.

  Recall that for any SR(H)-block 6 there exists the
unique p-block B such that fi c Irr(B) (See [R2]).
Also if eB is a block idempotent of RG with the con-
dition ip(eB) 7L O, then ip(eB) == 2pEos Ep, where B
is the suitable non-empty subset of SR(H)-blocks. So
Irr(B) n ÅëGH js a (disjoint) union of SR(H)-blocks.
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  Moreover, we have SR(H)/TSR(H) ty Sk(H) as
AHRG is a permutation module. Hence the set of
SR(H)-blocks corresponds bijectively to the set of
Sk(H)-blocks.

  In [Hllrv[H4] and [H-T] we gave some examples
of SR(H)-blocks for the symmetric and alternating
groups of degree 3, 4, 5. So in this note we show some
SR(H)-blocks for the symmetric group of degree 6.

  The notation is almost standard. Concerning some
basic facts and terminologies used here, we refer to
[C-R] and [N-T] for example.

2 Preliminaries

  First we recall the next proposition which tells us
some relations between p-blocks and SR(H)-blocks.

Proposition 2.1. ([R2, Remark of Lemma 2.1])
lf H =, {1}, then Irr(B) is an SR({1})-block for
any p-block B of G. Moreover, a defect group
of an SR({1})-block Irr(B) is the diagonal subgroup
6(B)" := {(x,x) E CÅ~ G;x E 6(B)}, where 6(B) is a
(usuaD defect group of B.

  For any x E ÅëS there exists a unique SR(H)-block

fi such that x E 13. In particular, the trivial character
IG of G is always in ÅëCH for any subgroup H of G. So

it lies in a unique SR(H)-block of G, which we denote
by Po and call the principal SR(H)-block.

  Now we shall exhibit some results on SR(H)-blocks.

Proposition 2.2. ([R2, Lemma 2.1,Lemma
(iv),Corollary 2.4]) Let fi be an SR(H)-block
6H(fi) a defect group ofP and C := n,Ec H9.

(1? For any x,yE G,

    icG l6.") iiPc)i(y)i ,2,px(x)x(y) E R

    in partzcuiar, eli;H{fiililt .2tpx(i)2 E R

2.3(i)-

of G,

Then
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(2? If fi is asubgroup of H, then ÅëGH is asubset of

   ÅëS- and fi is contained in a single SR(H)-block fi

   of C.

   In particular, fi is contained in a single p-block

   B ofC in the usual sence, and ifB has a defect
   group D, then 6H(P) is contained (up to conju-

   gacy) inDxD. ,
(3? There is a bijection between the set of SR(H)-
   blocks of G and the set of SR(HIC)-blocks of
   GIC.
   In particular, ifH is normal in G (i.e., C = H),
   then the SR(H)-blocks of G are precisety the p-
   blocks ofR[GIH].

(4? For the principal SR(H)-block fio, Po = {lc} of
   and only if H contains a Sylow p-subgroup of G.

(5? lfx E lpS is in p-blocic of defect zero of GIC in

   the usual sence, then {x} is an SR(H)-block of
   C.

Proposition 2.4. ([H-T]) The
DB ofB has the following form

(2.1) DB =

deco7n.position matrix

Dp, o --- o *

o Dp, +-- o *

: : '. :
. .

.
'

*

o o --- Dpt *

o o --- o *

: : :
' . --- '

*

o o --- o *

(DBtlDB"),

where DB' denotes the set of the first

coluTnns ofDB and DB" the rest.
IIBr(B) n WSI

  For x,x' E ÅëS, we denote x -H x' if there exists
g E ptS such that dxg l O l dx,g. Moreover, if there

exists a finite sequence x = xl -H X2 -H ' ' ' -H Xm =
x' in ÅëS, we denote x rvH x'.

  Using these notations, we have the following by the
form (2.1).

Corollary 2.3. (iH3, Corollary 2.4]) The following
hold.

(1) If 2.,px(1)2(= rankRMp) is prime to p for an

   SR(H)-block fi, then a defect group offi is a Sylow

   p-subgroup ofGÅ~G. In particular, ifH contains
   a Sylowp-subgroup ofG, then a defect group of
   fio is a Sylowp-subgroup ofG Å~ G.

(2) Ifx E ÅëSi is in piblock B of defect zero, then

   {x} =: Irr(B) is an SR(H)-block and its defect
   group is the trivial subgroup {(1,1)} ofG Å~ G.

Corollary 2.5. ([H-T]) x,x' E ÅëGH are in the

SR(H)-block if and only ifx rvH x'.

  Also we know the fo
for the SR(H)-block.

same

11owing orthogonality relation

Theorem 2.6. ([H-T, Theorem 5]) Let fi be an
SR(H)-block. Then we have
  Zx(xeH)x(y) = O for any y E G- G., and x E

  XEP
Gpt such that <x,H> is a p'-subgroup.

  Let B be a p-block of RG. If ip(eB) 7E O, there
is a non-empty subset B of SR(H)-blocks such that
Åë(eB) = Åíe,. ep. Hence Irr(B) nÅëGH = Up,. P. So
we write B := {Pi,62,••• ,Pt}•

  In the rest of this section we assume that H is a p'-

subgroup ofG and consider only those blocks such
that ip(eB) 7E O.

  In this case eH E RG, i.e., iE}RG = eHRG is a pro-

jective RG-module and kH is a semisimple k-algebra.
  Now for any q E IBr(G), let Sp (resp. Pep) be
a simple kC-module (resp. an indecomposable pr"
jective RG-module) corresponding to g and WS :=
{g E IBr(G);kHIS.iH}. Here we have that gfS =
{q E IBr(C);P.leHRG} by Robinson's reciprocity
([Rl, Theorem 3]).

  Concerning SR(H)-blocks for p'-subgroup H, the
next proposition is fundamental.

  Moreover,
theorem (cf.

Y. Tsushima [T] proved the
[H--T, Proposition 10]).

following

Theorem 2.7. ([T, Theorem 1]) Let G be the sym-
metric group on n letters and suppose that H is a sub-
group oforder2. Ifp> 2, then {eBeH;B E BI.(G)} is
the set of all centralprimitive ide7Tppotents of SR(H) =

eHRGeH.

3 Some examples
blocks for the
group of degree 6

of SR(H)-
symmetric

  Let n be a natural number and Sn (resp. utn) de-
note the symmetric (resp. alternating) group ofdegree
n. Also we denote the ordinary irreducible character
of Gn corresponding to A E P(n), the sets of the parti-

tions of n, by the same notation of the Young diagram
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IA] corresponding to A (for example [n] : = [(n)] means

the trivial character ls.,)•

 In this section let G be the symmetric group of de-
gree 6 S6 and Bo the principal p-block of G.

  We know that G has the following p-blocks :
p = 2 : Irr(Bo) == {I6], [5, 1], [4, 2], [4, 12], [32], [3, 13],

[23], [22, 12], [2, 1`], [161}, Irr(Bi) == {[3, 2, ll}•

p =' 3 : Irr(Bo) == {[6], [5, 1], [4, 12], [32], [3,2, 1], [3, 13],

[23], [2, 14], [16]}, Irr(Bi) = {[4, 2]},

Irr(B2) == {[22,12]}.

p = 5 : Irr(Bo) == {[6], [4, 2], [3, 2, 1], [22, 12], [16]},

Irr(Bi ) = {[5, 1]}, Irr(B2) = {[4, 12]},

Irr(B3) = {[32]}, Irr(B4) = {[3, 13]},

Irr(Bs) = {[23]},Irr(B6) = {[2,1`]}.

 We mainly consider the principal SR(H)-blocks by
Corollary 2.3(2).

 First we can immediately show the following two
examples.

Example 1. (See [H4, Example 31)
 Let H := ((1 2 6), (2 3 6), (3 4 6), (4 5 6)> (= ut6)•

(1) ÅëC. -{[6],[16]}.

(2) (a) Ifp= 2, then Po == Åëfi.

    (b) ifp= 3 or 5, then ÅëS = Po Ufii C Irr(Bo),
       where 6o = {[6]} and fii = {[16]}.

Example 2. (See [Hl, Example 12])
 Let H := <(1 5), (2 5), (3 5), (4 5)> (= Gs)•

(i) ÅëS - {[6], [5,i]}.

(2) (a) Ifp=2or3, then fio =ÅëS•

    (b) If p = 5, then ÅëC. -- 6o U fii, where

       Po = Irr(Bo)nÅëS = {[6]} and 6i = Irr(Bi).

 Moreover, we shall give the following examples by
using the facts in section 2, the Branching Theorem
([J, Theorem 9.2]) and the value of characters.

Example 3.
 Let H := <(1 2 5), (2 3 5), (3 4 5)> (= sus)•

(1) ÅëS == {[6], [5,1],l2,14],P6]}.

(2) (a) Ifp == 2, then fio = ÅëS•

    (b) Ifp = 3, then ÅëS == BoUfii c Irr(Bo), where
       fio == {[6],[5,1]} and fii = {[2,1`],[16]}.

    (c) Ifp= 5, then Irr(Bo)nÅëS = 6o U6i, where
       Po = {[6]} and fii = {[16]}.

Example 4. Let H := <(1 4),(2 4),(3 4)> (== 64)•

(1) ÅëS - {[6], [5, 1], [4, 2], [4,12]}.

(2) (a) If p= 2, then eo = ÅëGH.

    (b) Ifp == 3, then Po = Irr(Bo)nÅëS

                   = {[6], [5, l], [4, 12]}.

    (c) Ifp == 5, then 6o = Irr(Bo)nÅëCH

                   - {I6], [4, 2]}.

Example 5. Let H := <(1 2 4), (2 3 4)> (= za4)-

(1) ÅëS - {[6], [5, 1], [4, 2], [4,12], [3, 13], [22, 12], [2,14],

   [16]}.

(2) (a) Ifp == 2, then fio = ÅëS•

    (b) Ifp == 3, then Irr(Bo)nÅëS = fio U6i, where
       rso = {[6], [5, 1], [4, 12]}

       and Pi = {[3,13], [2,14],[16]}.

    (c) Ifp = 5, then Irr(Bo)nÅëS = fio Ufii, where
       fio = {[6], [4,2]} and Pi = {[22,12],[16]}.

Example 6.
 Let H := <(1 4), (2 4), (3 4), (5 6)> (c! 64 Å~ 62)•

(1) ÅëS - {[6],[5,i],[4,2]}.

(2) (a) Ifp=2, then ÅëS == PoUPi cIrr(Bo), where
       Po = {[6]} and Pi = {[5, 1], [4, 2]}.

    (b) Ifp= 3, then Bo = Irr(Bo)nÅëS

                   -{[6], [5, i]}. .
    (c) Ifp= 5, then fio = Irr(Bo)nÅëS

                   - {[6], [4, 2]}.

Example 7.
 Let H := <(1 2),(1 3),(4 5),(4 6)> (ft 63 Å~ S3)-

(1) Åëfii :{[6],[5,1],[4,2],[32]}.

(2) (a) If p= 2, then Po = ÅëGH.

    (b) Ifp= 3, then Irr(Bo)nÅëS = Po UPi, where
       Po - {[6]} and Pi = {[5, 1], [32]}.

    (c) If p = 5, then fio = Irr (Bo) n Oa.

                   - {[6], [4, 2]}.

Example 8. Let H :-- <(1 3),(2 3)> (= G3)•

(1) ÅëG. = {[6], [5, 1], [4, 2], [4, 12], [32], [3, 2, 1], l3, 13]}.

(2) (a) If p = 2, then Po = Irr(Bo) n OC.

                   - ÅëS X{[3,2, i]}.

    (b) Ifp == 3, then fio = Irr(Bo)nÅëS

                   = ÅëS X {[4, 2]}.

BuL of Osaka PreÅí Col. of Tech. Vol. 39 -15-



Yoshimasa HIEDA

(c) Ifp= 5, then fio = Irr(Bo)•n ÅëS

= {[6],[4, 2], [3,2, i]}.

Example 9.
  Let H := <(1 2 3)> (= M3)•

(i) ÅëG. - Irr(G).

(2) (a) Ifp= 2, then ÅëGH =6oUSi,
       where fi,• = Irr(B,•) for J' = O, 1.

    (b) Ifp == 3, then QS = U?•=o Pi,

       where 6j = Irr(B,•) for o' = O,1,2.

    (c) Ifp == 5, then ÅëS = U[=o Pi,

       where 6,• = Irr(B,•) for j' = O,1,2,t••,6.

Example 10.
  Let H : : <(1 2), (3 4), (1 3)(2 4), (5 6)> (E Syl2(C))•

(1) ÅëG. = {[6], [5, 1], [4, 2], [3, 2, 1], [23]}.

(2) (a) Ifp == 2, then Irr(Bo)nÅëS = 5o Ufii,where
       fio - {[6]} and Pi - {l5, 1], [4, 2], [23]}.

    (b) Ifp == 3, then fio = Irr(Bo) n ÅëS

                    - {[61, [5, i], [3, 2, ll, [23]}.

    (c) Ifp=: 5, then Bo = Irr(Bo)n ÅëS

                    == {[6], [4, 2], [3,2, 1]}.

Example 11.
 Let H := <(1 2 3), (4 5 6)> (E Syl3(G))•

(1) ÅëC. = Irr(G) X {[3,2, 1]}.

(2) (a) If p = 2, then fio = ÅëS = Irr(Bo).

    (b) Ifp = 3, then Irr(Bo)nOS = U#•=, Pi, where
       6o - {[6]}, Pi = {[5, 1], [32]},
       fi2 == {[4, 12], [3, !3]}, fi3 = {[23], [2, 14]}

       and fi4 = {[16]}.

    (c) Ifp= 5, then Irr(Bo)nÅëCH -- PoUfii, where
       Po - {[6], [4,2]}, fi, . {[22,12],[16]}.
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Example 12.
  Let H :== <(1 2 3 4 5)> (E Syls(G)).

(1) ÅëS - Irr(G).

(2) (a) Ifp= 2, then ÅëGH = Po U6i,
       where fi,• = Irr(B,•) for j' = O, l.

    (b) Ifp=3, then ÅëS =UZ•=o 6i,
       where P,- = Irr(Bj) for J' = O, 1,2.

    (c) Ifp = 5, then Irr(Bo) = U,2•,=, Pi, where fio

       {[6]}, fii = {[5,ll, [3,2,1], [22,12]} and fi2

       {[161}•
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