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neSTRACT

   In classieal dynamical systems, the dynamical systems with central potentials have been fully
investigated. Of these dynamical systems the Kepler motion and the hamonic os( ilIator are known to

have celebrated propenies. One of these is that Bertrand's theorem is valid, namely any bounded
orbit is closed. As a generalization of the Kepler motion, MIC-Kepler motion and multifold Kepler

motion have been found and their symmetries discussed. This artiale deals with `conformally
extended' central potential dynarnical systems, which have nonstandard kmetic energy and contain

two undetermined functions. From the viewpoint of dynamical symmetries, these two functions are
determined so that any bounded orbit may be alosed. As a result, we have found three kinds of
dynamieal systems. One is regarded as a generalization of the Kepler motion on epaces of constant

curvature. [[Ehe second system is also considered as an extended harmonic oscillator on constant

curvature spaces. The third system corresponds to a generalized Khare dynamical system.

Key Words: dynamical symrnetry, closed orbit, Bertrand's theorem, Kepler motion, harmonic os( illator,
rnultifold Kepler motien, constant curvature sp' ace, conformally fiat space, Khare's system.

1. Introduction

  In classical mechanics as well as quantum
mechanics, dynamical systems with central
potentials have been fully investigated. Of
these dynamical systems, the Kepler mbtion
and the hamonic oseillator are well known as
celebrated dynamical systems because of their
furitful dynamical symmetries. One of their
properties is that Bertrand's theorem is valid,
namely any bounded orbit is c}osed [1,2,3].

 From the viewpoint of dynamical symmetries,
many generalized dynamical systems have been
found. As an example, MIC'Kepler motion is
considered as a Kepler motion in a magnetic
monepo}e field [4,5,6]. The present author and

T.Iwai have generalized MI[C'Kepler motion to
findmultifoldKeplermotion whichcontains a
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rational parameter a [7,8]. For the multifold

Kepler system any bounded motion is closed. And
for a suitable value of a , the multifold Kepler

system corresponds with any dynamical system
with closed orbit property mentioned above.

  On the other hand, from the geometrical points

of view, the Kepler motion and the harmonic
oscillator have been generalized on constant
curvature spaces [9,10,11].

  In this short artiale, we consider the central
potential dynamical systems in a conformally flat

space. Our dynamical system has two
undetermined functions, one is connected with
kinetic energy and the other is central potential

function. By making use of modified Bertrand's

method, these two functions are detemined so
that any bounded orbit may be alosed. As a result,

we can get three kinds of dynamical systems. Tlie

first system is a generalization of the Kepler
motion on spaces of constant curvature. [I7he
second one is considered as an extension of the
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harmonic oscMator on constant curvature spaces.

[[1ie third system corresponds to a generalized

Khare dynamical system, which is known to
admit local degeneracy {12].

  The contents of this short article are
summarized as follow$. In Sec. 2, central
potential dynamical systems in `a conformally fiat

space' are defined. In Sec.3, with modified
Bertrand's method, two undetermined functions

are decided so that any bounded orbit may be

closed. Concluding remarks and further
discussions are given in Sec.4.

2. Central potential dynamical systems in a
  couformally flat space

  In this section, we define a central potential

dynamical system in a conforma]ly flat space.
And the general system is shown to contain many

dynamical systems with symmetries.

  With Cartesian coordinates xi(i --- 1,2,3), we

may introduce a eonformally flat 3'dimensional
metric defued below:

                  3       ds2 =f(r)Z (du` )2 (2.1)
                 i-1
where

r=
3

Z(xi)2
i---1

   f(r) is a

 the variable

     with the

(2.2)

is a radius and positive'valued

Cco ".function of r. The kinetic
energy T associated metric (2.1) is
given by

T= ll f(r)(( Sti )2 .(St2 )2 .(f{:;t3 )2) (2 3)

  Here we will introduce polar coordinates

(r, e,q) , which are related with xi by

     x' = rsin( e)cos( q),

     x2 =rsin( e)sin( q), (2.4)
     x3 = rcos( e).

   With eentral potential limedon U(r) which

is also a real'valued Cco .function of the variable

r, the Lagran gi an L takes the following form,

 L=T-U(r)
 =;f(r)((f/ )2 +r2(ddet )2 +r2 sin2 e( ddqt )2)

                         - U(r).

                                    (2.5)
   We may cail the above L given in (2.5)
Lagrange's fUnction for central potential
dynamical systems in the conforma}ly flat space

under consideration. Some dynamical systems
having closed orbit property are contained in this

general$ystemin (2.5).
  Ifwe take with constant k

                    -k   f(r)=1, U(r)= , (2.6)
                     r
then the Lagrangian (2.5) becomes that of the

Kepler motion. As a second example, if the
functions

    f(r) andU(r) are given by ,

    f(r)= 1, U(r)=S ke2 , tz 7)

then we can obtain the harmonic oscillator from

(2.5). As a third example, if we have with
constants K and a,

    f(r) = (i + {iL r2 )-2 ,u(r) = -,a (i - {iL r2 )

                                    (2.8)
then the system (2.5) becomes the Kepler motion

on constant curvature spaces. We wil1 show
further two examples which are contained in

(2.5). if the functionsf(r) andU(r) are taken to

be

    f(r) = (i + IiL r2)-2 , u(r) = ar2 a-5r2)-2

                                    (2.9)
then the system (2.5) corresponds with the
harmonic oscillator on constant curvature spaces.
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The1ast example is that with constants a,b,c,d

andarational number a,

    f(r)=ra-2 (a+bra) , tz.lo)
and

          c+ dra    U(r)= (2.11)          a+bra

give a planar-multifold Kepler motion. It is to be

noted that multifold Kepler motion is defined as

a modjfied Kepler motion in a magnetic monopole
field. So the trajectories for the multifold Kepler

motion are shown to lie on acone. But the planar

multifold Kepler motion can be gotten from the

multifold Kepler motion through BBCEL trans'
forrnation [13]. 'lhe orbits on a cone are
transformed into the ones on a plane. These
dynamical systems mentioned above have closed
orbit property. In other words, any bounded
orbit is closed.

   Before ending this section, we will
summarize the relations among these systems.

The planar multifold Kepler motion for

a=O,b=1, c=-k,a=1 becomes the usual

Kepler motion tz.6) and for a=1,b=O

, d = k 1 2, a = 2 the usual harmonic oscillator

(2.7). But the planar multifold Kepler system
cannot produce the systems (2.8) and (2.9). So it

does not seem meaningiess to get the general

form of two undeterrnined functions f(r) and

U(r) from periodicity ofthe orbits.

3 . Application ofBertrand's method and three

kin{ls of dynamical systems

  In this section, we apply BertTand's method to

the central potential systems in the conformally

flat space deiined in the last section. We wi11

determine thetwofunctions f(r) and U(r) so

that all bounded orbit may be closed.

 rn classical mechanics, Bertrand proved that
the Kepler motion and the harmonic oscillator

are the only central potentiai systems fer all the

bounded motions to be closed [1,2]. [[lie method

which he used in the proof is called Bertrand's

method.

  With Cartesian coordinates x'(i---1,2,3),

Lagrange's function yields equations of motion

which are given by

  f(,) di,li + tZi+(II.l?., x' dudt"" Si

  --d,U,l+g(S.,(S,')2)f/", (3.i)

                  (i = 1,2,3).

But the polar coor(linates are very usefu1 in
our system. Namely, one can easily see that the

variable Åë is a cyclic one. So the angtilar

momentum

 J=f(r)r2 sin2(e)(dq) (3.2)
                  dt

is conserved. With position vector x=(xi,

x2 , x3 ) and ve locity vector duldt = (du ' /dt,

du2ldt,du3/dt), angular momentum vector

f(r)xÅ~cixldt is conserved and the value of

  (3.2) is also shown to be

                du     J=f(r)xx Tt , (3.3)

where lxl denotes the absolute value of vector

x and Å~ stands for vector product. With this
rotational invariance, one csn easily get

       e=!. (3.4)
           2

   With the notation ofvector analysis, we can

also show

    (f(r)(xx9!!)ex)=o, (3.s)
            dt

where center dot e denotes the inner produet of
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two vectors. Without loss of generality, one can

take xÅ~El{! axis in the direction of x3 axis.

        dt

This fact ensures that (3.4) is satisfied and the

orbit lies on the plane which is perpendicular

to the vector xÅ~(dx/dt). Then the system is

reduced to two' degrees'of'freedom system.

   With rand q, the total energy E and

angularmomentumJ areexpressedas

E=
g f(r)((Sl )2 +r2(ddqt )2)+ u(r) (3.6)

                    dep         J = f(r)r2 (                      ) (3.7)
                    dt

With these conserved quantities, one can get
an equation of orbit as follows:

           J f(r)r                                      dr   dop
        f(r)r2 (2E-2u(r))f(r)r2-J2

             J1           = dr.             r 2(E-U(r))r2f(r)-J2

                                    (3,8)

If the trajectory r=r(op) is closed, r should

take a maximum and a mmimum. Let ri be a

minimum and r2 the following maximum. Since

d)Zd(q = O for thevalues, one has from (3.s)

  2(E-2U(r,))r,2f(r,)-12=O, k=1,2.

                                     (3.9)
                                             - Mf"' 2u2-2M (E - u) -. u2-2m.r 2g(u) ' (3'15)
The increment of the angle, Aq, during the

motion from r=ri the following r=r, is where g(u)=1!(r2f(r)) and u,(k=1,2)

therefore given by
                                            corresponds to rk(k=1,2) through (3.12). On
Aq=f,12tt(E-u(,))f4f(,).,2J2"(3'10) setting

                                              V(u) = E(1 -- u2r2M)- J2u2 /2
                                                                          , (3.16)We assume further that no critical values of r
                                              + J2g(u)u2'2M / 2 + u2-2MU(r(u))
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existbetween ri and r2.Thenanecessaryand

suthcient condition for the trajectory to be
closed is that

Aip = mz for some ration al number m . (3.11)

  We can here assume that m > O without loss
of generality. In fact, if m < O the integration in

(3.10) is performed over the range from r2 to ri

in the inverse clirection,

  We nowintroduce avariable u by

      "=(-f,2 Zlai)'iM (3.m)

where we have modified Bertrand's method. In
ordinary treatment, mis set to be one with

f(r) = 1;

      u= 11r. (3.13)
In the case of constant curvature space,

f(r)=
(i+ Iilr2)'2, the new variabie u in

(3.12) with m=1 becomes

       u=}(1-5Lr2) (3•i4

which was already treated in [9]. In this stage,

the new variable u can not be expressed
explicitly with r such as (3.13) and (3,14). So

the following discussions are taken to be
formaL
   The right'hand side of (3.10) is then rewritten

as

     u2 Jdu
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and on putting equations (3.10) to (3.16) together ,

the closed trajectory condition (3.11) is brought

into the form

  i.",i 2(E--:(d."))-J,.,=n• (3.i7)

This equation is the same as the one which
Bertrand treated in the ordinary central
potential problem [1]. See also Greenberg [3]

for this equation. For V(u),the condition (3.9)

is expressed as

 2(E -- V(u, )) -J2 u,2 =O, k= 1,2 (3.ls)

Following Bertrand (1], we can find from (3.17)

th at the function V(u) has to take the form

    V(u)=4ou+4i, (3.ig)
where 4o and ei are constants. In addition to

(3.19) ,

V(u)= g,u-2 +4, , (e, and 4, ;consts)

                                   (3.20)
also gives

      i Jdu n    jl"12 2(E - V(u)) -. J2.2 = "li ' (3'2 1)

From (3.16) and (3.19), as the total energy E is

an arbitrary constant, we have three cases.

CASE 1. E4O and m=1.
 In this case, one can take with constants

nyi,n2,ij3,q4,

   g(U) = U2 + rpiU+ rp2 = r2 ;(r)' (3'22)

and

      U(r(u))=ny,u+rp,. (3.23)
Thevariables u and r arerelatedby(3.12).

By putting

    F(")=(-S,2 fas) • (3•24)

 we have a djfferential equation

                                       -5-Bul.of Osaka Pref. Col. of Tech. Vol.36

    r2(dFa(,r))2 = I7(r)2 + rp,F(r) + rp2 (3•25)

'IEhis equation can be easily solved to get

        F(r) = c,r+ ci +c2r-'. (3.26)

where co,ci and c2 areconstants.

  ([foing back to the expression of the original

variable r wehave
         '
                      1
           f(r) = (c, r2 - c, )2 '

                                   (3.27)

     U(r)=a(cor +c,r-i) . a: const.

Tliis system can be regarded as a generalization

of the Kepler motion on spaces of constant
curvature given in (2.8).

CASE2. E#O and m=112.

 In the second case, with constants rpi,ij2,,

rp3,ny4 wehave

     g(U)=U+ ni +!lt' " r2;(r) (3-28)

and

                   1
      U(r(u)) = ij, +-- rp,. (3.29)
                   u
According to the Case 1, with (3.24) and

u2 = F(r) we have a differential equation

       dF(r)            )2 . 1['(r)2 +ij,F(r)-2 +ny, (3.30)    r2(
        dr

With G(r)=F(r)2, (3.30) can be transforrned

into
                           '
 r2(dGd(,'))2 = 4(G(r)2 +q,G(r)+ ny2) (3•31)

  One can solve this differential equation easily.

So we get the following solution;

       G( r) = c,r2 +c, + c,r'2 , (3.32)
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                (cor2/M-c2 )2 '

                                  (3.34)
     U(r) = (cori!M + ci + c2r-iim)2m-2

         (a(cori/M + ci + c2r-'iM)+ ]61)

            a and fi : consts.

  Here if one take co = ci = O, c2 =1 and

a=-B,fi=A , then the system (3.34) is

seen to coincide with Khare"s system [12] ;

f(r)=1, U(r)=Ar2'M-2 --Br'fM-2. (3.3s)

So this system is said to be a generalization of

Khare's system.
  Conversely, in these systems (3.27), (3.33) and

(3.34) with E=O, we can show that any
bounded orbit is closed under suitable constraints

amongtheconstants co,ci,,c2,a and fi.

  Before endmg this section, it is to be noted that

we could net fud a generalization of the planar
multifold Kepler motion defued by (2.10) and
(2.11) in this approach. This fact is due to the

variable tranaformation (3.12). In [7], the

multifold Kepler motion could be obtained

where co,ci and c2 areconstants.Asaresult,

we obtain

                  42               cor +clr +c2         f(r)" (c,r`-c,)2 '

                                  (3.33)

                a    U(r)= 2 -2 .alconst.
              +cl +c2r          cor

This system can be considered as a generalization

of the harmonic osc illator on constant curvature
spaces given in tz.9) .

CASE3 E=O.
 In the last Case, we can make the same
discussions in the former cases. Consequently,

one may get the following functions.

           (cor2/M + ciri/M + c2 )2-2m
     f(r)

through u = (r -i )iiM .

4 .Concludmg remarks

 We have found three kinds of dynamical
systems asso( iated with a conformally flat metric

from the viewpoint of closed orbit property. in

this researCh, we have only found forrns of the

functions. So, further investigations concerning

the found systems should be made. For the
systems in Case 1 and Case 2, we should study

first integrals and clear up its dynamical
symmetry. On the other hand, the third system in

Case 3 is also expected to adrnit 1ecal degeneracy.

11iese further investigations will be made in a

forthcoming paper.
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