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ABSTRACT

In classical dynamical systems, the dynamical systems with central potentials have been fully
investigated. Of these dynamical systems the Kepler motion and the harmonic oscillator are known to
have celebrated properties. One of these is that Bertrand’s theorem is valid, namely any bounded
orbit is closed. As a generalization of the Kepler motion, MIC-Kepler motion and multifold Kepler
motion have been found and their symmetries discussed. This article deals with ‘conformally
extended’ central potential dynamical systems, which have nonstandard kinetic energy and contain
two undetermined functions. From the viewpoint of dynamical symmetries, these two functions are
determined so that any bounded orbit may be closed. As a result, we have found three kinds of
dynamical systems. One is regarded as a generalization of the Kepler motion on spaces of constant
curvature. The second system is also considered as an extended harmonic oscillator on constant
curvature spaces. The third system corresponds to a generalized Khare dynamical system.

Key Words: dynamical symmetry, closed orbit, Bertrand’s theorem, Kepler motion, harmonic oscillator,

multifold Kepler motion, constant curvature space, conformally flat space, Khare’s system.

1. Introduction

In classical mechanics as well as quantum
mechanics, dynamical systems with central
potentials have been fully investigated. Of
these dynamical systems, the Kepler motion
and the harmonic oscillator are well known as
celebrated dynamical systems because of their
fruitful dynamical symmetries. One of their
properties is that Bertrand’s theorem is valid,
namely any bounded orbit is closed [1,2,3].

From the viewpoint of dynamical symmetries,
many generalized dynamical systems have been
found. As an example, MIC-Kepler motion is
considered as a Kepler motion in a magnetic
monopole field [4,5,6]. The present author and
T.Iwai have generalized MIC-Kepler motion to
find multifold Kepler motion which contains a
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rational parameter @ [7,8]. For the multifold
Kepler system any bounded motion is closed. And
for a suitable value of a, the multifold Kepler
system corresponds with any dynamical system
with closed orbit property mentioned above.

On the other hand, from the geometrical points
of view, the Kepler motion and the harmonic
oscillator have been generalized on constant
curvature spaces [9,10,11].

In this short article, we consider the central
potential dynamical systems in a conformally flat
space. Our dynamical system has two
undetermined functions, one is connected with
kinetic energy and the other is central potential
function. By making use of modified Bertrand’s
method, these two functions are determined so
that any bounded orbit may be closed. As a result,
we can get three kinds of dynamical systems. The
first system is a generalization of the Kepler
motion on spaces of constant curvature. The
second one is considered as an extension of the
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harmonic oscillator on constant curvature spaces.
The third system corresponds to a generalized
Khare dynamical system, which is known to
admit local degeneracy [12].

The contents of this short article are
summarized as follows. In Sec. 2, central
potential dynamical systems in ‘a conformally flat
space’ are defined. In Sec.3, with modified
Bertrand’s method, two undetermined functions
are decided so that any bounded orbit may be
closed. Concluding remarks and further
discussions are given in Sec.4.

2. Central potential dynamical systems in a
conformally flat space

In this section, we define a central potential
dynamical system in a conformally flat space.
And the general system is shown to contain many
dynamical systems with symmetries.

With Cartesian coordinates x'(i=12,3), we

may introduce a conformally flat 3-dimensional
metric defined below:

3
ds* = f(r)3 (dx' )’ @
i-1
where
3
r= ’Z(x"f (2.2)
i=1

is a radius and f(r) is a positive-valued

C?” -function of the variable » . The kinetic

energy I associated with the metric (2.1) is
given by
1 et , ., dF,
=— + + . 2.3
2f(r)((dt) (dt) (dt) 2.3

Here we will introduce polar coordinates

(r,0,9), which are related with x’ by

x' = rsin( 8)cos( @),
2.9

®
i

rsin( @) sin( @),
> =rcos( ).

=
i

With central potential function U(r) which

is also a real-valued C~ .function of the variable

7, the Lagrangian L takes the following form,
L=T-U(r)
== f(M (=) +r'(—) +r°sin” (—
2f( )((dt) (dt) (dt)
- U(r).
2.5
We may call the above L given in (2.5)
Lagrange’s function for central potential
dynamical systems in the conformally flat space
under consideration. Some dynamical systems
having closed orbit property are contained in this
general system in (2.5).
If we take with constant &
-k
fin=1, Ur=— |, @2.6)
r
then the Lagrangian (2.5) becomes that of the

Kepler motion. As a second example, if the
functions

f(r)andU(r) are given by ,

@.7

F(=1, U(r>=§kr2 ,

then we can obtain the harmonic oscillator from
(2.5). As a third example, if we have with
constants K and a,

f(r)=(1+-§—r2)- ,U(r):lr‘l(l—-]:—rz)

2.8)
then the system (2.5) becomes the Kepler motion
on constant curvature spaces. We will show
further two examples which are contained in

(2.5). If the functions f(7) andU(7) are taken to
be

f(r):(l +§r2j— JU(r)y=ar? (1—§r2)'2
(2.9)

then the system (2.5) corresponds with the
harmonic oscillator on constant curvature spaces.
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The last example is that with constants a,b,c,d

and a rational number «,

f(r=r**(a+br*) , (2.10)
and
Uery=SF9" @.11)
a+ br”®

give a planar-multifold Kepler motion. It is to be
noted that multifold Kepler motion is defined as
a modified Kepler motion in a magnetic monopole
field. So the trajectories for the multifold Kepler
motion are shown to lie on a cone. But the planar
multifold Kepler motion can be gotten from the
multifold Kepler motion through BBCEL trans-
formation [13]. The orbits on a cone are
transformed into the ones on a plane. These
dynamical systems mentioned above have closed
orbit property. In other words, any bounded
orbit is closed.

Before ending this section, we will
summarize the relations among these systems.
The planar multifold Kepler motion for

a=0,b=1, c=-k,a=1 becomes the usual
a=1b=0
,d=k/2,a =2 the usual harmonic oscillator

Kepler motion (2.6) and for

(2.7). But the planar multifold Kepler system
cannot produce the systems (2.8) and (2.9). So it
does not seem meaningless to get the general

form of two undetermined functions f(7) and

U(r) from periodicity of the orbits.

3. Application of Bertrand’s method and three
kinds of dynamical systems

In this section, we apply Bertrand’s method to
the central potential systems in the conformally
flat space defined in the last section. We will

determine the two functions f(r) and U(r) so

that all bounded orbit may be closed.
In classical mechanics, Bertrand proved that
the Kepler motion and the harmonic oscillator
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_3_

are the only central potential systems for all the
bounded motions to be closed [1,2]. The method
which he used in the proof is called Bertrand’s

method.
With Cartesian coordinates x'(i=1273),

Lagrange’s function yields equations of motion
which are given by

d2 ! 2 1dx'
f() a’ ; )‘;7
i 3
__il_f_x_ L Z dfx NG EY
dg r 24
(1_1,2,3)

But the polar coordinates are very useful in
our system. Namely, one can easily see that the

variable @ is a cyclic one. So the angular

momentum

J = f(rr? st(e)(%f—’) (3.2)

is conserved. With position vector x=(x',
2 .3 . 1

x*,x*) and velocity vector dx/dt =(dx"/dt,

dx? /dt Jdx? /dt) , angular momentum vector

f(r)xxdx/dt is conserved and the value of
(3.2) is also shown to be

dx
= & 3.3
J = f(r)xx » (3.3)

where |x| denotes the absolute value of vector

x and x stands for vector product. With this
rotational invariance, one can easily get

== (3.4)

With the notation of vector analysis, we can
also show

(f(rXx "‘?}‘)"‘)=°’ 3.5

where center dot ® denotes the inner product of
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two vectors. Without loss of generality, one can
dx o ) . 3 .
take xx-;'— axis in the direction of x° axis.
{

This fact ensures that (3.4) is satisfied and the
orbit lies on the plane which is perpendicular

to the vector xx(dx/dt). Then the system is

reduced to two- degrees-of-freedom system.

With r and ¢, the total energy £ and

angular momentum. are expressed as

L arve 249,
-2f(r)((dt) +F (dt) )+U(r) (3.6)

J = f(r)r’ (%Zi) 3.7

With these conserved quantities, one can get
an equation of orbit as follows:

0= J : f(nr dr
frt JQE-2U@m) f(r)rt -J?
J ! dr.

r 2B -U@)f(r)-J?
(3.8
If the trajectory r=r(¢) is closed,  should

take a maximum and a minimum. Let r be a

minimum and 7, the following maximum. Since

%(ﬂ =0 for the values, one has from (3.8)

AE -2U(r, N2 f(r)-J* =0, k=12.

(3.9
The increment of the angle, A, during the

motion from 7=7 the following r=vr, is

therefore given by
&) J

sp=| 4 ;
" JAE-U)r f(r) -

We assume further that no critical values of »

dr.(3.10)

exist between 7, and 7,. Then a necessary and

sufficient condition for the trajectory to be
closed is that

Ap=mn for some rational number m. (3.11)

We can here assume that m >0 without loss
of generality. In fact, if m <0 the integration in

(3.10) is performed over the range from 7, to

in the inverse direction.
We now introduce a variable u by

t/m
ar
Us=|- | ——— (3.12)
[ Irzdf (r)]
where we have modified Bertrand’s method. In
ordinary treatment, m is set to be one with

J(r)=1

u=1/r. (3.13)

In the case of constant curvature space,
K -2
f(r)=(1+~‘-1—r2) , the new variable % in

(8.12) with m=1 becomes

u=l(l—£r2)
r 4

which was already treated in [9]. In this stage,
the new variable % can not be expressed
explicitly with 7 such as (3.13) and (3.14). So
the following discussions are taken to be
formal.

The right-hand side of (3.10) is then rewritten

(3.14)

as
- mrz Jdu , (3.15)
U J2u2~ZM(E - U) _ u2—2mJ2g(u)
where g(u)=1/(r*f(r)) and wu, (k=12)

corresponds to 7, (k=12) through (3.12). On
setting
V(u)=E(1—-u*")=J*u* /2
( 2) (2_2 ) s , 316
+J g™ 12+ uT U (r(w))
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and on putting equations (3.10) to (3.16) together ,

the closed trajectory condition (3.11) is brought
into the form

[ -7
Uy

J2(E - V(u)) Ju
This equation is the same as the one which

Bertrand treated in the ordinary central
potential problem [1]. See also Greenberg [3]

3.17)

for this equation. For V(u), the condition (3.9)
is expressed as

2AE-V(u))-J%u’ =0, k=12
Following Bertrand [1], we can find from (3.17)
that the function V(u) has to take the form

(3.18)

V(u)=Eu+é&,, (3.19)

where £, and £, are constants. In addition to

(3.19),
V(u)=Eu? + &, (&, and &, ;consts)

(3.20)
also gives

r =
“ J2E - V(u)) Ju: 2

From (3.16) and (3.19), as the total energy F is
an arbitrary constant, we have three cases.

(3.21)

CASE1l. F#0 and m=1.
In this case, one can take with constants

0sMasM3:M4,

1
g(u)= u’ + nmu+n, =———-—, (3.22)

r’f(r)
and
U(r(u)) =nu+n,. (3.23)

The variables # and r are related by (3.12).
By putting

o=

we have a differential equation

(3.24)
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r? (___dF(r) Y =F(r) +nF(r)+n, 325
This equation can be easily solved to get
F(r)=cyr+c +c,r™ (3.26)

where ¢;,c;, and ¢, are constants.

Going back to the expression of the original
variable r, we have

1

f(r) - (c0r2 —cz )2 »
(3.27
U(r)=alcyr +c,r™') . a: const.

This system can be regarded as a generalization
of the Kepler motion on spaces of constant
curvature given in (2.8).

CASE2. £E#0 and m=1/2.

In the second case, with constants 7,,77,,,

15,7, we have

T _

=— ! (3.28)
rif(r)

glu)=u+mn +
and

U(r(w))=n, + —1-774. (3.29)
u

According to the Case 1, with (3.24) and

u* = F(r) we have a differential equation

dF (r)

rP(—2? =F(r)’ +n,F(r)? +n, (3.30)

With G(r) = F(r)*, (3.30) can be transformed

into

ri( (3.31)

ZY = 4G + 1,60+ m)

One can solve this differential equation easily.

So we get the following solution;

G(r)=c,rt+c, +c,r2, (3.32)
0 1 2
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where ¢,,c, and ¢, are constants. As a result,
we obtain
4 2
Cr +ort +c
f(r) = 0 - 1 = 2
(cor” —¢3)
(3.33)
a
U(r)= > . @ const.

e’ +o +eyr”

This system can be considered as a generalization
of the harmonic oscillator on constant curvature
spaces given in (2.9) .

CASE3 E =0.

In the last Case, we can make the same
discussions in the former cases. Consequently,
one may get the following functions.

fin =L,

1/m 2-2m
+or'" +c,)

2/ 2
(cor™™ —¢;)

(3.39)

U(r)=(cyr''™ + ¢, +c,r V™)

1/m

(a(cor'™ + ¢, +c,r ™)+ B)

a and P consts.
Here if one take ¢, =c¢, =0,c,=1 and

a=-B,f=A4 , then the system (3.34) is

seen to coincide with Khare’s system [12] ;
fn=1, Ur)=4r*"*-Br'™2  (3.35

So this system is said to be a generalization of
Khare’s system.

Conversely, in these systems (3.27), (3.33) and
(3.34) with £E=0, we can show that any
bounded orbit is closed under suitable constraints

among the constants ¢,,c, ,c,,& and S.

Before ending this section, it is to be noted that
we could not find a generalization of the planar
multifold Kepler motion defined by (2.10) and
(2.11) in this approach. This fact is due to the
variable transformation (3.12). In [7], the
multifold Kepler motion could be obtained

through u = ()*"1 )Um.

4 .Concluding remarks

We have found three kinds of dynamical
systems associated with a conformally flat metric
from the viewpoint of closed orbit property. In
this research, we have only found forms of the
functions. So, further investigations concerning
the found systems should be made. For the
systems in Case 1 and Case 2, we should study
first integrals and clear up its dynamical
symmetry. On the other hand, the third system in
Case 3 is also expected to admit local degeneracy.
These further investigations will be made in a
forthcoming paper.
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