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Dynamical Systems Associated with Eguchi—Hanson Metric

Noriaki KATAYAMA#*

ABSTRACT

The Eguchi-Hanson metric is well known as a self-dual and Einstein four-dimensional metric. In
this short article, dynamical systems in the Eguchi-Hanson space are considered. The central potential
systems in the Eguchi-Hanson space can be reduced with U(l) symmetry. The reduced dynamical system
is of three-degrees-of—-freedom. Then, Bertrand’s method is applied to determine the central potential
in order that all bounded orbits for the reduced system arc closed. Finally, Kepler—type and harmonic-
oscillator-type systems are found.

Key Words: Eguchi-Hanson metric, symmetry, reduction, Kepler—type system, harmonic-oscillator-type
system, closed orbit.

1. Introduction Bertrand’s method to determine the central

The Eguchi-Hanson metric as well as the
Taub-NUT metric is known as a self-dual and
Einstein four—-dimensional metric [1]. Ina series
of papers [2-5], the Taub-NUT metric has been
generalized from the view point of dynamical
symmetry. In these researches, the geodesic flow
system in the generalized Taub-NUT space is
reduced with U(1) symmetry. The reduced dynamical
system is of three-degrees—of-freedom and
discussed on the closeness of bounded orbits.

On the other hand, the geodesic flow system in
studicd in [6].
and quantum motion in the

the Eguchi-Hanson space was
For classical
Eguchi-Hanson space, the equations for the
problems are separable in both cases, but
analytic solutions are difficult to obtain.
In this short article, we consider the central
potential dynamical systems in Eguchi-Hanson
space. The aim of this paper is to find some
dynamical systems with symmetry associated with
Eguchi—Hanson metric. As well as Taub-NUT space,
the dynamical system is easily seen to be reduced
to a lower dimensional systemwith U(l) symmetry.

For the reduced system, we are able to apply
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potential for all bounded orbits to be closed. As
aresult, we have found two dynamical systems. One
is Kepler—type system and the other is harmonic-
oscillator—type system. The Kepler problem and
to be
celebrated examples to admit dynamical symmetry

the harmonic oscillator are well known

in classical and quantum mechanics. For this
reason, many researches for these systems have
been made. However, for the two systems found in
this paper, total energy can not take any value.
Therefore, we may say that these systems admit
“local degeneracy”.

The contents of this
summarized as follows. Tn Sec. 2, the central

short article are

potential systems in Eguchi-Hanson space are
defined and the reduction procedure can be
applied to our systems. In Sec.3, by applying
Bertrand’s method, the central potential function
is determined so that the bounded motion may be
periodic and local degeneracy is proved for the
Kepler-type and harmonic-oscillator-type system.
Concluding remarks and further discussions are
given in Sec. 4.

2. Central potential systems in Eguchi-Hanson
space and reduced dynamical system

In this section, we define the central potential
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systems in Eguchi-Hanson space. And the dynamical
system is shown Lo be reduced to one with U{l)
symmetry.

Using Cartesian coordinates xi(i =1234), we

introduce curvilinear coordinates (7,0,¢,¥),

which are related with Cartesian coordinates

x'(i=1,2,3,4) as follows:

x* = Jrsin (g—)sm(‘” ;(0)

Then, the line element with these curvilinear

coordinates in Eguchi-Hanson space is defined by

ds =——dy +—2(d6’2+sin2&2'q02)

Ar -a')

n

r - a4 (2. 2)

+

(dy +cos@p)’,

4r
where @ is a constant. From the view point of
differential geometry, Eguchi-Hanson metric is
known to be a self-dual, Einstein and Ricci-flat
2.2) with

metric. The line element

x'(i=123,4) takes the following form:

4 4 4
_ a i 7.iN2 iN2
ds’ = pENy _a4)(Zxdx) +2 (@)
\ i=1 i-1 (2. 3)
a
— (X = ' + Xdx’ - x'di’).
r
Then, we can get the following Hamiltonian (2. 4)

from Eq. (2.3) for the central potential system
in Eguchi—Hanson space with central potential

function V(r).

H"-l—i( )2_04 (ixi )
2- Y; 27 Yi

4

(2.4)
a
+ m(x‘yz - xzyl + x3y4 - x4y3)2 + V(r),

where y, denotes the generalized momentum

conjugate to x". The classical dynamical system

governed by the Hamiltonian (2.4) is easily seen

to admit U(1) symmetry. In R —{0} we can define
U(1)= SO(2) action as follows:

(' +i,x° +ix")
I B N
—>explu/2)(x +ix",x” +ix"),

where U is a parameter and [ = \/——_1 This action
can be lifted naturally on cotangent bundle
T‘(R4 —-{O}) to get a symplectic action.
Therefore, we can apply a reduction procedure to

our Hamiltonian dynamical system (T"(R* —{O}),

dy ndx,H). As for the reduction of dynamical

systems with symmetry, one can refer the papers
[2-5] in detail. As a result, we have a reduced

Hamiltonian dynamical system on T‘(R3—-{O}),

whose symplectic form a, and Hamiltonian Hy are

given by Eqs. (2.6) and (2.7), respectively.

3
0, = Z dp, A dq"* _%Z ey-kqidqj Adg" (2.6)
r

k=1
H ~2r23: 4 +———-——2r‘u2
“ e 7f  rt-at @.7
2a 2 & 2
- r3 (Z q pk) +V(r))
k=1

where ¢ :(ql,qz,q3) and p=(p,,p2,p3) are three-
dimensional vectors, namely (g,p) 67(133—{0})

= (R~ {0}) x R® and constant U is a value of

momentum map P defined by

1 Ly
¢(x,y)=—2-(x‘y2—x2yl+x3y4_x4y3), (2.8)

Thus, we have gotten the reduced dynamical system

(T‘(R3—{O}),(oﬂ,Hﬂ) which is of three—degrees—
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of-freedom. Before ending this section, it is to

be noted thal three dimensional vectlor

q=(ql,q2,q3) and the curvilinear coordinates

(r.0,0,y

equalities:
g' = rsin( 6)cos( p),
g = rsin( 8)sin( @), (2.9)

q’ = rcos( 8).

) are satisfied with the following

i

In other words, curvilinear coordinates

(r,0,p) become spherical coordinates in the

reduced configuration space.

3. Application of Bertrand’s method and two
dynamical systems

In this section, we apply Bertrand’s method to
the reduced system derived in the last section.

One can determine the potential function V(r)

so that all bounded orbit may be closed.

In classical mechanics, it is well known that the
Kepler motion and the harmonic oscillator are the
only central potential systems for all the
bounded motions to be closed. This fact was proved
by Bertrand [7. 8]. The method which he used in the
proof is called Bertrand’s method.

For the reduced system, the equations of motion
take the
modified symplectic form (2. 6):

following form for the sake of

dg’ M,
dt ﬁpj
dpj H -q
=Gt G (=123
~ 5 Zk: (J )
(3.1)

After a long calculation, one can easily show
that

J=qxp+£q 3.2)
r

is conserved. Tn Eq. (3.2), gx p stands for

vector product of g and p. Conserved vector
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J is called angular momentum vector. From Eq.
(3.2), we have

Jedy=y , (3.3)
r

where center dot e denotes inner product of two

vectors. Without loss of generality, one can take

Jaxis in the direction of ¢’axis. Therefore,

Eq. (3.3) yields

cos(d) = e (3.4)

/]
Thus, one can say that orbit lies on the cone whose
axis is vector J. This fact corresponds to the
planar motion for the usual central potential
system. As the angular coordinate @ is

conserved, Lhe orbit Is seen Lo be described

with the rest two coordinates (r,@).

As a second step in this section, we will try
to show the equations of orbit. From Egs.
(3.2) and (3.4), the absolute value of angular
momentum vector J becomes

h=222
4 dr

In addition to the angular momentum vector,

(3.5)

total energy E is also conserved. After a long
and tedious calculation, total energy (2.7)
becomes

_ . r 2r,u2
E= o, )dt r(M )T ).

(3.6)
Thus, we have gotten the equation of the orbit
(3.5) and (3.6) as lollows:

[/ |dr
o= dt/ e
Jdr 3.7

==
‘/’(’2 -a )Z(E_V("))_M2rz +a4d‘}lz —;f)

Here, we can apply the Bertrand’s method to find

from Egs.

dynamical systems with periodic orbits [3,4,5,7,

8]. For bounded orbits with r, £r <r,, at the
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points 7 =r, and r=r,, we have d%l't =0. So

the increment of the angle @ is defined by

n de
Ap = —dr. (3.8)
p=[ ")
In short,
Ap=mm, (m: a rational number) 3.9

is equivalent to the statement that the hounded
motion is closed. By Bertrand’s method, it is a
necessary and sufficient condition for all the
bounded orbits to be closed that the denominator
in Eq. (3.7) takes the following forms with

constants ¢, and ¢ :

2 _a*"YE-V 25 442
Mt SO o )

= 4o+,

(3. 10)

2 _ A YE-Vi 2 5 an a2
M BT vt (=)

=—M2r2 +c, +clr‘2.

From Egs. (3.10) and (3.11) with constraint

(3.1

E =0, the potential function V(r) is given by

V(r)= _Soter (3.12)

r(r2 - a“) ’
or

V(r)= S +§1r'2

, (3.13)
r(r2 —a)

respectively, where & and & are constants.

For Eq. (3.12), we get from Eq. (3.8)
Ap=rm. (3.14)

So, we call the potential (3.12) Kepler—type

potential in the reduced system (T‘(Rs—{O}),

w,,H,) with constraint E=0.

On the other hand, in case of Eq. (3. 13), we have

T
A¢) = — (3.15)
2
Therefore, one may call the potential (3.13)
harmonic—oscillator-type potential in the

reduced system (T'(R3—{O}), a)#,HF) with

constraint £ =0.

It is to be noted that for the usual Kepler
problem and harmonic oscillator total energy
can take any negative value or any positive
value, respectively, for bounded motions. The
Kepler—-type system and harmonic-oscillator-
type system found in this paper are said to
admit local degeneracy because of the
constraint E=0.

4 . Concluding remarks
We have found two dynamical systems associated

Although
systems do not admit “full” dynamical symmetry,

with FEguchi—Hanson metric. these
the hounded orbits of these systems are closed
only for a particular value of total energy. One
admit
Further investigation for local

can say that these systems “local
degeneracy”.
degeneracy will be made in a forthcoming paper.

And some attentions concerning singular sphere

2

r=a° will be also given in the future

investigation.
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