

Some examples of S_R (H)-blocks

メタデータ	言語: eng
	出版者:
	公開日: 2013-12-11
	キーワード (Ja):
	キーワード (En):
	作成者: Hieda, Yoshimasa
	メールアドレス:
	所属:
URL	https://doi.org/10.24729/00007709

Some examples of $S_R(H)$ -blocks

Yoshimasa HIEDA*

Abstract

G.R. Robinson introduced the $S_R(H)$ -block (he called it $A_R(H)$ -block) of the irreducible characters of G and its defect group. But we don't see enough examples of $S_R(H)$ -blocks and their defect groups in his paper. So in this paper we give some examples of $S_R(H)$ -blocks.

Key Words: $S_R(H)$ -block, Hecke algebra

1 Introduction

Let G be a finite group, p a prime number which divides the order of G and (K, R, k) a pmodular system, i.e., R is a complete discrete valuation ring with maximal ideal (π) , K is the quotient field of R of characteristic 0 and k(:= $R/(\pi))$ is the residue field of R of characteristic p. Moreover, we assume that K contains the |G|th roots of unity.

For a subset X of G, \hat{X} denotes the sum of all elements of X in the group algebra $\mathfrak{o}G$, where \mathfrak{o} is R, K or k.

We consider the Hecke algebra (or the Schur algebra) $S_0(H) := \operatorname{End}_{0G}(\widehat{H} \circ G)$ for a subgroup H of G. As $e_H := \widehat{H}/|H|$ is an idempotent of $KG, S_K(H) = e_H KGe_H$. For $\chi \in \operatorname{Irr}(G)$, let e_{χ} be the central primitive idempotent of KGcorresponding to χ and put $\Phi_H^G := \{\chi \in \operatorname{Irr}(G);$ $(\chi|_H, 1_H)_H \neq 0\}$. Then we have that $\{e_{\chi}e_H; \chi \in \Phi_H^G\}$ is the set of all central primitive idempotents of $S_K(H)$ (see [1, (11.26) Corollary]).

As $S_K(H) = K \otimes_R S_R(H)$, for a central idempotent ε of $S_R(H)$, there exists a non-empty subset β of Φ_H^G such that $\varepsilon = \sum_{\chi \in \beta} e_\chi e_H$. Then the element of this form is denoted by ε_β and if ε_β is a centrally primitive, β (or $\varepsilon_\beta S_R(H)$) is called an $S_R(H)$ -block. On the other hand, the multiplication induces the *R*-algebra homomorphism $\phi : Z(RG) \longrightarrow Z(S_R(H))$. Using the map ϕ , G.R.Robinson [6] has proved that $Z(S_R(H)) \simeq \operatorname{End}_{R[G \times G]}(RG\widehat{H}RG)$ as *R*-algebras and so each $S_R(H)$ -block corresponds to a unique indecomposable direct summand M_β of $RG\widehat{H}RG$.

(Received April 12, 2000)

Therefore we can define a defect group for an $S_R(H)$ -block β (i.e., a vertex of M_β) in $G \times G$. (See Definition 1.)

Recall that for any $S_R(H)$ -block β there exists the unique *p*-block *B* such that $\beta \subset \operatorname{Irr}(B)$ (See [6]). Also if e_B is a block idempotent of RG with the condition $\phi(e_B) \neq 0$, then $\phi(e_B) = \sum_{\beta \in \Lambda} \varepsilon_{\beta}$, where Λ is the suitable non-empty subset of $S_R(H)$ -blocks. So $\operatorname{Irr}(B) \cap \Phi_H^G$ is a (disjoint) union of $S_R(H)$ -blocks.

Moreover, we have $S_R(H)/\pi S_R(H) \simeq S_k(H)$ as $\widehat{H}RG$ is a permutation module. Hence the set of $S_R(H)$ -blocks corresponds bijectively to the set of $S_k(H)$ -blocks.

In this paper we show some examples of $S_R(H)$ blocks and their defect groups.

The notation is almost standard. Concerning some basic facts and terminologies used here, we refer to [1] and [5] for example.

2 Preliminaries

For later use, we shall exhibit some results on $S_R(H)$ -blocks, which are almost proved in [3] or [6].

Definition 1. (See [6]) For any $S_R(H)$ block β , there exists a minimal subgroup D of $G \times G$ and $\lambda \in \operatorname{Inv}_D E$ with the following condition : $\operatorname{Tr}_D^{G \times G}(\lambda) = \varepsilon_{\beta}$, where E is the endomorphism ring $\operatorname{End}_R(RG\widehat{H}RG)$.

Then D is called a defect group of β and denoted by $\delta_H(\beta)$.

^{*} Department of Liberal Arts

Remark 1-1. By the theory of G-algebra a defect group $\delta_H(\beta)$ of $S_R(H)$ -block β is a psubgroup of $G \times G$ and unique up to $G \times G$ conjugacy.

Remark 1-2. ([6, Remark of Proposition 2.2]) If $H = \{1\}$, then Irr(B) is a $S_R(\{1\})$ -block for any p-block B of G. Moreover, a defect group of an $S_R(\{1\})$ -block Irr(B) is the diagonal subgroup $\delta(B)^{\Delta} := \{(x, x) \in G \times G; x \in \delta(B)\}$, where $\delta(B)$ is a (usual) defect group of B.

Proposition 2. ([6, Lemma 2.1]) (i) For any $S_R(H)$ -block β and $x, y \in G$, $\frac{|\delta_H(\beta)|}{|C_G(x)||C_G(y)|} \sum_{\chi \in \beta} \chi(x)\chi(y) \in R$. In particular, $\frac{|\delta_H(\beta)|}{|G \times G|} \sum_{\chi \in \beta} \chi(1)^2 \in R$.

(ii) β is contained in a single p-block B of G in the usual sence, and if B has a defect group D, then $\delta_H(\beta)$ is contained (up to conjugacy) in $D \times D$.

Corollary 3. If $\sum_{\chi \in \beta} \chi(1)^2$ (i.e., rank_R M_β) is prime to p for an $S_R(H)$ -block β , then a defect group of β is a Sylow p-subgroup of $G \times G$.

(Proof) By Proposition 2(i). \Box

As the trivial character 1_G is always in Φ_H^G for any subgroup H of G. Then there exists the $S_R(H)$ -block, which has the trivial character. So we call it the principal $S_R(H)$ -block and denote it β_0 .

Proposition 4. (See [6, Lemma 2.3(iii)]) For the principal $S_R(H)$ -block β_0 , $\beta_0 = \{1_G\}$ if and only if H containes a Sylow p-subgroup of G.

Moreover, in a such case a defect group of β_0 is a Sylow p-subgroup of $G \times G$.

(Proof) The first half is [6, Lemma 2.3(iii)] and the later half follows from Proposition 2(i).

Proposition 5. ([6, Corollary 2.4]) If H is normal in G, then the $S_R(H)$ -blocks of G are precisely the p-block of R[G/H].

In the rest of this section we assume that H is a p'-subgroup of G and consider only those blocks such that $\phi(e_B) \neq 0$.

In this case $e_H \in RG$, i.e., $\hat{H}RG = e_H RG$ is a projective RG-module and kH is a semisimple k-algebra. Now for any $\varphi \in \operatorname{IBr}(G)$, let S_{φ} (resp. P_{φ}) be an irreducible kG-module (resp. an indecomposable projective RG-module) corresponding to φ . Also, we let $\Psi_{H}^{G} := \{\varphi \in \operatorname{IBr}(G); k_{H} | S_{\varphi \downarrow H} \}$. Note that $\Psi_{H}^{G} = \{\varphi \in \operatorname{IBr}(G); P_{\varphi} | e_{H} RG \}$. So we can define $\beta^* := \{\varphi \in \operatorname{IBr}(B); P_{\varphi} | \varepsilon_{\beta}(e_{H} RG) \}$.

Therefore the decomposition matrix D_B of *B* has the following form : (See [3])

(2.1)
$$D_{B} = \begin{pmatrix} D_{\beta_{0}} & 0 & \cdots & 0 & | * \\ 0 & D_{\beta_{1}} & \cdots & 0 & | * \\ \vdots & \vdots & \ddots & \vdots & | * \\ 0 & 0 & \cdots & D_{\beta_{t}} & | * \\ \hline 0 & 0 & \cdots & 0 & | * \\ \vdots & \vdots & \cdots & \vdots & | * \\ 0 & 0 & \cdots & 0 & | * \end{pmatrix}.$$

From the form of the decomposition matrix (2.1), we get the following orthogonality relation for the $S_R(H)$ -block.

Theorem 6. ([3, Theorem 5]) Let H be a p'-subgroup of G and β an $S_R(H)$ -block. Then we have

$$\sum_{\chi\in\beta}\chi(xe_H)\chi(y)=0$$

for any $y \in G-G_{p'}$ and $x \in G_{p'}$ such that $\langle x, H \rangle$ is a p'-subgroup.

Remark 6-1. (See [3, Remark 12]) Let $G := \mathfrak{S}_5$ be the symmetric group of degree 5, $H := \langle (1,2)(3,4), (1,3)(2,4) \rangle$, the Klein four group and chark = 5. If we take $x := (4,5) \in G_{5'}$, then $Hx \subset HxH \subset G_{5'}$ and $\langle H, x \rangle \not\subset G_{5'}$. And we take $y := (1,2,3,4,5) \in G - G_{5'}$, then

$$\sum_{\chi\in\beta_0}\chi(xe_H)\chi(y)=\frac{5}{4}\neq 0.$$

So we can consider that it is necessary in Theorem 6 to assume that $\langle x, H \rangle$ is a p'-subgroup.

3 Some examples of $S_R(H)$ blocks

In this section we show some $S_R(H)$ -blocks and their defect groups. Now \mathfrak{S}_n denotes the symmetric group of degree n and B_0 the principal p-block of G.

Now recall \mathfrak{S}_3 has the following character

-74 -

table :

 $[3] [2,1] [1^3]$

and the following p-blocks : if p = 2, then $Irr(B_0) = \{1_G, sgn\}$, $Irr(B_1) = \{\chi\}$ if p = 3, then $Irr(B_0) = \{1_G, \chi, sgn\}(= Irr(G))$.

Then we get the following Example 7 and 8.

Example 7. $G := \mathfrak{S}_3, H := \langle (1,2) \rangle$

- (1) $\Phi_H^G = \{1_G, \chi\}.$
- (2) (a) If p = 2, then $\Phi_H^G = \beta_0 \cup \beta_1$, where $\beta_0 = \{1_G\}, \beta_1 = \{\chi\} (= \operatorname{Irr}(B_1))$ and $\delta_H(\beta_0) \in Syl_2(G \times G),$ $\delta_H(\beta_1) = \{1\} \times \{1\}$
 - (b) If p = 3, then $\Phi_H^G = \beta_0 = \operatorname{Irr}(B_0) \cap \Phi_H^G$ and $\delta_H(\beta_0) \in Syl_3(G \times G)$.

(Proof) (1) From the character table (4.1).

- (2) (a) holds by Proposition 2 and 4.
- (b) follows from Proposition 4 and Corollary 3.

Remark 7-1. (cf. Remark 1-2) The above example $G := \mathfrak{S}_3, H := \langle (1,2) \rangle$ and p = 3 tells us $\delta_H(\beta) \neq_{G \times G} \delta(B)^{\Delta}$ though $\beta = \operatorname{Irr}(B) \cap \Phi_H^G$.

Example 8. $G := \mathfrak{S}_3, H := \langle (1, 2, 3) \rangle$

- (1) $\Phi_H^G = \{1_G, \text{sgn}\}.$
- (2) (a) If p = 2, then $\Phi_H^G = \beta_0 = \operatorname{Irr}(B_0)$ and $\delta_H(\beta_0) =_{G \times G} \delta(B_0)^{\Delta}$.
 - (b) If p = 3, then $\Phi_H^G = \beta_0 \cup \beta'_0$, where $\beta_0 = \{1_G\}, \beta'_0 = \{\text{sgn}\} \text{ and } \delta_H(\beta_0), \delta_H(\beta'_0) \in Syl_3(G \times G).$

(Proof) (1) From the character table (4.1). (2) (a) holds by Proposition 4 and 5.

(b) follows from Proposition 4 and Corollary 3.

Example 9. $G := \mathfrak{A}_4$, the alternating group of degree $4, H := \langle (1,2)(3,4), (1,3)(2,4) \rangle$ and p := 2.

We denote $Irr(G) = \{1_G, \chi_2, \chi_3, \chi_4\}$, where $\chi_2(1) = 3, \chi_3(1) = \chi_4(1) = 1$. Now $Irr(B_0) = Irr(G)$.

(1) $\Phi_H^G = \operatorname{Irr}(G) \setminus \{\chi_2\}.$

- (2) $\Phi_{H}^{G} = \beta_{0} \cup \beta_{0}' \cup \beta_{0}''$ with $\beta_{0} = \{1_{G}\}, \beta_{0}' = \{\chi_{3}\}, \beta_{0}'' = \{\chi_{4}\}.$
- (3) $\delta_H(\beta) \in Syl_2(G \times G)$ for any $S_R(H)$ -block β .

(Proof) (1) As we can check the character values, the assertion holds.

- (2) follows from Proposition 5.
- (3) holds from Proposition 4 and Corollary 3. \Box

Recall the case $G := \mathfrak{S}_5, H := \langle (1,2)(3,4), (1,3)(2,4) \rangle$. Then we get the next example.

Example 10. (See [3, Remark 12]) $G := \mathfrak{S}_5, H := \langle (1,2)(3,4), (1,3)(2,4) \rangle, p := 5$ We know $Irr(G) = \{ [5], [4,1], [3,2], [3,1^2], [2^2,1], [2,1^3], [1^5] \}$ and $Irr(B_0) = \{ [5], [4,1], [3,1^2], [2,1^3], [1^5] \}$, $Irr(B_1) = \{ [3,2] \}$, $Irr(B_2) = \{ [2^2,1] \}$, where we denote irreducible characters the same notations corresponding to the Young diagrams. (For example [5] means the trivial character.) Then

- (1) $\Phi_H^G = \operatorname{Irr}(G) \setminus \{[3, 1^2]\}.$
- (2) $\operatorname{Irr}(B_0) \cap \Phi_H^G = \beta_0 \cup \beta'_0 \text{ with } \beta_0 = \{[5], [4, 1]\}$ and $\beta'_0 = \{[2, 1^3], [1^5]\}, \ \beta_1 = \{[3, 2]\}(= \operatorname{Irr}(B_1)), \beta_2 = \{[2^2, 1]\}(= \operatorname{Irr}(B_2))$
- (3) $\delta_H(\beta_0), \delta_H(\beta'_0) \in Syl_5(G \times G), \delta_H(\beta_i) = \{1\} \times \{1\} \ (i = 1, 2).$

(Proof)(1),(2) See [3, Remark 12] and check the character values.

(3) follows from Proposition 2 and Corollary 3.

For the principal $S_R(H)$ -block the following Example 11 and 12 hold.

Example 11. ([2, example 6]) $G := \mathfrak{S}_p$, $H := \mathfrak{S}_t \ (1 \le t \le p), \ \operatorname{char} k = p.$

(1) $\beta_0 = \operatorname{Irr}(B_0) = \{\chi_i; 0 \le i \le p - t\}$, where χ_i corresponds to the Young diagram $[p - i, 1^i]$.

(2)
$$\delta_H(\beta_0) =_{G \times G} \begin{cases} P^{\Delta} & t = 1 \\ P \times P & 2 \le t \le p \end{cases}$$
, where
P is a Sylow *p*-subgroup of *G*.

(Proof) We may assume that p > 2.

- (1) See [2, Proposition 11].
- (2) Since $\chi(1) \equiv \pm 1 \pmod{p}$ for any $\chi \in Irr(B_0)$,

 $\sum_{\chi \in \beta_0} \chi(1)^2 \equiv p - t + 1 \pmod{p}.$ Hence the assertion follows from Remark 1-2 and Proposition 2. \Box

Example 12. $G := \mathfrak{S}_n, H := \mathfrak{S}_{n-1}.$

- (1) $\Phi_H^G = \{[n], [n-1, 1]\}.$
- (2) (a) If p does not divide n, then $\beta_0 = \{[n]\}$ and $\delta_H(\beta_0) \in Syl_p(G \times G)$.
 - (b) If p divides n, then $\beta_0 = \Phi_H^G$. In particular, if p is odd prime, then $\delta_H(\beta_0) \in Syl_p(G \times G)$.

(Proof) (1) By the Branching theorem [4, Theorem 9.2].

(2) (a) follows from Proposition 4.

(b) The first half holds from Proposition 4 and the later half follows from Corollary 3. \Box

References

- C. W. Curtis and I. Reiner : Methods of Representation Theory with Application to Finite Groups and Orders-Volume I, John Wiley and Sons, New York, 1981.
- [2] Y. Hieda : Some examples of $S_R(H)$ -blocks, Proc. Seminar on Finite groups at Kusatsu (in Japanese),1998.
- [3] Y. Hieda and Y. Tsushima : On $S_R(H)$ -Blocks for Finite Groups, J. of Algebra, vol.202, 583-588, 1998.
- [4] G. D. James : The Representation Theory of Symmetric Groups, Lecture notes in Mathematics 682, 1978).
- [5] H. Nagao and Y. Tsushima : Representations of Finite Groups, Academic Press, 1989.
- [6] G. R. Robinson : Some Remarks on Hecke Algebras, J. of Algebra, vol.163, 806-812, 1994.