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Some examplesof SR(H)-blocks

YoshimasaHIEDA*

                     Abstract
G.R.Robinson introduced the SR(H)-block (he called itAR(H)-block)

of the irreducible characters of G and its defect group. But we don't

see enough examples of SR(H)-blocks and their defect groups in his

 paper. So in this paper we give some examples of SR(ff)-blocks.
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1 Introduction

   Let G be a finite group, p a prime number
which divides the order of G and (K, R, k) a p-

modular system, i.e., R is a complete discrete
valuation ring with maiximal ideal (T), K is the
quotient field of R of characteristic O and le(:=

R/(T)) is the residue field of R of characteristic

p. Moreover, we assume that K contains the
IGIth roots of unity.
   For a subset X of G, .5? denotes the sum of

all elements of X in the group algebra oG, where

o is R,K or k.
   We consider the Hecke algebra (or the Schur
                      Aalgebra) So(H) := EndoG(HoG) for a subgroup
                 AH of G. As eH := H/IHI is an idempotent of
KG, SK(H) = eHKGeH. For x E Irr(G!), let e,
be the central primitive idempotent of KG
corresponding to x and put ÅëS := {x E Irr(G);

(xlH, IH)H iE O}. Then we have that {exeH;x E
ÅëS} is the set of all central primitive idempo-

tents of SK(H) (see [1, (11.26) Corollary]).

   As SK(H) = K XR SR(H), for a central
idempotent e of SR(H), there exists a non-empty
subset jB of OS} such that e = ÅíxEp exeH. Then

the element of this form is denoted by Ep and
if ep is a centrally primitive, P (or epSR(H))
is called an SR(H)-block. On the other hand,
the multiplication induces the R-algebra homo-
morphism ip : Z(RG) . Z(SR(H)). Using
the map Åë, G.R.Robinson [6] has proved that
                        AZ(SR(H)) fy EndR[GxG](RGHRG) as R-algebras
and so each SR(H)-block corresponds to a
unique indecomposable direct summand Mp of
   ARGHRG.

   Therefore we can define a defect group for an
SR(H)-block P (i.e., a vertex of Mfi) in G Å~ G.
(See Definition 1.)

   Recall that for any SR(H)-block P there
exists the unique p-block B such that P c Irr(B)
(See [6]). Also if eB is a block idempotent of
RG with the condition ip(eB) 7E O, then ip(eB) =
2I)pEAep, where A is the suitable non-empty

subset of SR(H)-blocks. So Irr(B) n ÅëS is a
(disjoint) union of SR(H)-blocks.

   Moreover,wehaveSR(H)/TSR(H)f Sk(H)
  Aas HRG is a permutation module. Hence the set
of SR(H)-blocks corresponds bijectively to the
set of Sk(H)-blocks.

   In this paper we show some examples of SR(H)-
blocks and their defect groups.

   The notation is almost standard. Concerning
some basic facts and terminologies used here, we
refer to [1] and [5] for example.

2 Preliminaries

   For later use, we shall exhibit some results on
SR(H)-blocks, which are almost proved in [3] or
[6].

   Definition 1. (See [6]) For any SR(H)-
block 6, there exists a minimal subgroup D of
G Å~ G and A E InvDE with the following
condition : TrSXG(A) = ep, where E is the

                         Aendomorphism ring EndR(RGHRG).
   Then D is called a defect group of B and
denoted by 6H(P).
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   Remark 1-1. By the theory of G-algebra
a defect group 6H(B) of SR(,El)-block fi is a p-

subgroup of GÅ~G and unique up to GÅ~ G-

conJugacy.

   Remark 1-2. ([6, Remark of Proposition
2.2]) If H = {1}, then Irr(B) is a SR({1})-block

for any p-block B ofG. Moreover, a defect group
of an SR({1})-block Irr(B) is the diagonal sub-
gToup 6(B)" := {(x,x) E GÅ~ G;x E 6(B)},
where 6(B) is a (usual) defect group of B.

  Proposition 2. ([6, Lernnia 2.1]) (i? For
any SR(H)-block P and x,y E G,
matG(x)11CG(y)lÅíxEpX(X)X(Y)ER.

  In particular, li{tllS{i".Gl ÅíxEpx(1)2 E R•

   (ii? B is contained in a single p-block B ofG

in the usual sence, and if B has a defect group
D, then 6H(P) is contained (up to conj'ugacy? in

DÅ~D.

  Now for any g E IBr(G), let S. (resp. P.) be
an irreducible kG-module (resp. an indecompos-
able projective RG-module) corresponding to g.
Also, we let WS := {g EIBr(G);kHISqlH}• Note

that WS = {q EIBr(G); P.leHRG}. So we can
define B' := {g E IBr(B); P, lep(eHRG)}.
  Therefore the decomposition matrix DB of
B has the following form : (See [3])

(2.1) DB =

Dp,O•••O *

ODp,•-•O *

i--.---- .--- *
oO•••D6, *

--- *

------t----- *

oo•-o *

  From the form of the decomposition matrix
(2.1), we get the following orthogonality relation

for the SR(H)-block.

  Corollary 3. ifÅíxEp x(1)2 (i.e., rankRMp)
is prime to p for an SR(H)-block P, then a defect

group ofP is a Sytowp-subgroup ofG Å~ G.

  (Proof) By Proposition 2(i). D

   As the trivial character IG is always in ÅëS

for any subgroup H of G. Then there exists the
SR(H)-block, which has the trivial character. So

we call it the principal SR(,El)-block and denote
it X3o•

  Proposition 4. (See [6, Lemma 2.3(iii)])
For the principal SR(H)-block fio, Po = {IG} if
and only if H containes a Sylow p-subgroup of
G.
   Moreover, in asuch caseadefect group ofPo
is a Sylow p-subgroup ofG Å~ G.

   (Proof) The first half is [6, Lemma 2.3(iii)]

and the later half follows from Proposition 2(i),

a

  Proposition 5.
normal in G, then
precisely the p-btock

([6, Corollary 2.4]) If H is

the SR(H)-blocks of G are
of R[G/H] .

  In the rest of this section we
H is a p'--subgroup of G and consid

assume that
er only those

blocks such that di(eB) 7! O•

                        A  In this case eH E RG, i.e., HRG = eHRG is
a projective RG-module and icH is a semisimple
k-algebra.

  Theorem 6. ([3, Theorem 5]) Let ff be a
p'-subgroup ofG andB an SR(H)-block. Then
we have
           2x(xeH)x(y) = o

           xEX3

foranyy E G-Gp, andx E Gp, such that <x,H>
is a p'-subgroup.

  Remark 6-1. (See [3, Remark 12]) Let G :=
Ss be the symmetric group of degree 5, H :=
<(1, 2)(3, 4),(1, 3)(2, 4)>, the Klein four group and

chark = 5. If we take x := (4,5) E Gs,,then
Hx c HxH C Gs, and <H, x> Åë Gst. And we
take y :== (1,2, 3, 4, 5) E G- Gs,, then

         2 x(xeH)x(y) = 2 # o•

        xEPo

  So we can consider that it is necessary in
Theorem 6 to assume that <x, H> is ap'-subgroup.

3 Some examples of SR(H)-
blocks

  In this section we show some SR(H)-blocks
and their defect groups. Now Gn denotes the
symmetric group of degree n and Bo the princi-
pal p-block of G.

Now recall 63 has the following character
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                          Some examples

table :

                      [3] [2,1] [13]

     (4.1) IG 1 1 1
                x 2O -1
               sgn 1 =1 1
and the following pblocks :
ifp= 2, then Irr(Bo) = {IG,sgn},
   Irr(Bi) = {x}
ifp= 3, then Irr(Bo) = {IG,x,sgn}(= Irr(G)).

   Then we get the following Example 7 and 8.

   Example 7. G:= 63,H := <(1,2)>

 (1) Åëfi' ={IG,X}•

 (2) (a) Ifp= 2, then Åëfi = Po UBi, where
         Po ={IG},Bi = {x}(= Irr(Bi))
         and 6H(6o) E Syl2(G Å~ G),
         6H (Pi) = {1} Å~ {1}

     (b) Ifp = 3, then ÅëS = 6o = Irr(Bo) fi
         ÅëS and 6H(Bo) E Syl3(G x G).

   (Proof) (1) From the character table (4.1).
(2) (a) holds by Proposition 2 and 4.
(b) follows from Proposition 4 and Corollary 3.

D

   Remark 7-1. (cf. Remark 1-2) The above
example G := S3,H := <(1,2)> and p = 3 tells
us 6H(6) ix!Gx6 6(B)" though P = Irr(B)nÅëS.

   Example 8. G := S3, H := <(1, 2, 3)>

 (1) Åëf} ={IG,sgn}.

 (2) (a) Ifp= 2, then ÅëS = Po = Irr(Bo)
         and 6H(Bo) =G.G 6(Bo)".

     (b) Ifp= 3, then ÅëS = Po U 66, where
         I3o = {IG}, 66 = {sgn} and 6H(Bo),
         6H(B6) E Syl,(G Å~ G).

   (Proof) (1) From the character table (4.1).
(2) (a) holds by Proposition 4 and 5.
(b) follows from Proposition 4 and Corollary 3.

m

   Example 9. G := ut4, the alternating group
of degree 4, H := <(1,2)(3,4),(1,3)(2, 4)> and
p := 2.

   We denote Irr(G) = {IG,x2,x3,x4}, where
X2(1) = 3,x3(1) = x4(1) = 1. Now Irr(Bo) =
Irr(G).

of  SR (H) ' blocks

 (1) ÅëS = Irr(G) X {x2}•

 (2) ÅëS = P, u 66 U 66t with 6, = {IG},
     66 = {x3}, X36t = { kl4}•

 (3) 6H(B) E Syl2(GÅ~G) for any SR(H)-block
     fi.

   (Proof) (1) As we can check the character
values, the assertion holds.

(2) follows from Proposition 5.
(3) holds from Proposition 4 and Corollary 3. 0

   Recall the case G := 6s,H :-- <(1,2)(3,4),
(1,3)(2,4)>. Then we get the next example.

   Example 10. (See [3, Remark 12]) G :=
6s,H := <(1, 2)(3,4),(1, 3)(2, 4)>,p := 5
   We know Irr(G) = {[5], [4, 1], [3, 2], [3, 12],

[22, ll, [2, 13],[15]} and Irr(Bo) = {[5], [4, 1], [3, 12]

[2, 13],[15]}, Irr(Bi) = {[3,2]},Irr(B2) = {[22, 1]}

where we denote irreducible characters the same
notations corresponding to the Young diagrams.
(For example [5] means the trivial character. )

Then

 (1) ÅëS = Irr(G) X{[3,12]}.

 (2) Irr(Bo)nÅëS = BoU66 with 6o = {[5], [4, 1]}

     and P6 = {[2,13],[15]}, Bi == {[3,2]}(=
     Irr(Bi)), fi2 = {[22, 1]}(= Irr(B2))

 (3) 6H(6o),6H(B6) E Syls(G Å~ G),6H'(Bi) =
     {1} Å~ {1} (i = 1, 2).

   (Proof) (1),(2) See [3, Remark 12] and check
the character values.
(3) follows from Proposition 2 and Corollary 3.

D

   For the principal SR(H)-block the following

Example ll and 12 hold. •

   Example 11. ([2, example 6]) G := Sp,
H:= St (1StSp), chark=p.

 (1) fio = Irr(Bo) = {xi;O S i S p- t}, where
     xi corresponds to the Young diagram
     [P - i, lt].

 (2) 6H (3o) =GxG ( pP.Ap 2 g{ 7l p ,where

     P is a Sylow p-subgroup of G.

(Proof) We may assume that p> 2.
(1) See [2, Proposition 11].

(2) Since x(1) i Å}1(mod p) for any x E Irr(Bo),

]

'
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:xEp, x(1)2 iii p-t+ 1(mod

sertion follows from Remark 1-

2. o

p). Hence the as-
2 and Proposition

 Example 12. G:= Sn,H:=Sn-i•
(1) ÅëS = {[n], [n - 1, 1]}.

(2) (a) Ifpdoes not divide n, then 6o = {[n]}

       and 6H(6o) E Syl,(G Å~ G).

    (b) Ifp divides n, then 6o = ÅëS•

       In particular, if p is odd prime, then
       6H(Bo) E Sylp(G Å~ G).

   (Proof) (1) By the Branching theorem [4,
Theorem 9.2].
(2) (a) follows from Proposition 4.
(b) The first half holds from Proposition 4 and
the later half follows from Corollary 3. D
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