大阪公立大学
Osaka Metropolitan University

Some examples of S＿R（H）－blocks

メタデータ	言語：eng
	出版者：
	公開日：2013－12－11
	キーワード（Ja）：
	キーワード（En）：
	作成者：Hieda，Yoshimasa
	メールアドレス：
	所属：
URL	https：／／doi．org／10．24729／00007709

Some examples of $\mathrm{S}_{R}(\mathrm{H})$-blocks

Yoshimasa Hieda*

Abstract

G.R.Robinson introduced the $S_{R}(H)$-block (he called it $A_{R}(H)$-block) of the irreducible characters of G and its defect group. But we don't see enough examples of $S_{R}(H)$-blocks and their defect groups in his paper. So in this paper we give some examples of $S_{R}(H)$-blocks.

Key Words: $S_{R}(H)$-block, Hecke algebra

1 Introduction

Let G be a finite group, p a prime number which divides the order of G and (K, R, k) a p modular system, i.e., R is a complete discrete valuation ring with maximal ideal $(\pi), K$ is the quotient field of R of characteristic 0 and $k(:=$ $R /(\pi)$) is the residue field of R of characteristic p. Moreover, we assume that K contains the $|G|$ th roots of unity.

For a subset X of G, \hat{X} denotes the sum of all elements of X in the group algebra o G, where 0 is R, K or k.

We consider the Hecke algebra (or the Schur algebra) $S_{\mathfrak{O}}(H):=\operatorname{End}_{\mathfrak{O} G}\left(\hat{H}_{\mathfrak{O}} G\right)$ for a subgroup H of G. As $e_{H}:=\widehat{H} /|H|$ is an idempotent of $K G, S_{K}(H)=e_{H} K G e_{H}$. For $\chi \in \operatorname{Irr}(G)$, let e_{χ} be the central primitive idempotent of $K G$ corresponding to χ and put $\Phi_{H}^{G}:=\{\chi \in \operatorname{Irr}(G)$; $\left.\left(\left.\chi\right|_{H}, 1_{H}\right)_{H} \neq 0\right\}$. Then we have that $\left\{e_{\chi} e_{H} ; \chi \in\right.$ $\left.\Phi_{H}^{G}\right\}$ is the set of all central primitive idempotents of $S_{K}(H)$ (see [1, (11.26) Corollary]).

As $S_{K}(H)=K \otimes_{R} S_{R}(H)$, for a central idempotent ε of $S_{R}(H)$, there exists a non-empty subset β of Φ_{H}^{G} such that $\varepsilon=\sum_{\chi \in \beta} e_{\chi} e_{H}$. Then the element of this form is denoted by ε_{β} and if ε_{β} is a centrally primitive, β (or $\varepsilon_{\beta} S_{R}(H)$) is called an $S_{R}(H)$-block. On the other hand, the multiplication induces the R-algebra homomorphism $\phi: Z(R G) \longrightarrow Z\left(S_{R}(H)\right)$. Using the map ϕ, G.R.Robinson [6] has proved that $Z\left(S_{R}(H)\right) \simeq \operatorname{End}_{R[G \times G]}(R G \hat{H} R G)$ as R-algebras and so each $S_{R}(H)$-block corresponds to a unique indecomposable direct summand M_{β} of $R G \widehat{H} R G$.

Therefore we can define a defect group for an $S_{R}(H)$-block β (i.e., a vertex of M_{β}) in $G \times G$. (See Definition 1.)

Recall that for any $S_{R}(H)$-block β there exists the unique p-block B such that $\beta \subset \operatorname{Irr}(B)$ (See [6]). Also if e_{B} is a block idempotent of $R G$ with the condition $\phi\left(e_{B}\right) \neq 0$, then $\phi\left(e_{B}\right)=$ $\sum_{\beta \in \Lambda} \varepsilon_{\beta}$, where Λ is the suitable non-empty subset of $S_{R}(H)$-blocks. So $\operatorname{Irr}(B) \cap \Phi_{H}^{G}$ is a (disjoint) union of $S_{R}(H)$-blocks.

Moreover, we have $S_{R}(H) / \pi S_{R}(H) \simeq S_{k}(H)$ as $\hat{H} R G$ is a permutation module. Hence the set of $S_{R}(H)$-blocks corresponds bijectively to the set of $S_{k}(H)$-blocks.

In this paper we show some examples of $S_{R}(H)$ blocks and their defect groups.

The notation is almost standard. Concerning some basic facts and terminologies used here, we refer to [1] and [5] for example.

2 Preliminaries

For later use, we shall exhibit some results on $S_{R}(H)$-blocks, which are almost proved in [3] or [6].

Definition 1. (See [6]) For any $S_{R}(H)$ block β, there exists a minimal subgroup D of $G \times G$ and $\lambda \in \operatorname{Inv}_{D} E$ with the following condition : $\operatorname{Tr}_{D}^{G \times G}(\lambda)=\varepsilon_{\beta}$, where E is the endomorphism ring $\operatorname{End}_{R}(R G \hat{H} R G)$.

Then D is called a defect group of β and denoted by $\delta_{H}(\beta)$.

[^0]Remark 1-1. By the theory of G-algebra a defect group $\delta_{H}(\beta)$ of $S_{R}(H)$-block β is a p subgroup of $G \times G$ and unique up to $G \times G$ conjugacy.

Remark 1-2. ($[6$, Remark of Proposition 2.2]) If $H=\{1\}$, then $\operatorname{Irr}(B)$ is a $S_{R}(\{1\})$-block for any p-block B of G. Moreover, a defect group of an $S_{R}(\{1\})$-block $\operatorname{Irr}(B)$ is the diagonal subgroup $\delta(B)^{\Delta}:=\{(x, x) \in G \times G ; x \in \delta(B)\}$, where $\delta(B)$ is a (usual) defect group of B.

Proposition 2. ([6, Lemma 2.1]) (i) For any $S_{R}(H)$-block β and $x, y \in G$, $\frac{\left|\delta_{H}(\beta)\right|}{\left|C_{G}(x)\right|\left|C_{G}(y)\right|} \sum_{\chi \in \beta} \chi(x) \chi(y) \in R$.

In particular, $\frac{\left|\delta_{H}(\beta)\right|}{|G \times G|} \sum_{\chi \in \beta} \chi(1)^{2} \in R$.
(ii) β is contained in a single p-block B of G in the usual sence, and if B has a defect group D, then $\delta_{H}(\beta)$ is contained (up to conjugacy) in $D \times D$.

Corollary 3. If $\sum_{\chi \in \beta} \chi(1)^{2}$ (i.e., $\operatorname{rank}_{R} M_{\beta}$) is prime to p for an $S_{R}(H)$-block β, then a defect group of β is a Sylow p-subgroup of $G \times G$.
(Proof) By Proposition 2(i).
As the trivial character 1_{G} is always in Φ_{H}^{G} for any subgroup H of G. Then there exists the $S_{R}(H)$-block, which has the trivial character. So we call it the principal $S_{R}(H)$-block and denote it β_{0}.

Proposition 4. (See [6, Lemma 2.3(iii)]) For the principal $S_{R}(H)$-block $\beta_{0}, \beta_{0}=\left\{1_{G}\right\}$ if and only if H containes a Sylow p-subgroup of G.

Moreover, in a such case a defect group of β_{0} is a Sylow p-subgroup of $G \times G$.
(Proof) The first half is [6, Lemma 2.3(iii)] and the later half follows from Proposition 2(i).

Proposition 5. ([6, Corollary 2.4]) If H is normal in G, then the $S_{R}(H)$-blocks of G are precisely the p-block of $R[G / H]$.

In the rest of this section we assume that H is a p^{\prime}-subgroup of G and consider only those blocks such that $\phi\left(e_{B}\right) \neq 0$.

In this case $e_{H} \in R G$, i.e., $\hat{H} R G=e_{H} R G$ is a projective $R G$-module and $k H$ is a semisimple k-algebra.

Now for any $\varphi \in \operatorname{IBr}(G)$, let S_{φ} (resp. P_{φ}) be an irreducible $k G$-module (resp. an indecomposable projective $R G$-module) corresponding to φ. Also, we let $\Psi_{H}^{G}:=\left\{\varphi \in \operatorname{IBr}(G) ; k_{H} \mid S_{\varphi_{\perp H}}\right\}$. Note that $\Psi_{H}^{G}=\left\{\varphi \in \operatorname{IBr}(G) ; P_{\varphi} \mid e_{H} R G\right\}$. So we can define $\beta^{*}:=\left\{\varphi \in \operatorname{IBr}(B) ; P_{\varphi} \mid \varepsilon_{\beta}\left(e_{H} R G\right)\right\}$.

Therefore the decomposition matrix D_{B} of B has the following form: (See [3])

$$
D_{B}=\left(\begin{array}{cccc|c}
D_{\beta_{0}} & 0 & \cdots & 0 & * \tag{2.1}\\
0 & D_{\beta_{1}} & \cdots & 0 & * \\
\vdots & \vdots & \ddots & \vdots & * \\
0 & 0 & \cdots & D_{\beta_{1}} & * \\
\hline 0 & 0 & \cdots & 0 & * \\
\vdots & \vdots & \cdots & \vdots & * \\
0 & 0 & \cdots & 0 & *
\end{array}\right) .
$$

From the form of the decomposition matrix (2.1), we get the following orthogonality relation for the $S_{R}(H)$-block.

Theorem 6. ([3, Theorem 5]) Let H be a p^{\prime}-subgroup of G and β an $S_{R}(H)$-block. Then we have

$$
\sum_{\chi \in \beta} \chi\left(x e_{H}\right) \chi(y)=0
$$

for any $y \in G-G_{p^{\prime}}$ and $x \in G_{p^{\prime}}$ such that $\langle x, H\rangle$ is a p^{\prime}-subgroup.

Remark 6-1. (See [3, Remark 12]) Let $G:=$ \mathfrak{S}_{5} be the symmetric group of degree $5, H:=$ $\langle(1,2)(3,4),(1,3)(2,4)\rangle$, the Klein four group and chark $=5$. If we take $x:=(4,5) \in G_{5^{\prime}}$, then $H x \subset H x H \subset G_{5^{\prime}}$ and $\langle H, x\rangle \not \subset G_{5^{\prime}}$. And we take $y:=(1,2,3,4,5) \in G-G_{5^{\prime}}$, then

$$
\sum_{\chi \in \beta_{0}} \chi\left(x e_{H}\right) \chi(y)=\frac{5}{4} \neq 0
$$

So we can consider that it is necessary in Theorem 6 to assume that $\langle x, H\rangle$ is a p^{\prime}-subgroup.

3 Some examples of $S_{R}(H)$ blocks

In this section we show some $S_{R}(H)$-blocks and their defect groups. Now \mathfrak{S}_{n} denotes the symmetric group of degree n and B_{0} the principal p-block of G.

Now recall $\mathfrak{S}_{\mathbf{3}}$ has the following character
table :
(4.1)

	$[3]$	$[2,1]$	$\left[1^{3}\right]$
1_{G}	1	1	1
χ	2	0	-1
sgn	1	-1	1

and the following p-blocks :
if $p=2$, then $\operatorname{Irr}\left(B_{0}\right)=\left\{1_{G}, \operatorname{sgn}\right\}$,

$$
\operatorname{Irr}\left(B_{1}\right)=\{\chi\}
$$

if $p=3$, then $\operatorname{Irr}\left(B_{0}\right)=\left\{1_{G}, \chi, \operatorname{sgn}\right\}(=\operatorname{Irr}(G))$.

Then we get the following Example 7 and 8 .
Example 7. $G:=\mathfrak{S}_{3}, H:=\langle(1,2)\rangle$
(1) $\Phi_{H}^{G}=\left\{1_{G}, \chi\right\}$.
(2) (a) If $p=2$, then $\Phi_{H}^{G}=\beta_{0} \cup \beta_{1}$, where $\beta_{0}=\left\{1_{G}\right\}, \beta_{1}=\{\chi\}\left(=\operatorname{Irr}\left(B_{1}\right)\right)$ and $\delta_{H}\left(\beta_{0}\right) \in S y l_{2}(G \times G)$, $\delta_{H}\left(\beta_{1}\right)=\{1\} \times\{1\}$
(b) If $p=3$, then $\Phi_{H}^{G}=\beta_{0}=\operatorname{Irr}\left(B_{0}\right) \cap$ Φ_{H}^{G} and $\delta_{H}\left(\beta_{0}\right) \in S y l_{3}(G \times G)$.
(Proof) (1) From the character table (4.1).
(2) (a) holds by Proposition 2 and 4.
(b) follows from Proposition 4 and Corollary 3. -

Remark 7-1. (cf. Remark 1-2) The above example $G:=\mathfrak{S}_{3}, H:=\langle(1,2)\rangle$ and $p=3$ tells us $\delta_{H}(\beta) \neq \mathcal{G X G} \delta(B)^{\Delta}$ though $\beta=\operatorname{Irr}(B) \cap \Phi_{H}^{G}$.

Example 8. $\quad G:=\mathfrak{S}_{3}, H:=\langle(1,2,3)\rangle$
(1) $\Phi_{H}^{G}=\left\{1_{G}, \mathrm{sgn}\right\}$.
(2) (a) If $p=2$, then $\Phi_{H}^{G}=\beta_{0}=\operatorname{Irr}\left(B_{0}\right)$ and $\delta_{H}\left(\beta_{0}\right)={ }_{G \times G} \delta\left(B_{0}\right)^{\Delta}$.
(b) If $p=3$, then $\Phi_{H}^{G}=\beta_{0} \cup \beta_{0}^{\prime}$, where $\beta_{0}=\left\{1_{G}\right\}, \beta_{0}^{\prime}=\{\mathrm{sgn}\}$ and $\delta_{H}\left(\beta_{0}\right)$, $\delta_{H}\left(\beta_{0}^{\prime}\right) \in S y l_{3}(G \times G)$.
(Proof) (1) From the character table (4.1).
(2) (a) holds by Proposition 4 and 5.
(b) follows from Proposition 4 and Corollary 3.

Example 9. $G:=\mathfrak{A}_{4}$, the alternating group of degree $4, H:=\langle(1,2)(3,4),(1,3)(2,4)\rangle$ and $p:=2$.

We denote $\operatorname{Irr}(G)=\left\{1_{G}, \chi_{2}, \chi_{3}, \chi_{4}\right\}$, where $\chi_{2}(1)=3, \chi_{3}(1)=\chi_{4}(1)=1$. Now $\operatorname{Irr}\left(B_{0}\right)=$ $\operatorname{Ir}(G)$.
(1) $\Phi_{H}^{G}=\operatorname{Irr}(G) \backslash\left\{\chi_{2}\right\}$.
(2) $\Phi_{H}^{G}=\beta_{0} \cup \beta_{0}^{\prime} \cup \beta_{0}^{\prime \prime}$ with $\beta_{0}=\left\{1_{G}\right\}$, $\beta_{0}^{\prime}=\left\{\chi_{3}\right\}, \beta_{0}^{\prime \prime}=\left\{\chi_{4}\right\}$.
(3) $\delta_{H}(\beta) \in \operatorname{Syl}_{2}(G \times G)$ for any $S_{R}(H)$-block β.
(Proof) (1) As we can check the character values, the assertion holds.
(2) follows from Proposition 5.
(3) holds from Proposition 4 and Corollary 3.

Recall the case $G:=\mathfrak{S}_{5}, H:=\langle(1,2)(3,4)$, $(1,3)(2,4)\rangle$. Then we get the next example.

Example 10. (See [3, Remark 12]) $G:=$ $\mathfrak{S}_{5}, H:=\langle(1,2)(3,4),(1,3)(2,4)\rangle, p:=5$

We know $\operatorname{Irr}(G)=\left\{[5],[4,1],[3,2],\left[3,1^{2}\right]\right.$, $\left.\left[2^{2}, 1\right],\left[2,1^{3}\right],\left[1^{5}\right]\right\}$ and $\operatorname{Irr}\left(B_{0}\right)=\left\{[5],[4,1],\left[3,1^{2}\right]\right.$, $\left.\left[2,1^{3}\right],\left[1^{5}\right]\right\}, \operatorname{Irr}\left(B_{1}\right)=\{[3,2]\}, \operatorname{Irr}\left(B_{2}\right)=\left\{\left[2^{2}, 1\right]\right\}$, where we denote irreducible characters the same notations corresponding to the Young diagrams. (For example [5] means the trivial character.) Then
(1) $\Phi_{H}^{G}=\operatorname{Irr}(G) \backslash\left\{\left[3,1^{2}\right]\right\}$.
(2) $\operatorname{Irr}\left(B_{0}\right) \cap \Phi_{H}^{G}=\beta_{0} \cup \beta_{0}^{\prime}$ with $\beta_{0}=\{[5],[4,1]\}$ and $\beta_{0}^{\prime}=\left\{\left[2,1^{3}\right],\left[1^{5}\right]\right\}, \beta_{1}=\{[3,2]\}(=$ $\left.\operatorname{Irr}\left(B_{1}\right)\right), \beta_{2}=\left\{\left[2^{2}, 1\right]\right\}\left(=\operatorname{Irr}\left(B_{2}\right)\right)$
(3) $\delta_{H}\left(\beta_{0}\right), \delta_{H}\left(\beta_{0}^{\prime}\right) \in \operatorname{Syl}_{5}(G \times G), \delta_{H}\left(\beta_{i}\right)=$ $\{1\} \times\{1\}(i=1,2)$.
(Proof) (1),(2) See [3, Remark 12] and check the character values.
(3) follows from Proposition 2 and Corollary 3.

For the principal $S_{R}(H)$-block the following Example 11 and 12 hold.

Example 11. ([2, example 6]) $G:=\mathfrak{S}_{p}$, $H:=\mathfrak{S}_{t}(1 \leq t \leq p)$, char $k=p$.
(1) $\beta_{0}=\operatorname{Irr}\left(B_{0}\right)=\left\{\chi_{i} ; 0 \leq i \leq p-t\right\}$, where χ_{i} corresponds to the Young diagram [$\left.p-i, 1^{i}\right]$.
(2) $\delta_{H}\left(\beta_{0}\right)=_{G \times G}\left\{\begin{array}{cc}P^{\Delta} & t=1 \\ P \times P & 2 \leq t \leq p\end{array}\right.$, where P is a Sylow p-subgroup of G.
(Proof) We may assume that $p>2$.
(1) See [2, Proposition 11].
(2) Since $\chi(1) \equiv \pm 1(\bmod p)$ for any $\chi \in \operatorname{Irr}\left(B_{0}\right)$,
$\sum_{\chi \in \beta_{0}} \chi(1)^{2} \equiv p-t+1(\bmod p)$. Hence the assertion follows from Remark 1-2 and Proposition 2.

Example 12. $G:=\mathfrak{S}_{n}, H:=\mathfrak{S}_{n-1}$.
(1) $\Phi_{H}^{G}=\{[n],[n-1,1]\}$.
(2) (a) If p does not divide n, then $\beta_{0}=\{[n]\}$ and $\delta_{H}\left(\beta_{0}\right) \in S y l_{p}(G \times G)$.
(b) If p divides n, then $\beta_{0}=\Phi_{H}^{G}$.

In particular, if p is odd prime, then $\delta_{H}\left(\beta_{0}\right) \in S y l_{p}(G \times G)$.
(Proof) (1) By the Branching theorem [4, Theorem 9.2].
(2) (a) follows from Proposition 4.
(b) The first half holds from Proposition 4 and the later half follows from Corollary 3.

References

[1] C. W. Curtis and I. Reiner : Methods of Representation Theory with Application to Finite Groups and Orders-Volume I, John Wiley and Sons, New York, 1981.
[2] Y. Hieda : Some examples of $S_{R}(H)$-blocks, Proc. Seminar on Finite groups at Kusatsu (in Japanese), 1998.
[3] Y. Hieda and Y. Tsushima : On $S_{R}(H)$ Blocks for Finite Groups, J. of Algebra, vol.202, 583-588, 1998.
[4] G. D. James : The Representation Theory of Symmetric Groups, Lecture notes in Mathematics 682,1978).
[5] H. Nagao and Y. Tsushima : Representations of Finite Groups, Academic Press, 1989.
[6] G. R. Robinson : Some Remarks on Hecke Algebras, J. of Algebra, vol.163, 806-812, 1994.

[^0]: (Received April 12, 2000)

 * Department of Liberal Arts

