The Problem of Fenchel about F－Groups

メタデータ	言語：eng
	出版者：
	公開日：2013－12－11
	キーワード（Ja）：
	キーワード（En）：
	作成者：Matsumoto，Takanori
	メールアドレス：
	所属：
URL	https：／／doi．org／10．24729／00007722

The Problem of Fenchel about F-Groups

Takanori Matsuno*

Abstract

The problem of Fenchel about F-groups is solved by S. Bundgaard, J.Nielsen and R.H.Fox. But in this paper, we give an another proof by direct construction of permutation monodromies.

Key Words: branched covering, Fenchel's problem

1 Introduction

The part of the problem of Fenchel about F groups that R.H.Fox solved in 1952 (see Fox [4]) is stated as follows: Let n_{1}, \ldots, n_{d} be integers greater than 1. Let F be a group generated by d elements S_{1}, \ldots, S_{d} with the defining system of relations

$$
\prod_{i=1}^{d} S_{i}=1 \quad S_{i}^{n_{i}}=1 \quad(i=1, \ldots, d)
$$

It is known that the only elements of finite order in F are the elements

$$
S_{i}^{k} \quad(k \geq 0, \quad i=1, \ldots, d)
$$

and their conjugates (see [5]).
Fenchel's problem Does F possess a normal subgroup N with finite index in F and containing no element of finite order other than unity ?

If $d=1$ or $d=2$ and $n_{1}=n_{2}$, then the group F is cyclic with finite order, so that $N=\{1\}$ has the required properties. Fox gave the affirmative answer of this problem for the case of $d \geq 3$ by proving the following lemma in his paper [4].

Lemma 1 (Fox [4]) For any integers a, b and c greater than 1 , there are permutations A and B of order a and b respectively such that $A B$ has the order c.

Using this lemma, Fox solved the part of Fenchel's problem as follows: We can find a permutation A_{i} of order n_{i-1} and a permutation B_{i} of order n_{i} such that the permutation $A_{i} B_{i}$ has the order n_{i+1} for each $i=2, \ldots, d-1$. Let G_{i} be the group generated by A_{i} and B_{i}.

Let Φ_{i} be the homomorphism from F to G_{i} defined by $\Phi_{i}\left(S_{j}\right)=1$ for $(j \neq i-1, i, i+$ 1) $\Phi_{i}\left(S_{i-1}\right)=A_{i}, \Phi_{i}\left(S_{i}\right)=B_{i}, \Phi_{i}\left(S_{i+1}\right)=\left(A_{i}\right.$ $\left.B_{i}\right)^{-1}$. Let N_{i} be the kernel of Φ_{i}. Put $N=N_{2} \cap$ $\ldots \cap N_{d-1}$. Then N has the required properties

Let $D=n_{1} P_{1}+\ldots+n_{d} P_{d}$ be the effective divisor of the complex projective line P^{1}. The truth of this part of the problem implies that there is a finite Galois covering $\pi: X \rightarrow P^{1}$ which branches at D if and only if $(i) d=2$ and $n_{1}=n_{2}$ or (ii)d ≥ 3 (see Namba [8]).In this paper we shall prove:

Theorem 1 Suppose $d \geq 3$. For any integers $n_{j}(j=1, \ldots, d)$ greater than 1 , there can be found permutations $A_{j}(j=1, \ldots, d)$ of order n_{j} respectively such that $A_{1} A_{2} \ldots A_{d}=1$ and the group G generated by $A_{j}(j=1, \ldots, d)$ is a transitive subgroup of the symmetric group of n letters or $2 n$ letters, where n is the maximum number of $\left\{n_{j}\right\}$.

From Theorem 1 we have:
Theorem 2 Let $\pi_{1}\left(P^{1}-\left\{P_{1}, \ldots, P_{d}\right\}\right)=<$ $\gamma_{1}, \ldots, \gamma_{d} \mid \gamma_{1} \ldots \gamma_{d}=1>$ be the fundamental group of $P^{1}-\left\{P_{1}, \ldots, P_{d}\right\}$. Let $\Psi: \pi_{1}\left(P^{1}-\right.$ $\left.\left\{P_{1}, \ldots, P_{d}\right\}\right) \rightarrow G$ be the homomorphism defined by $\Psi\left(\gamma_{j}\right)=A_{j}$, where A_{j} are permutations and G is the group given in Theorem 1. Then for the effective divisor $D=n_{1} P_{1}+\ldots n_{d} P_{d}(d \geq 3)$ there exists a finite Galois covering $\pi: X \rightarrow P^{1}$ which branches at D and is the Galois closure of a covering over P^{1} of degree either n or $2 n$ with the monodromy representation Ψ, where n is the maximum number of $\left\{n_{j}\right\}$.
(Received April 14, 1999)

* Department of Liberal Arts

Here, a Galois covering $\pi: X \rightarrow P^{1}$ is called the Galois closure of a covering $\mu: Y \rightarrow P^{1}$ if (a) there is a covering $\nu: X \rightarrow Y$ such that $\mu \circ \nu=\pi$ and (b) for any Galois covering π : $X^{\prime} \rightarrow P^{1}$ and a covering $\nu^{\prime}: X^{\prime} \rightarrow Y$ such that $\mu \circ \nu^{\prime}=\pi^{\prime}$, there is a covering $\varphi: X^{\prime} \rightarrow X$ such that $\nu^{\prime}=\nu \circ \varphi$.

Remark 1. Note that from Theorem 1 we have a rather direct proof for Fenchel's problem than those proofs which have been known (see [2][3][4][7]). In fact, let $\Phi: F \rightarrow G$ be the homomorphism defined by $\Phi\left(S_{j}\right)=A_{j}$, where A_{j} are the permutations in Theorem 1. Let N be the kernel of Φ. Then N is a normal subgroup of F which has the required properties of Fenchel's problem. Note also that we can calculate practically the group F / N which is the Galois group of the covering $\pi: X \rightarrow P^{1}$ by using a computer while we cannot do it by other's method of proving Fenchel's problem.

Furthermore we have as a corollaly to the proof of Theorem 1:

Theorem 3 Suppose $d \geq 4$. Let $D=n_{1} P_{1}+$ $\ldots+n_{d} P_{d}$ be any effective divisor with $n_{j} \geq 2$ of the complex projective line P^{1}. Then, there are infintely many (non isomorphic) finite $G a-$ lois coverings $\pi: X \rightarrow P^{1}$ over P^{1} which branch at D.

Though Theorem 3 can be proved by considering of characteristic subgroups of the fundamental group $\pi_{1}(X)$ of X (see Macbeath [6]), we will give another proof of Theorem 3 by constructing permutations explicitly in this paper.

In the final section, we also give another proof of the part of Fenchel's problem that S.Bundgaard and J.Nielsen solved in 1951 (see [1]).

2 Proof of the Theorem 1

We may assume that $n_{1}=\max \left\{n_{j} \mid 1 \leq j \leq\right.$ $d\}$. First we assume $n_{1} \geq 3$. We will give a concrete construction of $\left\{\bar{A}_{j}\right\}$ inductively. The construction will be divided into four cases: (I) n_{1} is odd and n_{2} is odd; (II) n_{1} is odd and n_{2} is even; (III) n_{1} is even and n_{2} is odd; (IV) n_{1} is even and n_{2} is even. (I) If n_{1} is odd and n_{2} is odd, then we take A_{1} and A_{2} as follows: $A_{1}=\left(\begin{array}{llll}u_{n_{1}} & u_{n_{1}-1} & \ldots & u_{1}\end{array}\right)$ and $A_{2}=\left(u_{n_{2}}\right.$ $\left.u_{n_{2}-1} \quad \ldots \quad u_{1}\right)$. Then the product $A_{1} A_{2}$ must be $A_{1} A_{2}=\left(\begin{array}{llll}u_{n_{1}} & u_{n_{1}-1} & \ldots & u_{n_{2}+1} \\ u_{n_{2}-1}\end{array}, u_{n_{2}-3}\right.$... $u_{2} u_{n_{2}} \ldots u_{3} u_{1}$) (if $\left.n_{1}>n_{2}\right) A_{1} A_{2}=$ $\left(\begin{array}{llllll}u_{n_{1}} & u_{n_{1}-2} & \ldots & u_{1} & u_{n_{1}-1} & \ldots\end{array} u_{2}\right)\left(\right.$ if $\left.n_{1}=n_{2}\right)$ $A_{1} A_{2}$ has order n_{1}.
(II) If n_{1} is odd and n_{2} is even, then we take A_{1} and A_{2} as follows: $A_{1}=\left(w_{n_{1}-n_{2}} \ldots\right.$ $w_{1} u_{n_{2}-2} \quad u_{n_{2}-4} \ldots u_{2} \quad v_{1} \quad u_{n_{2}-1} \quad u_{n_{2}-3}$ $\left.u_{1}\right)$ and $A_{2}=\left(\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{n_{2}-1} \\ v_{1}\end{array}\right)$. Then the product $A_{1} A_{2}$ must be $A_{1} A_{2}=\left(w_{n_{1}-n_{2}} \ldots\right.$ $\left.w_{2} w_{1} u_{n_{2}-1} \ldots u_{2} u_{1}\right) . A_{1} A_{2}$ is a single cycle of order $n_{1}-1$.

If n_{1} is odd, n_{2} is even and n_{3} is even, then we change the symbols $\left\{\begin{array}{llll}u_{1} & \ldots & u_{n_{2}-1} & w_{1}\end{array} \ldots\right.$ $\left.w_{n_{1}-n_{2}}\right\}$ into $\left\{x_{1}, \ldots, x_{n_{3}-1}, y_{1} \ldots y_{n_{1}-n_{3}}\right\}$ such that $\left(\begin{array}{llllll}w_{n_{1}-n_{2}} & \ldots & w_{2} & w_{1} & u_{n_{2}-1} & \ldots\end{array} u_{2} u_{1}\right)$ $=\left(\begin{array}{llllll}x_{1} & \ldots & x_{n_{3}-1} & y_{1} & \ldots & y_{n_{1}-n_{3}}\end{array}\right)$. We take A_{3} as follows: $A_{3}=\left(\begin{array}{lllll}x_{1} & x_{2} & \ldots & x_{n_{3}-1} & z_{1}\end{array}\right)$. Then the product $A_{1} A_{2} A_{3}$ must be $A_{1} A_{2} A_{3}=\left(x_{1}\right.$ $x_{3} \quad \ldots x_{n_{3}-1} y_{1} \quad \ldots y_{n_{1}-n_{3}} x_{2} x_{4} \ldots x_{n_{3}-2}$ z_{1}). $A_{1} A_{2} A_{3}$ is a single cycle of order n_{1}.

If n_{1} is odd, n_{2} is even, n_{3} is odd and $n_{3}<$ n_{1}, then we change the symbols $\left\{u_{1}, \ldots, u_{n_{2}-1}\right.$, $\left.w_{1}, \ldots, w_{n_{1}-n_{2}}\right\}$ into $\left\{x_{1}, \ldots, x_{n_{3}}, y_{1}, \ldots\right.$, $\left.y_{n_{1}-n_{3}-1}\right\}$ such that $\left(w_{n_{1}-n_{2}} \quad \ldots \quad w_{2} \quad w_{1}\right.$ $\left.u_{n_{2}-1} \quad u_{n_{2}-2} \ldots u_{2} u_{1}\right)=\left(\begin{array}{llll}x_{1} & \ldots & x_{n_{3}} & y_{\mathrm{i}}\end{array} \ldots\right.$ $\left.y_{n_{1}-n_{3}-1}\right)$. We take A_{3} as follows: $A_{3}=\left(x_{1}\right.$ $\ldots x_{n_{3}}$). Then the product $A_{1} A_{2} A_{3}$ must be $A_{1} A_{2} \quad A_{3}=\left(\begin{array}{lllll}x_{1} & x_{3} & \ldots & x_{n_{3}} & y_{1} \\ y_{2} & \ldots\end{array}\right.$ $\left.y_{n_{1}-n_{3}-1} x_{2} x_{4} \ldots x_{n_{3}-1}\right) . A_{1} A_{2} A_{3}$ is a single cycle of order $n_{1}-1$.

If n_{1} is odd, n_{2} is even and $n_{3}=n_{1}$, then we change the symbols $\left\{u_{1}, \ldots, u_{n_{2}-1}, w_{1}, \ldots\right.$, $\left.w_{n_{1}-n_{2}}\right\}$ into $\left\{x_{1}, x_{2}, \ldots, x_{n_{1}-2}, y_{1}\right\}$ such that $\left(\begin{array}{lllllllll}w_{n_{1}-n_{2}} & \ldots & w_{2} & w_{1} & u_{n_{2}-1} & u_{n_{2}-2} & \ldots & u_{2} & u_{1}\end{array}\right)$ $=\left(\begin{array}{llll}y_{1} & x_{n_{1}-2} & \ldots & x_{1}\end{array}\right)$. We take A_{3} as follows: $A_{3}=\left(\begin{array}{llllllll}x_{1} & x_{3} & \ldots & x_{n_{1}-2} & y_{1} & x_{2} & x_{4} & \ldots \\ x_{n_{1}-3}\end{array}\right.$ z_{1}). Then the product $A_{1} A_{2} A_{3}$ must be $A_{1} A_{2}$ $A_{3}=\left(\begin{array}{lllll}x_{1} & x_{2} & \ldots & x_{n_{1}-2} & z_{1}\end{array}\right) . A_{1} A_{2} A_{3}$ is a single cycle of order $n_{1}-1$.

If n_{1} is odd, n_{2} is even, n_{3} is odd, $n_{3}<$ n_{1} and n_{4} is even, then we change the symbols $\left\{x_{1}, \ldots, x_{n_{3}}, y_{1}, \ldots, y_{n_{1}-n_{3}-1}\right\}$ into $\left\{X_{1}, \ldots\right.$, $\left.X_{n_{4}-1}, Y_{1}, \ldots, Y_{n_{1}-n_{4}}\right\}$ such that $\left(\begin{array}{ll}x_{1} & x_{3}\end{array} \ldots\right.$ $\left.\begin{array}{llllllll}x_{n_{3}} & y_{1} & y_{2} & \ldots & y_{n_{1}-n_{3}-1} & x_{2} & x_{4} & \ldots \\ x_{n_{3}-1}\end{array}\right)=$ $\left(\begin{array}{llllllll}X_{1} & X_{2} & \ldots & X_{n_{4}-1} & Y_{1} & Y_{2} & \ldots & Y_{n_{1}-n_{4}}\end{array}\right)$. We take A_{4} as follows: $A_{4}=\left(\begin{array}{llll}X_{1} & \ldots & X_{n_{4}-1} & Z_{1}\end{array}\right)$. Then the product $A_{1} A_{2} A_{3} A_{4}$ must be $A_{1} A_{2}$ $A_{3} A_{4}=\left(\begin{array}{lllllll}X_{1} & X_{3} & \ldots & X_{n_{4}-1} & Y_{1} & \ldots & Y_{n_{1}-n_{4}}\end{array}\right.$ $\left.X_{2} \quad X_{4} \ldots X_{n_{4}-2} Z_{1}\right) . A_{1} A_{2} A_{3} A_{4}$ is a single cycle of order n_{1}.

If n_{1} is odd, n_{2} is even and $n_{3}=n_{1}$ and n_{4} is even, then we change the symbols $\left\{x_{1}\right.$, $\left.x_{2}, \ldots, x_{n_{1}-2}, z_{1}\right\}$ into $\left\{X_{1}, \ldots, X_{n_{4}-1}, Y_{1}\right.$, $\left.\ldots, Y_{n_{1}-n_{4}}\right\}$ such that $\left(x_{1} x_{2} \ldots x_{n_{1}-2} z_{1}\right)$ $=\left(\begin{array}{lllllll}X_{1} & X_{2} & \ldots & X_{n_{4}-1} & Y_{1} & Y_{2} & \ldots\end{array} Y_{n_{1}-n_{4}}\right)$. We take A_{4} as follows: $A_{4}=\left(\begin{array}{llll}X_{1} & \ldots & X_{n_{4}-1} & Z_{1}\end{array}\right)$. Then the product $A_{1} A_{2} A_{3} A_{4}$ must be $A_{1} A_{2}$ $A_{3} A_{4}=\left(\begin{array}{lllll}X_{1} & X_{3} & \ldots & X_{n_{4}-1} & Y_{1}\end{array} \ldots Y_{n_{1}-n_{4}}\right.$ $\left.X_{2} \quad X_{4} \ldots X_{n_{4}-2} Z_{1}\right) . A_{1} A_{2} A_{3} A_{4}$ is a single cycle of order n_{1}.
(III) If n_{1} is even and n_{2} is odd, then we
take A_{1} and A_{2} as follows: $A_{1}=\left(\begin{array}{lll}u_{1} & \ldots & u_{n_{2}}\end{array}\right.$ $\left.v_{1} \quad \ldots \quad v_{n_{1}-n_{2}}\right)$ and $A_{2}=\left(\begin{array}{lll}u_{1} & \ldots & u_{n_{2}}\end{array}\right)$. Then the product $A_{1} A_{2}$ must be $A_{1} A_{2}=\left(\begin{array}{ll}u_{1} & u_{3} \ldots\end{array}\right.$ $\left.u_{n_{2}} v_{1} \ldots v_{n_{1}-n_{2}} \quad u_{2} \quad u_{4} \ldots u_{n_{2}-1}\right) . A_{1} A_{2}$ is a single cycle of order n_{1}.
(IV) If n_{1} is even and n_{2} is even, then we take A_{1} and A_{2} as follows: $A_{1}=\left(\begin{array}{lll}w_{n_{1}-n_{2}} & \ldots & w_{1}\end{array}\right.$ $\left.u_{n_{2}-2} \quad u_{n_{2}-4} \quad \ldots u_{2} \quad v u_{n_{2}-1} \quad u_{n_{2}-3} \quad \ldots u_{1}\right)$ and $\quad A_{2}=\left(\begin{array}{lll}u_{1} & \ldots & u_{n_{2}-1} v\end{array}\right)$. Then the product $A_{1} A_{2}$ must be $A_{1} A_{2}=\left(w_{n_{1}-n_{2}} \quad \ldots\right.$ $\left.w_{2} w_{1} u_{n_{2}-1} u_{n_{2}-2} \ldots u_{2} u_{1}\right) . A_{1} A_{2}$ is a single cycle of order $n_{1}-1$.

If n_{1} is even, n_{2} is even and n_{3} is odd, then we change the symbols $\left\{u_{1}, \ldots, u_{n_{2}-1}, w_{1}, \ldots\right.$, $\left.w_{n_{1}-n_{2}}\right\}$ into $\left\{x_{1}, \ldots, x_{n_{1}-1}\right\}$ such that ($w_{n_{1}-n_{2}}$ $\left.\ldots w_{2} w_{1} u_{n_{2}-1} \quad u_{n_{2}-2} \ldots u_{2} u_{1}\right)=\left(\begin{array}{ll}x_{1} & \ldots\end{array}\right.$ $\left.x_{n_{1}-1}\right)$. We take A_{3} as follows: $A_{3}=\left(\begin{array}{ll}x_{1} & \ldots\end{array}\right.$ $\left.x_{n_{3}}\right)$. Then the product $A_{1} A_{2} A_{3}$ must be $A_{1} A_{2}$ $A_{3}=\left(\begin{array}{llllllll}x_{1} & x_{3} & \ldots & x_{n_{3}} & x_{n_{3}+1} & \ldots & x_{n_{1}-1} & x_{2}\end{array} x_{4}\right.$, $\ldots x_{n_{3}-1}$). $A_{1} A_{2} A_{3}$ is a single cycle of order $n_{1}-1$.

If n_{1} is even, n_{2} is even, n_{3} is odd and n_{4} is even, then we change the symbols $\left\{x_{1}, \ldots, x_{n_{1}-1}\right\}$ into $\left\{X_{1}, \ldots, X_{n_{4}-1}, Y_{1}, \ldots, Y_{n_{1}-n_{4}}\right\}$ such that
 $=\left(\begin{array}{lll}X_{1} & \ldots & X_{n_{4}-1} \\ Y_{1} & \ldots, Y_{n_{1}-n_{4}}\end{array}\right)$. We take A_{4} as follows: $A_{4}=\left(\begin{array}{llll}X_{1} & \ldots & X_{n_{4}-1} & Z_{1}\end{array}\right)$. Then the product $A_{1} A_{2} A_{3} A_{4}$ must be $A_{1} A_{2} A_{3} A_{4}$ $=\left(\begin{array}{llllll}X_{1} & X_{3} & \ldots & X_{n_{4}-1} & Y_{1} & \ldots\end{array} Y_{n_{1}-n_{4}} X_{2} X_{4}\right.$ $\ldots X_{n_{4}-2} Z_{1}$). $A_{1} A_{2} A_{3} A_{4}$ is a single cycle of order n_{1}.

If n_{1} is even, n_{2} is even and n_{3} is even, then we change the symbols $\left\{u_{1}, \ldots, u_{n_{2}-1}, w_{1}, \ldots\right.$, $\left.w_{n_{1}-n_{2}}\right\}$ into $\left\{x_{1}, \ldots, x_{n_{3}-1}, y_{1}, \ldots, y_{n_{1}-n_{3}}\right\}$ such that $\left(\begin{array}{llllll}w_{n_{1}-n_{2}} & \ldots & w_{2} & w_{1} & u_{n_{2}-1} & u_{n_{2}-2}\end{array} \ldots u_{2} u_{1}\right)$ $=\left(\begin{array}{llllll}x_{1} & \ldots & x_{n_{3}-1} & y_{1} & \ldots & y_{n_{1}-n_{3}}\end{array}\right)$. We take A_{3} as follows: $A_{3}=\left(\begin{array}{llll}x_{1} & \ldots & x_{n_{3}-1} & z_{1}\end{array}\right)$. Then the product $A_{1} A_{2} A_{3}$ must be $A_{1} A_{2} A_{3}=\left(\begin{array}{ll}x_{1} & x_{3}\end{array}\right.$ $\left.\ldots x_{n_{3}-1} y_{1} \ldots y_{n_{1}-n_{3}} x_{2} x_{4} \ldots x_{n_{3}-2} z_{1}\right)$. $A_{1} A_{2} A_{3}$ is a single cycle of order n_{1}.

In this way, we can inductively find permutations A_{1}, \ldots, A_{d-2} such that each A_{j} is a single cycle of order n_{j} and the product $A_{1} \ldots A_{d-2}$ is also a single cycle of order n_{1} or $n_{1}-1$. By the following lemma which is only a little different from the original lemma of Fox we can find permutations A_{d-1} and A_{d} of order n_{d-1} and n_{d} respectively such that $\left(A_{d-1} A_{d}\right)^{-1}$ is either a single cycle of order n_{1} or $n_{1}-1$ or a product of two single cycles with no common symbol of order n_{1} or $n_{1}-1$ and that the group generated by A_{d-1} and A_{d} is a transitive subgroup.

Lemma 2 Given any three integers $a>1$, $b>1$ and $c \geq \max \{a, b\}$, there can be found a permutation A of order a and a permutation B of order b such that $A B$ is a single cycle of
order c or a product of two single cycles with no common symbol of order c and that the group generated by A and B is a transitive subgroup of the symmetric group of c symbols or $2 c$ symbols.

Proof of Lemma 2. By the proof of Fox (see [2]), the case that has not been proved is only the case $a=b=c$. If $a=b=c$ is odd, then we put $A=\left(\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{a}\end{array}\right)$ and $B=\left(\begin{array}{ll}u_{1} & u_{2}\end{array}\right.$ $\ldots u_{a}$). Then the product $A B$ must be $A B=$ $\left(\begin{array}{lllllll}u_{1} & u_{3} & \ldots & u_{a} & u_{2} & u_{4} & \ldots \\ u_{a-1}\end{array}\right) . A B$ is a single cycle of order a. If $a=b=c$ is even, then we put $A=\left(\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{a}\end{array}\right)\left(\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{a}\end{array}\right)$ and $B=\left(\begin{array}{lllll}u_{1} & u_{2} & \ldots & u_{a-1} & v_{a}\end{array}\right)\left(\begin{array}{lllll}v_{1} & v_{2} & \ldots & v_{a-1} & u_{a}\end{array}\right)$. Then the product $A B$ must be $A B=\left(\begin{array}{ll}u_{1} & u_{3}\end{array} \ldots\right.$ $\left.u_{a-1} v_{1} v_{3} \ldots v_{a-1}\right)\left(\begin{array}{lllll}u_{2} & u_{4} & \ldots & u_{a-2} & v_{a} \\ v_{2} & v_{4}\end{array}\right.$ $\ldots v_{a-2} u_{a}$). $A B$ is a product of two single cycles of order a. q.e.d.

If the order of the product $A_{1} A_{2} \ldots A_{d-2}$ is n_{1} (resp. $n_{1}-1$) and we can find A_{d-1} and A_{d} such that $\left(A_{d-1} A_{d}\right)^{-1}$ is a single cycle of order n_{1} (resp. $n_{1}-1$), we can change the symbols suitably such that $A_{1} A_{2} \ldots A_{d-2} A_{d-1} A_{d}=1$. If the order of the product $A_{1} A_{2} \ldots A_{d-2}$ is n_{1} (resp. $n_{1}-1$) and we can find A_{d-1} and A_{d} such that $\left(A_{d-1} A_{d}\right)^{-1}$ is a product of two single cycles of order n_{1} (resp. $n_{1}-1$), we can find permutations $\left\{A^{\prime}{ }_{1}, \ldots, A^{\prime}{ }_{d-2}\right\}$ such that A_{j}^{\prime} is the same type as A_{j} and $\left\{A^{\prime}{ }_{1}, \ldots, A^{\prime}{ }_{d-2}\right\}$ have no common letter with $\left\{A_{1}, \ldots, A_{d-2}\right\}$. Put $A^{\prime \prime}{ }_{j}$ $=A_{j} A_{j}^{\prime}(j=1, \ldots d-2)$. Then we can change the symbols suitably such that

$$
A^{\prime \prime}{ }_{1} A^{\prime \prime}{ }_{2} \ldots A_{d-2}^{\prime \prime} A_{d-1} A_{d}=1
$$

Note that $A_{j} A^{\prime}{ }_{k}=A^{\prime}{ }_{k} A_{j}$ for $j, k=1, \ldots, d-$ 2. $A^{\prime \prime}{ }_{1}, A^{\prime \prime}{ }_{2}, \ldots, A^{\prime \prime}{ }_{d-2}, A_{d-1}, A_{d}$ have required properties.

Next we assume $n_{1}=2$, then $n_{1}=n_{2}=\ldots$ $=n_{d}=2$. In this case if d is even, it is trivial that we can find permutations A_{1}, \ldots, A_{d} which have required conditions. In fact put $A_{j}=\left(\begin{array}{ll}u_{1} & u_{2}\end{array}\right)$ for every j. If d is odd, then we find A_{j} inductively as follows. Put $A_{1}=\left(u_{1} u_{2}\right)\left(v_{1} v_{2}\right)$ and $A_{2}=\left(u_{1} v_{2}\right)\left(v_{1} u_{2}\right)$. Then $A_{1} A_{2}=\left(u_{1} v_{1}\right)$ $\left(u_{2} v_{2}\right)$. So if the product $A_{1} \ldots A_{d-1}=(x y)$ $(z w)$, put $A_{d}=(x y)(z w)$. This completes the proof of Theorem 1.

Now we give the proof of Theorem 3.

Proof of Theorem 3. If the product $n_{1} n_{2}$ is odd, then we take L as L is a odd integer greater than n_{1}. If the product $n_{1} n_{2}$ is even and either n_{1} or n_{2} is odd, then we take L as L is a even integer greater than n_{1}. If n_{1} and n_{2} is even,
then we take L such as L is a odd integer greater than n_{1}. From the proof of Fox of Lemma 1, we can find permutations A_{1} and A_{2} of order n_{1} and n_{2} such that the product $A_{1} A_{2}$ is a single cycle of order L. Then we think L as n_{1}. By the similar way above we can find permutations A_{3}, \ldots, A_{d} which have the required conditions. Note that we can take L in an infinitely many way. q.e.d.

3 Another proof of Fenchel's problem

In a simmilar way, we can give another proof of the part of Fenchel's problem that S.Bundgaard and J.Nielsen solved in 1951 (see [1]). Let M be a compact Riemann surface of genus g. Let $\pi_{1}\left(M-\left\{q_{1}, \ldots, q_{d}\right\}\right)=<\alpha_{1}, \ldots, \alpha_{g}, \beta_{1}, \ldots$, $\beta_{g}, \gamma_{1}, \ldots, \gamma_{d} \mid \prod\left[\alpha_{k}, \beta_{k}\right] \gamma_{1} \ldots \gamma_{d}=1>$ be the fundamental group of $M-\left\{q_{1}, \ldots, q_{d}\right\}$. From Lemma 2, for a given integer m greater than 1, we can find a permutation A of order 2 and a permutation B of order 2 such that the product $A B$ is a single cycle of order $2 m$. Then $A B A^{-1} B^{-1}=A B A B=(A B)^{2}$ is a product of two single cycles of order m. Now it is easy to see that for given integers $m_{j}(j=1, \ldots, d)$ greater than 1 there exists a permutation A of order 2 and a permutation B of order 2 and permutations $\left\{C_{j}\right\}$ of order $m_{j}(j=1, \ldots, d)$ respectively such that $A B A^{-1} B^{-1} C_{1} \ldots C_{d}=1$ and that the group G generated by $\left\{A, B, C_{j}\right.$ $(j=1, \ldots, d)\}$ is a transitive subgroup. Let $\Phi: \pi_{1}\left(M-\left\{q_{1}, \ldots, q_{d}\right\}\right) \rightarrow G$ be the homomorphism defined by $\Phi\left(\alpha_{1}\right)=A, \Phi\left(\beta_{1}\right)=B, \Phi\left(\alpha_{l}\right)$ $=1 \quad(l=2, \ldots, g), \Phi\left(\beta_{l}\right)=1 \quad(l=2, \ldots, g)$, $\Phi\left(\gamma_{j}\right)=C_{j} \quad(j=1, \ldots, d)$. Then $\operatorname{Ker}(\Phi)$ has the required properties.

References

[1] S.Bundgaard \& J.Nielsen, On normal subgroups with finite index in F-groups, Mat. Tidsskrift, vol B (1951) 56-58
[2] A.L.Edomonds \& J.H.Ewing \& R.S. Kulkarni, Torsion free subgroups of Fuchsian groups and Tessellations of surfaces, Invent. Math. vol 69 (1982) 331-346
[3] R.Feuer, Torsion free subgroups of triangle groups, Proc. Amer. Math. Soc. vol 30 (1971) 235-240
[4] R.H.Fox, On Fenchel's conjecture about F groups, Mat. Tidsskrift, vol B (1952) 61-65
[5] R.Fricke \& F.Klein, Vollesungen ueber die Theorie der automorphen Functionen, Teubner, Leipzig, (1897) 186-187
[6] A.Macbeath, On a theorem of Hurwitz, Proc. Glasgow Math. Assoc. (1961) vol 5 90-96
[7] J.Mennicke, Eine Bemerkung über Fuchssche Gruppen, Invent. Math. vol 2 (1967) 301-305
[8] M.Namba, Branched coverings and algebraic functions, Research Notes in Math. (1987) vol 161 Pitman-Longman

