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The Problem of Fenchel about F-Groups

Takanori MATSUNO*

Abstract
The problem of Fenchel about F-groups is solved by S.
Bundgaard, J.Nielsen and R.H.Fox. But in this paper, we give an
another proof by direct construction of permutation monodromies.
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1 Imntroduction

The part of the problem of Fenchel about F-
groups that R.H.Fox solved in 1952 ( see Fox [4]
) is stated as follows: Let ny,...,nq4 be integers
greater than 1. Let F' be a group generated by
d elements Si,...,Sq with the defining system
of relations

d
[Isi=1 s™=1(G=1,..,4d).
t=1

It is known that the only elements of finite
order in F are the elements

SE(k>0,i=1,...,d)

and their conjugates (see [5]).

Fenchel’s problem Does F' possess ¢ nor-
mal subgroup N with finite indez in F and con-

taining no element of finite order other than unity
2

Ifd = 1ord = 2 and ny = ns, then the group
F is cyclic with finite order, so that N = {1} has
the required properties. Fox gave the affirmative
answer of this problem for the case of d > 3 by
proving the following lemma in his paper [4].

Lemma 1 ( Fox [4] ) For any integers a,
b and ¢ greater than 1, there are permutations
A and B of order a and b respectively such that
AB has the order c.

Using this lemma, Fox solved the part of
Fenchel’s problem as follows: We can find a per-
mutation A; of order n;.; and a permutation B;
of order n; such that the permutation A4;B; has
the order n;; for each i =2,...,d— 1. Let G;
be the group generated by A; and B;.
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Let ®; be the homomorphism from F' to G;
defined by ®;(S;) = 1 for (j £#i—-1,14, i +
D®;(Si—1) = Ai, i(Si) = Bi, ®i(Siy) = (A
B; )~!'.Let N; be the kernel of ®;. Put N = NyN
...MNNg_y. Then N has the required properties.

Let D =n Py +...4+n43P; be the effective
divisor of the complex projective line P!. The
truth of this part of the problem implies that
there is a finite Galois covering 7 : X — P!
which branches at D if and only if (¢)d = 2 and
n1 = ny or ({i)d > 3 ( see Namba [8] ).In this
paper we shall prove:

Theorem 1 Suppose d > 3. For any integers
n; (7 = 1,...,d) greater than 1, there can be
found permutations A; (j = 1,...,d) of order
n; respectively such that AjAz...Ag = 1 and
the group G generated by A; (j = 1,...,d) is
a transitive subgroup of the symmetric group of
n letters or 2n letters, where n is the mazimum
number of {n;}.

From Theorem 1 we have:

Theorem 2 Let 7r1(1:’l —{P,...,Pa}) =<

Y1y ooy ¥d | Y1 .--Yd = 1> be the fundamen-
tal group of P1— {P1, ..., Ps}. Let ¥ : m (P! -
{P1,...,P4}) — G be the homomorphism de-

fined by W(v;) = A;, where A; are permutations
and G is the group given in Theorem 1. Then for
the effective divisor D = n1 Pi+...nqP; (d > 3)
there exists a finite Galots covering mw : X — P!
which branches at D and is the Galois closure of
a covering over P! of degree either n or 2n with
the monodromy representation ¥, where n is the
mazimum number of {n;}.
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Here, a Galois covering 7 : X — P! is called
the Galois closure of a covering p:Y — PLif
(a) there is a covering v : X — Y such that
pov=rm and (b) for any Galois covering T
X' — P1 and a covering v X - Y such that
,uou =7 , there is a covering ¢ : X' — X such
that v’ = v o ¢.

Remark 1. Note that from Theorem I we
have a rather direct proof for Fenchel’s problem
than those proofs which have been known (see
[2](3][4][7))- In fact, let & : F — G be the homo-
morphism defined by ®(S;) = Aj, where A; are
the permutations in Theorem 1. Let N be the
kernel of ®. Then N 1s a normal subgroup of
F which has the required properties of Fenchel’s
problem. Note also that we can calculate prac-
tically the group F/N which is the Galois group
of the covering # : X — Pl by using a com-
puter while we cannot do it by other’s method of
proving Fenchel’s problem.

Furthermore we have as a corollaly to the
proof of Theorem 1:

Theorem 3 Supposed > 4. Let D = n Py +
..+ naPy be any effective divisor with n; > 2
of the complex projective line P'. Then, there
are infintely many (non isomorphic) finite Ga-
lois coverings m : X — P! over P! which branch
at D.

Though Theorem 3 can be proved by consid-
ering of characteristic subgroups of the funda-
mental group 71(X) of X ( see Macbeath [6] ),
we will give another proof of Theorem 3 by con-
structing permutations explicitly in this paper.

In the final section, we also give another proof

of the part of Fenchel’s problem that S.Bundgaard

and J.Nielsen solved in 1951 (see [1]).

2 Proof of the Theorem 1

We may assume that n; = max{n;|1 < j <
d}. First we assume n; > 3. We will give a
concrete construction of {A4;} inductively. The
construction will be divided into four cases: (I)
n; is odd and nj is odd; (II) n; is odd and n,
is even; (II) n; is even and ny is odd; (IV)
ny is even and ng is even. (I) If n; is odd
and nj is odd, then we take A, and A, as fol-
lows: Ay = (Un, tn,—1 ... u1)and Az = (up,
u1). Then the product A;A, must
(unl Un,—1 -« Uny,41 Up,—1,Up,—3

Uy Up, . Uz ul) (lf n > 'Il2)A1A2 =
(Unl Un,—2 .. Uy Up -1 ... UQ) (lf n, = n2)
A1As has order n;.

unz—l

be A1A2 =

(I1) ¥ n; i1s odd and n, is even, then we
take Ay and A, as follows: A; = (wp,_n,

W1 Uny—2 Un,—4... U2 Vi Up,—1 Up,—3 ..
uy)and Az = (u; u2 ... up,_1 v1). Then the
product A;A; must be A1A4; = (Wn,-n,

Wy W Upy—1 ... Ug u1). A1 As is a single cycle
of order n, — 1.

- If ny i1s 0odd, ny is even and ng is even, then
we change the symbols {u; ... up,—1 w; ...
Wny—ny} i0t0 {Z1, ... ,ns1, Y1 oo+ Yny—ns)
such that (wnp,—p, ... W2 W1 Upn,—1 ... Uz Ug)
=(T1 ... Tpy-1 Y1 .- Yn,—ns). We take Aj
as follows: As = (1 %2 ... Zn,-1 2z1). Then
the product A1 A2 A3 must be A1 A2 A3 = (131
L3 - Tnz-1 Y1 c UYnj—n; T2 T4 ... Tpy-2
z1). A1 Az As is a single cycle of order n;.

If ny 1s odd, n, 1s even, n3 is odd and njz <
n1, then we change the symbols {u,, ...,
Wy, ..., Wny—n,} into {21, ...,
Yni—ns—1} such that (wy,_n,
wpu)=(21 ... ZTp, Y1 ...
Yn,-ns—1). We take Az as follows: A3 = (23

Zp,). Then the product A; A, Az must
be A1 A2 A3:(CL‘11‘3 Y1 Y2 ...
Yni-ns—1 L2 L4 ... Tp,—1). Ay Ay Azis asingle
cycle of order ny — 1.

un;—l»
Y1, ey
w2 Wy

1’.71.3)

Un,—1 Upy,—2 ...
In,

If n; is odd, ny is even and nz = ny, then
we change the symbols {uy, ...
Wn,—n,} Into {21, Z2, ..., &n,—2, y1} such that
. Wy Wl Up,—] Up,—2 ... U Up)
= (y1 Tn,-2 z1). We take A3 as follows:
Az = (T1 23 ... Tpy—2 Y1 T2 T4 ... Tn,-3
z1). Then the product A; A5 Az must be A; A,
A3 = ((L’I () Tn,-2 Zl). A1 A2 A3 is a
single cycle of order n; — 1. :

If n; 1s odd, ny 1s even, n3 is odd, n3 <
n1 and ng4 is even, then we change the symbols
{21, ..., Tng, Y1, -+, Yny—ns—1} into {X1, ...,
an—"l)Y].) ey Ynl_nd} such that (1,‘1 X3
Tny Y1 Y2 - Yny—ny—-1 T2 T4 . zna—l) =
(X] X2 Xn4—1 Y1 Y2 Ynl—n4)~ We
take A4 as follows: A3 = (X; ... Xp,-1 Z1).
Then the product A; A3 A3z A4 must be A; A,
A3 A4 = (X1 X3 Xn4—1 Yl . Ynl—n.;
X2 X4 TN X,u_g Zl) A1 A2 A3 A4 isa single
cycle of order n;.

If ny 1s odd, ny is even and n3 = n; and
ng4 is even, then we change the symbols {z;,

y Upy—1, Wy -0y

Wny~n,

T2y, .y Tp;-2, 21} mnto {Xl, ey Xn4_1, Yl,
.y Yo, —n,} such that (z; z, Ty, —2 21)
:(X1 X2 X,-“_l Yl Yg Ynl_nd). We
take Aq4 as follows: 44 = (X, . Xng—1 Z1).

Then the product A; As A3z A4 must be A; A,
Az Ay = (X1 Xz ... Xp,o1 Vv . Yo o0,
X2 X4 . X,“_Q Zl)-Al Ag A3 A4 isasingle
cycle of order n;.

(III) If ny is even and ng is odd, then we
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take A, and A, as follows: A; = (u1 ... up,
vy . Uny—nyland Az = (u . Un,). Then
the product A; A, must be Ay Az = (ug us ...
Un, U1 . Uny—n, Uz Ug ... un2_1). A1A2 is
a single cycle of order n;.

(IV) If n; is even and n is even, then we take

Ay and A, as follows: Ay = (Wp,—n, ... Wi
Un,~2 Upny—4 .- U2 U lUn,o1 Uny-3 ... U1)
and Ay = (u; Up,—1 v). Then the prod-

uct A1 Az must be A1 Az = (wnl_M
Wy Wi Up,—1 Uny—2 ... U2 u1). Ay Az s asingle
cycle of order ny — 1.

If ny is even, ns is even and ng is odd, then

we change the symbols {uy,..., un,—1, w1, ...,
W, —n, } Into {z1, ..., Tn,—1} such that (wp, —p,
. W2 Wi Upy—y  Upg—2 -.. U U1) = (Z;

Tp,-1). We take Aj as follows: A3 = (2, ...
zp,). Then the product A; A2 Az must be 4; A,
Az = (21 23 Tnytl
. Zn,-1). A1 As As is a single cycle of order

n — 1.
If n; is even, ns is even, ng is odd and n4 is

- Tn, - Tpy—1 T2 T4,

even, then we change the symbols {,...,2,,-1}
imto {X1,..., Xn,-1, Y1, ..., Yn,—n,} such that
(21 z3 . Ty Tpg4l Tpy—1 T2 T4 ... Tyg_1)
= (X1 Xn4_1 Y1 -y Ynl—nd)' We take

Ay asfollows: 44 = (X; ... Xp,—1 Z1). Then
the product A; Ay A3 A4 must be A, Ay Az Ay
=(X; Xs Xn-1 Y1 .0 Yo o6, Xo Xy
. Xn,—2 Z1). Ay Az Az A4 is a single cycle

of order n;j.
If ny is even, n, is even and n3 is even, then

we change the symbols {uy,..., un,—1,w1, ...,
Wry—nypinto {1, ... Zns1,Y1,- -+, Yny—n, ) such
that (wnl_n,_, cee Wy W) Up,—1 Up,—2... U ul)

= (1 C Zpye1 Y1 .- Yny—ny). We take Aj
as follows: Az = (21 ... Zn,—1 2z1). Then the
product A; As Az must be A3 AA3 = (2 3

- Tnz—1 Y1 --- Yny-ns; L2 T4 - Tny-2 Z1)~
Ay A Az is a single cycle of order ny.

In this way, we can inductively find permuta-
tions Ay,..., Ag_2 such that each A; is a single
cycle of order n; and the product 4;... A4_2 is
also a single cycle of order n; or n; — 1. By the
following lemma which is only a little different
from the original lemma of Fox we can find per-
mutations Az_1 and Ag of order ny_1 and ny
respectively such that (Ag_1 A4)7! is either a
single cycle of order ny or n; — 1 or a product
of two single cycles with no common symbol of
order n; or n; — 1 and that the group generated
by Ag—1 and A4 is a transitive subgroup.

Lemma 2 Given any three integers a > 1,
b > 1 and ¢ > max{a,b}, there can be found
a permutation A of order a and a permuiation
B of order b such that AB is a single cycle of

order ¢ or a product of two single cycles with no
common symbol of order ¢ and that the group
generated by A and B is a transitive subgroup of
the symmetric group of ¢ symbols or 2c symbols.

Proof of Lemma 2. By the proof of Fox (see
{2]), the case that has not been proved is only
the case a = b = ¢. Ha = b = ¢ is odd, then
we put A = (u; usp . ug) and B = (uy us

. ug). Then the product AB must be AB =
{ug us ... ug Up Ug ... Ug-1). AB is a single
cycle of order a. If a = b = ¢ is even, then
weput A = (u; uy ... ug)(v1 va ... vg) and
B=(uyuy ... ug—1 va) (vy v2 ... Va1 Ug).
Then the product AB must be AB = (u; us
Ug—1 V1 V3 ... Va—1)(U2 U4 Ug—2 Vg V2 U4

Vg2 Ug). AB is a product of two single
cycles of order a. ¢.e.d.

If the order of the product A1 Ay ... Ag_o is
n; (resp. n; — 1) and we can find A4_; and Aq4
such that (Aq_144)7! is a single cycle of order
ny (resp. ny — 1), we can change the symbols
suitably such that A; A5 ... Aj_2 A4-144 = 1.
If the order of the product A;A; ... Ag_o 1s
n; (resp. n; — 1) and we can find A4-; and Ay
such that (A4-1 A4)~! is a product of two single
cycles of order nj (resp. n; — 1), we can find
permutations {A’y, ..., A'4_»} such that A’; is
the same type as A; and {Ay, ..., A’4_2} have
no common letter with {A4;,..., A4_»}. Put A”;
=A; A'; (j=1,...d—2). Then we can change
the symbols suitably such that

A A"y AT g g Ay Ag = 1.

Note that A;A'y = A’z A; for j ik =1,...,d —
2. A", A"y, ..., A0, Ag_1, Aq have required
properties.

Next we assume n; = 2, then ny = ny = ...
= ng = 2. In this case if d i1s even, it is trivial
that we can find permutations A;,..., A3 which
have required conditions. In fact put A; = (u1 us)
for every j. If d is odd, then we find A4; induc-
tively as follows. Put A; = (u1 u2) (v1 v2) and
A2 = (U1 1)2) (1)1 UQ). Then Al A2 - (U1 'Ul)
(ug v2). So if the product Ay ... A4y = (z y)
(z w), put Ay = (z y) (2 w). This completes the
proof of Theorem 1.

Now we give the proof of Theorem 3.

Proof of Theorem 3. If the product niny is
odd, then we take L as L is a odd integer greater
than ny. If the product nyns is even and either
n; or na i1s odd, then we take L as L is a even
integer greater than n;. If ny and n, is even,
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then we take L such as L is a odd integer greater
than ny. From the proof of Fox of Lemma 1, we
can find permutations A; and A, of order n;
and ny such that the product A;A, is a single
cycle of order L. Then we think I as n;. By
the similar way above we can find permutations
As, ..., Az which have the required conditions.
Note that we can take L in an infinitely many
way. gq.e.d.

3 Another proof of Fenchel’s
problem

In a simmilar way, we can give another proof of
the part of Fenchel’s problem that S.Bundgaard
and J.Nielsen solved in 1951 (see [1]). Let M
be a compact Riemann surface of genus g. Let
m(M - {q,...,9}) = < a1,...,a4,b1, ...,
By, 71 yvdl Tllok, Belv1--.va = 1 > be the
fundamental group of M — {q1,..., ¢4}. From
Lemma 2, for a given integer m greater than 1,
we can find a permutation A of order 2 and a
permutation B of order 2 such that the prod-
uct AB is a single cycle of order 2m. Then
ABA~'B™! = ABAB = (AB)? is a product
of two single cycles of order m. Now it is easy
to see that for given integers m; (j = 1,...,d)
greater than 1 there exists a permutation A of
order 2 and a permutation B of order 2 and per-
mutations {C;} of order m; (j = 1,...,d) re-
spectively such that ABA='B~!C;...C; =1
and that the group G generated by {4, B,C;
(7 = 1,...,d)} is a transitive subgroup. Let
®: 7 (M~ {q1,...,94}) — G be the homomor-
phism defined by ®(a1) = A, ®(4) = B, ®(w)
=1 ({=2...,9), ®B)=1 (I=2,...,9),
®(v;) =C; (i =1,...,d). Then Ker(®) has
the required properties.
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