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      CrG vector bundles and Nash G manifold
                                  Tomohiro KAWAKAMI'

                                     abstract

   We prove that any C'G (r>2) veetor bundle over a compact CM G (resp. CW G)

unique C"O G (resp. CCU G) vector bundle structure when G is a compact Lie group.

Cco G imbedding of a nonaffine Nash G manifold, existence of compactifications of

rnanifolds and uniqueness of thern up to Nash G diffeomorphisrn.
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1. Introduction
    In this paper we consider the following
tWO topics. One is the existence of a CaO G
(resp. CeV G) vector bundle structure of a C'G

(r>1) vector bundle over a CM G (resp. ceV G)

manifold vhen G is a compact Lie group. The
other is imbeddings and compactifications of
Nash G manifolds when G is a Nash group.
    It is known [3] that any C'G (r>1) vector

bundle n over an affine Nash G manifold has a

unique Nash G veetor bundle strueture up to
Nash G veetor bundle isomorphism. Namely,
there exist a Nash G vector bundle l' over X
such that n and C' are C'G vector bundle iso-

morphic and that r is unique up to Nash G
vector bundle isomorphism.

Theorei l.1 Let G be a compaet Lie group
and let X be a Åëompact or coNpactifiable C"g G

(resp. CaV G) manifold. Any C'G (r>2) vector
bundle over X has a unique C" G (resp. CW G)
veetor bundle structure up to CVO G (resp. caV G)

vector bundle isomorphisrn.

                                     '

   A C'G manifold is not alvays compaetifi-
able as a C'G manifold when G is a corapact Lie
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manifold has a
 We consider a
  affine Nash G

group, but every affine Nash Gmanifold is
compaetifiable as a C"" G manifold when G is a

eompact affine Nash group [4]. In addition, if

G is a finite group then it is compaÅëtifiable

as a Nash Gmanifold because an analogous
proof of [9] vorks in this case, and the re-
sulting Nash G manifold is affine.

   We can eonjeeture that Theorem'1.1 holds
true vhen r= O or 1, but 6ur proof does not
vork.

    Regarding a Ct" G itabedding of a Nash G

manifeld, it is possible if it is conpact [3].

We have the following result as a partial gen-

eralization [3].

rheoren 1.Z Every nonaffine Nash manifold
is COD imbeddable into sone Euelidean space as

an affine Nash•manifeld.

    Clearl)r ve cannot replace "CaO ' by "Nash".

Moreover ve can conjecture that Theorem 1.2
remains valid in the equivariant category, but

ve do not knov the proof. We get the next re-
sult as an equivariant generalization [7, The-

orem 2] (See Remark 3. 2).

Theoren 1.3 Let G be a finite group. Let X,
Y be affine Nash Gmanifolds and X', Y' its
affine compaetifications as Nash G manifolds,
respectively. Then the following three eondi-

tions are equivalent. ,
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(1) X and Y are Nash G diffeomorphic,

(2) X' and Y' are Nash G diffeomorphic.

(3) X' and Y' are CiG diffeomorphic.

    We cannot add the condition that "X and Y
are C"O G diffeomorphic" to the above condi-

tions even if G is a trivial group. There
exist two non-eompact affine Nash raanifolds
such that they are C"O diffeomorphie but not

Nash diffeomorphic [7, section 5]. In particu-

lar a compaetification of Nash manifold as a
CM manifold is not necessarily unique up to

Nash diffeomorphism. But it is knovn that a

conpactification of an affine Nash manifold as

an affine Nash manifold is unique up to Nash
diffeomorphism [9]. For two compact affine
Nash G manifolds, they are C"D G diffeomorphic

if and only if they are Nash G diffeoraorphic
when G is a compaet affine Nash group [4].
Therefore, in this case, if an affine Nash G

manifold is compactifiable as an affine Nash
G manifold then this compactification is
unique up to Nash G diffeomorphism.

    This paper is organized as follovs. We
prove Theorem 1.1 in seetion 2. In section 3,

we show Theorem 1.2 and 1.3. Unless otherwise

stated, Nash manifolds and Nash G manifolds
are of class CW Nash.

2. C'G vector bundles

    First of all, recall the definitions we
need. In this section G denotes a compact Lie

group. AG vector bundle 7 = <E. p. X) is
called a C'G (OSr$ a)) vector bundle if the

total space E, the base space X are C'G man-
ifolds and the projection p is of class Cr.

The folloying three results are important to
prove Theorem 1.1.

Len-a 2.1 Let X be a C"O G (resp. CaV G) man-

ifold. Suppose that n and C' are CM G (resp.

CW G) vector bundles over X. Then ner,
nQ C', ny' (the dual of n) and Hom(n,r)
are Ctu G (resp. CW G) veetor bundles over X. []

Proposition 2.Z Every COG section of a cC" G
(resp. CaO G) vector bundle over a cotupact Ca' G

(resp. CW G) manifold can be approxirnated by a

cN G (resp. CW G) one. O

Thcorei 2.S For any two ce G (resp. caJ G)
vector bundle over a compact Ce G (resp. CW G)

manifold, they are COG vector bundle iso-
morphic if and only if they are CM G (resp. CW

G> vector isomorphic. []

    Theorem 2.3 shovs uniqueness of cee G
(resp, CWG) vector bundle structure vhen X

is compact. To prove Theorem 1.1 the ease vhen

X is a non-eompact CrG manifold, ve have to
take the double of a CrG manifold with bound-

ary. The next fact guarantees to do so.

Paet Z.4 (Bristence of a eollar) A com-
pact C'G manifold X (O<rSw) vith boundary
hasa C'G collar (i.e. there exist a C'G im-
bedding

           p:XX [O. 1].X

such that p1<X Å~ e)=id, vhere the action on
[O. 1] is trivial). []

    We quote the next tvo results proved by A.
G.Wassermann [10].

Theorei 2.5 Let G be a compact Lie group.
Suppose that n=(E. z. M Å~ [O. 1]) is a C'G
(1<rSco) vector bundle. Then there exists a
CrG vector bundle isomorphism

        (El(M Å~ O)) Å~ [O. 1].E.

Here the action on [O. 1] is trivial. a

Corollary Z.6 If n=(B, z. X) is a C'G
vector bundle (1<rSto) and f, h:Y-X are Cr
G homotopic then f'(n) and h'(n) are C'G
vector bundle isomorphic. []

   We are in position to prove Theorem 1.1.
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Proof of Theoren 1.1.
Let n be a CrG vector bundle over X. Without

loss of generality, ve can assume that q has
the same rank n. Since X is compact, the total

space Bof n has only finitely many orbit
types. So by [5], E can be C'G imbeddable into

some representation 9 of G. We identify B
with the image. Take the elassifying map
h:Xrt(9. n) of the normal bundle of X in
ECQ. The map h is C'-tG rnap because E is a
CrG manifold. We now approximate h by a CeO G

(resp. CaV G) map. Ve regard h as a C'-iG map

from X to Mk{R), where k denotes the dimension

of Q and the action on Mk(R) is determined by

9. Since G is compact, ve may assume that h
is approxirnated by a polynomial G map [2]. On

the other hand, one ean find an equivariant
Nash tubular neighborhood (U. q) of G(Q, n)
in Mk(R) [3,4]. If the approximation is Åëlose

enough then the image of q is in U. Set f=
qoh. Then f is a C" G (resp. CW G> map and
c'-iG homotopic to h, namely, there exists a
cr-iG map

         P: X X [O. 1] .X

so that P(x. O) = f(x). P(x, 1) = h<i) for any

xEX, where the action on [e. 1] is trivial.

By assumption, r>1. Using Corollary 2.6, ve
have that n and fX(r(Q. n)) are C'-iG vec-

tor bundle isomorphie. Thus it remains to show
that n and f;(r(Q. n)) are CrG veetor bun-
dle isomorphic. By Theorem 2.3, the result is

proved vhen X is compact. We now prove when
the base space is not compact but compactifi--
able. Let X be a compactifiable C"" G (resp.

CW G) manifold. Let X' be the compaetification

of X as a CM G (resp. CaO G) nanifold. By the

construction of X', n is naturally extensible

over X'. Because of Fact 2.4, ve ean take the
double of a CaO G (resp. CaO G) manifold with

boundary. Let Ybe the double of X• and n'
the double of n. Then Y is a corapact Cca G
(resp. CCVG) manifold vithout boundary (closed

G manifold) and n' is a Cto G (resp. CCV G)

vector bundle over Y. Applying the eompact
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Nash G manifolds.

case, rve have a CM G (resp. CaV G) vector bun-

dle e" over Y vhich is C" G (resp. CCV G) vee-

tor bundle isomorphic to n'. Hence n"IX is
the desired one. D

3. 'Nonatfine Nash G
      manifolds

    In this section G denotes a finite group
unless other"ise stated.

    We recall definitions of Nash G manifolds
and affine Nash G manifolds.

Definition 3.1 Let G be an affine Nash
group.

(1)A Nash manifold is ealled a Nash G ianifold

if it has aG action whose action map G X X

-X isaNash map.
(2)A Nash G manifold X is said to be affine if

there exist some representation Q and a Nash

G submanifold Yof Q such that X is Nash G
diffeomorphic to Y.

(3)Let X.Y be Nash G manifolds. We say 'that X

and Y are Nash G ditfeonorphic if there exist

Nash G maps f:X-Y and h:Y-X so that foh
=id. hof=id.

    We new prove Theorem 1.2

Proof of Thcoren 1. Z.

Let X be a nonaffine Nash manifold. We can
compactify X as a C"" manifold [6], and let X'

be a compactification of X. Then X' is a com-

pact C manifold vith boundary so that X is C
diffeomorphic to the interior of X'. Let Y be

the double of X'. We apply a relative Nash
theorem [1] to apair (Y, bX'). Thus ve have

a pair (Z. Z'} of nonsingular algebraic sets
vhich is pairwise C"" diffeonorphic to the pair

(Y. bX'). Therefore sone connected Åëonponents

of Z--Z' are CM diffeomorphic to X. Since a

union of conneeted components of a nonsingular

algebraic set is an affine Nash mani,fold, X is
CM diffeomorphic to an affine Nash nanifold. []

Resark 3.2 ln the equivariant eategory, we
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do not knov yhether a relative Nash theorem is
true or not. But in this case ve can also make
the double Y by Lemma 3.2, and Y is CM G im-

beddable into some representation of G as a
Nash G submanifold Z [3]. Hovever Z-Z' may not

be a Nash G manifold.

    We next prove Theorem 1.3

Proof of Theoren 1.3.

Since the implications (2).<3), (2).(1)
are clear, ve have only to show (3)'-'-)(2) and

(1)-(3). First ve show that (3)-'-'-)(2).
Let X" and Y" be the double of X' and Y', re-

spectively. To show the implication (3)--(2),

we need the following lemma.

Lenia 3.3 Let G be a finite group, Let Xi
and X2 be compact affine Nash G manifolds, X2

and Y2 its Nash G subtuanifolds. respectively.

Suppose that f:(X" X2)-(Yi. Y2) is a C'G
map (2<r<ao) so that the restriction on Xi is
of class CaONash. Then f is approximated in

the C' topology by a Nash G map

         h:(Xl. X2).(Yl. Y2}

rvith flX = hlX.

Proof of Lenna 3.S. The above result is ob-
tained by applying the averaging operator be-
cause non-equivariant cases are already known
[8] D.

    We eontinue the proof of Theorem 1.3.
Since X' and Y' are CiG diffeomorphic, there
exists a CiG diffeomorphism f:X'-Y' so that
f(X')=bY'. Hence we can approximate

        f:(x: bx'>.(y'. by')

by a Nash G map

        h:(x'. bx')---,(r, by')

because of Lemma 3.3 Since X' is eompact, h

is a diffeomorphism. Thus we have a Nash G
diffeotuorphism h:(X'. 2)X).(Y". bY). The
restriction hlX is the required one DD.

Renark 3.4 The statement (3)-(2) can be
generalized the following form. Let G be a fi-

nite group. Let LiCL2. Li'C L2' be the com-
pact affine G manifolds possibly vith boundary

and cornpact Nash G manifolds with

       bLinL2 = bLi'nLi =Z.

If there is a CrG diffeomorphism (O<r<cp),

from (Li, L2) to (Li'. Li), ve can approxi-
mate it by a Nash one in the C' topology D.

We return to the proof of Theorem 1.3. We now

show that (1) implies (3). Let Xi and Yi be
the doubles of X' and Y', respectively. By the

construction of the compactification, there
exists a non-negative proper Nash G map

      f: X'----R (resp. h:Y-R)

such that f-'([O. n]) (resp. h-i([o, n])) is

Nash G diffeomorphic to X' (resp. Y'), vhere
n (resp. n) is a upper bound of the set of
critical values of f (resp. h), By hypothesis
and Fact 2.4, there exists a C"D G diffeomor-

phism

      1:f'i([o. n])-h"([o. s]).

Therefore X' is CeO G (CiG) diffeomorphic to Y'.

D
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