

C^rG vector bundles and Nash G manifolds

メタデータ	言語: eng
	出版者:
	公開日: 2013-12-05
	キーワード (Ja):
	キーワード (En):
	作成者: Kawakami, Tomohiro
	メールアドレス:
	所属:
URL	https://doi.org/10.24729/00007796

Tomohiro KAWAKAMI*

abstract

We prove that any C^rG (r>2) vector bundle over a compact $C^{\infty}G$ (resp. $C^{\omega}G$) manifold has a unique $C^{\infty}G$ (resp. $C^{\omega}G$) vector bundle structure when G is a compact Lie group. We consider a $C^{\infty}G$ imbedding of a nonaffine Nash G manifold, existence of compactifications of affine Nash G manifolds and uniqueness of them up to Nash G diffeomorphism.

Key Words: Nash manifolds, Nash G vector bundles, Imbeddings, Compactifications.

1. Introduction

In this paper we consider the following two topics. One is the existence of a C^{∞} G (resp. C^{ω} G) vector bundle structure of a C^{r} G (r>1) vector bundle over a C^{∞} G (resp. C^{ω} G) manifold when G is a compact Lie group. The other is imbeddings and compactifications of Nash G manifolds when G is a Nash group.

It is known [3] that any $C^{r}G(r>1)$ vector bundle η over an affine Nash G manifold has a unique Nash G vector bundle structure up to Nash G vector bundle isomorphism. Namely, there exist a Nash G vector bundle ζ over X such that η and ζ are $C^{r}G$ vector bundle isomorphic and that ζ is unique up to Nash G vector bundle isomorphism.

Theorem 1.1 Let **G** be a compact lie group and let **X** be a compact or compactifiable C^{∞} **G** (resp. C^{ω} **G**) manifold. Any C^{r} **G** (r > 2) vector bundle over **X** has a unique C^{∞} **G** (resp. C^{ω} **G**) vector bundle structure up to C^{∞} **G** (resp. C^{ω} **G**) vector bundle isomorphism.

A C^rG manifold is not always compactifiable as a C^rG manifold when G is a compact Lie

Received April 11, 1994 *Department of Liberal Arts group, but every affine Nash G manifold is compactifiable as a C^T G manifold when G is a compact affine Nash group [4]. In addition, if G is a finite group then it is compactifiable as a Nash G manifold because an analogous proof of [9] works in this case, and the resulting Nash G manifold is affine.

We can conjecture that Theorem 1.1 holds true when r= 0 or 1, but our proof does not work.

Regarding a C^{∞} G imbedding of a Nash G manifold, it is possible if it is compact [3]. We have the following result as a partial generalization [3].

Theorem 1.2 Every nonaffine Nash manifold is C^{∞} imbeddable into some Euclidean space as an affine Nash manifold.

Clearly we cannot replace "C^{∞}" by "Nash". Moreover we can conjecture that Theorem 1.2 remains valid in the equivariant category, but we do not know the proof. We get the next result as an equivariant generalization [7, Theorem 2] (See Remark 3.2).

Theorem 1.3 Let G be a finite group. Let X, Y be affine Nash G manifolds and X', Y' its affine compactifications as Nash G manifolds, respectively. Then the following three conditions are equivalent.

- (1) X and Y are Nash G diffeomorphic.
- (2) X' and Y' are Nash G diffeomorphic.
- (3) X' and Y' are C^1G diffeomorphic.

We cannot add the condition that "X and Y are C^TG diffeomorphic to the above conditions even if **G** is a trivial group. There exist two non-compact affine Nash manifolds such that they are C^{°°} diffeomorphic but not Nash diffeomorphic [7, section 5]. In particular a compactification of Nash manifold as a C^m manifold is not necessarily unique up to Nash diffeomorphism. But it is known that a compactification of an affine Nash manifold as an affine Nash manifold is unique up to Nash diffeomorphism [9]. For two compact affine Nash G manifolds, they are C G diffeomorphic if and only if they are Nash G diffeomorphic when G is a compact affine Nash group [4]. Therefore, in this case, if an affine Nash G manifold is compactifiable as an affine Nash G manifold then this compactification is unique up to Nash G diffeomorphism.

This paper is organized as follows. We prove Theorem 1.1 in section 2. In section 3, we show Theorem 1.2 and 1.3. Unless otherwise stated, Nash manifolds and Nash G manifolds are of class C^{CP} Nash.

2. C^rG vector bundles

First of all, recall the definitions we need. In this section **G** denotes a compact Lie group. A **G** vector bundle $\eta = (\mathbf{E}, \mathbf{p}, \mathbf{X})$ is called a $\mathbf{C}^{\mathbf{r}}\mathbf{G}$ $(0 \leq \mathbf{r} \leq \boldsymbol{\omega})$ vector bundle if the total space **E**, the base space **X** are $\mathbf{C}^{\mathbf{r}}\mathbf{G}$ manifolds and the projection **p** is of class $\mathbf{C}^{\mathbf{r}}$. The following three results are important to prove Theorem 1.1.

Lemma 2.1 Let X be a C^{∞} G (resp. C^{ω} G) manifold. Suppose that η and ζ are C^{∞} G (resp. C^{ω} G) vector bundles over X. Then $\eta \oplus \zeta$. $\eta \otimes \zeta$, η' (the dual of η) and Hom (η, ζ) are C^{∞} G (resp. C^{ω} G) vector bundles over X. **Proposition 2.2** Every $C^{\circ}G$ section of a $C^{\circ}G$ (resp. $C^{\omega}G$) vector bundle over a compact $C^{\circ}G$ (resp. $C^{\omega}G$) manifold can be approximated by a $C^{\circ}G$ (resp. $C^{\omega}G$) one.

Theorem 2.3 For any two C^{∞} G (resp. C^{ω} G) vector bundle over a compact C^{∞} G (resp. C^{ω} G) manifold, they are C° G vector bundle isomorphic if and only if they are C^{∞} G (resp. C^{ω} G) vector isomorphic. \Box

Theorem 2.3 shows uniqueness of C^{∞} G (resp. C^{ω} G) vector bundle structure when X is compact. To prove Theorem 1.1 the case when X is a non-compact C^{r} G manifold, we have to take the double of a C^{r} G manifold with boundary. The next fact guarantees to do so.

Fact 2.4 (Existence of a collar) A compact $C^{r}G$ manifold **X** ($0 < r \le \omega$) with boundary has a $C^{r}G$ collar (i.e. there exist a $C^{r}G$ imbedding

$\rho: X \times [0, 1] \longrightarrow X$

such that $\rho \mid (X \times 0) = id$, where the action on [0, 1] is trivial).

We quote the next two results proved by A. G. Wassermann [10].

Theorem 2.5 Let **G** be a compact Lie group. Suppose that $\eta = (E, \pi, M \times [0, 1])$ is a C^rG $(1 < r \le \omega)$ vector bundle. Then there exists a C^rG vector bundle isomorphism

 $(E | (M \times 0)) \times [0, 1] \longrightarrow E.$

Here the action on [0, 1] is trivial.

Corollary 2.6 If $\eta = (B, \pi, X)$ is a $C^{r}G$ vector bundle $(1 < r \le \omega)$ and f, $h: Y \longrightarrow X$ are C^{r} G homotopic then $f^{*}(\eta)$ and $h^{*}(\eta)$ are $C^{r}G$ vector bundle isomorphic. \Box

We are in position to prove Theorem 1.1.

Proof of Theorem 1.1.

Let n be a C^rG vector bundle over X. Without loss of generality, we can assume that η has the same rank n. Since X is compact, the total space **E** of η has only finitely many orbit types. So by [5], **B** can be C^rG imbeddable into some representation Ω of G. We identify B with the image. Take the classifying map h: $X \longrightarrow G(\Omega, n)$ of the normal bundle of X in $E \subseteq \Omega$. The map h is $C^{r-1}G$ map because E is a $C^{r}G$ manifold. We now approximate h by a $C^{\infty}G$ (resp. $C^{(2)}$ G) map. We regard h as a C^{r-1} G map from X to $M_k(\mathbf{R})$, where k denotes the dimension of Ω and the action on $M_k(\mathbf{R})$ is determined by Ω . Since **G** is compact, we may assume that **h** is approximated by a polynomial G map [2]. On the other hand, one can find an equivariant Nash tubular neighborhood (U, q) of $G(\Omega, n)$ in $M_{\mathbf{k}}(\mathbf{R})$ [3, 4]. If the approximation is close enough then the image of q is in U. Set f = $\mathbf{q} \circ \mathbf{h}$. Then \mathbf{f} is a $\mathbb{C}^{\omega} \mathbf{G}$ (resp. $\mathbb{C}^{\omega} \mathbf{G}$) map and $C^{r-1}G$ homotopic to **h**, namely, there exists a C^{r-1}G map

$F: X \times [0, 1] \longrightarrow X$

so that F(x, 0) = f(x), F(x, 1) = h(x) for any $x \in X$, where the action on [0, 1] is trivial. By assumption. r>1. Using Corollary 2.6. we have that η and $f^*(\gamma(\Omega, n))$ are $C^{r-1}G$ vector bundle isomorphic. Thus it remains to show that η and $f^{*}(\gamma(\Omega, n))$ are C^rG vector bundle isomorphic. By Theorem 2.3, the result is proved when X is compact. We now prove when the base space is not compact but compactifiable. Let \mathbf{X} be a compactifiable $\mathbb{C}^{\mathbf{w}} \mathbf{G}$ (resp. C^{ω} G) manifold. Let X' be the compactification of **X** as a C^{∞} **G** (resp. C^{ω} **G**) manifold. By the construction of \mathbf{X} , $\boldsymbol{\eta}$ is naturally extensible over X'. Because of Fact 2.4, we can take the double of a C^{∞} G (resp. C^{ω} G) manifold with boundary. Let Y be the double of X' and η ' the double of η . Then Y is a compact C^TG (resp. $C^{\mathcal{W}}$ G) manifold without boundary (closed **G** manifold) and η is a C^{∞} **G** (resp. $C^{\mathcal{U}}$ **G**) vector bundle over Y. Applying the compact case, we have a C^{∞} G (resp. C^{ω} G) vector bundle η over Y which is C^{∞} G (resp. C^{ω} G) vector bundle isomorphic to η . Hence η |X is the desired one.

3. Nonaffine Nash G manifolds

In this section G denotes a finite group unless otherwise stated.

We recall definitions of Nash G manifolds and affine Nash G manifolds.

Definition 3.1 Let **G** be an affine Nash group. (1)A Nash manifold is called a Nash G manifold if it has a G action whose action map $G \times X \longrightarrow X$ is a Nash map. (2)A Nash G manifold X is said to be affine if there exist some representation Ω and a Nash G submanifold Y of Ω such that X is Nash G diffeomorphic to Y. (3)Let X, Y be Nash G manifolds. We say that X and Y are Nash G diffeomorphic if there exist Nash G maps $f:X \longrightarrow Y$ and $h:Y \longrightarrow X$ so that $f \circ h = id$.

We now prove Theorem 1.2

Proof of Theorem 1.2.

Let X be a nonaffine Nash manifold. We can compactify X as a C^{∞} manifold [6], and let X^{\cdot} be a compactification of X. Then X^{\cdot} is a compact C^{∞} manifold with boundary so that X is C^{∞} diffeomorphic to the interior of X^{\cdot}. Let Y be the double of X^{\cdot}. We apply a relative Nash theorem [1] to a pair (Y, ∂ X^{\cdot}). Thus we have a pair (Z, Z^{\cdot}) of nonsingular algebraic sets which is pairwise C^{∞} diffeomorphic to the pair (Y, ∂ X^{\cdot}). Therefore some connected components of Z-Z^{\cdot} are C^{∞} diffeomorphic to X. Since a union of connected components of a nonsingular algebraic set is an affine Nash manifold, X is C^{∞} diffeomorphic to an affine Nash manifold.

Remark 3.2 In the equivariant category, we

do not know whether a relative Nash theorem is true or not. But in this case we can also make the double Y by Lemma 3.2, and Y is C^{∞} G imbeddable into some representation of G as a Nash G submanifold Z [3]. However Z-Z' may not be a Nash G manifold.

We next prove Theorem 1.3

Proof of Theorem 1.3.

Since the implications $(2) \longrightarrow (3)$, $(2) \longrightarrow (1)$ are clear, we have only to show $(3) \longrightarrow (2)$ and $(1) \longrightarrow (3)$. First we show that $(3) \longrightarrow (2)$. Let X⁻ and Y⁻ be the double of X['] and Y['], respectively. To show the implication $(3) \longrightarrow (2)$, we need the following lemma.

Lemma 3.3 Let G be a finite group. Let X_1 and X_2 be compact affine Nash G manifolds, X_2 and Y_2 its Nash G submanifolds, respectively. Suppose that $f:(X_1, X_2) \longrightarrow (Y_1, Y_2)$ is a C^rG map $(2 < r < \infty)$ so that the restriction on X_1 is of class C^{CU} Nash. Then f is approximated in the C^r topology by a Nash G map

$$h: (X_1, X_2) \longrightarrow (Y_1, Y_2)$$

with $\mathbf{f} | \mathbf{X} = \mathbf{h} | \mathbf{X}$.

Proof of Lemma 3.3. The above result is obtained by applying the averaging operator because non-equivariant cases are already known [8] \Box .

We continue the proof of Theorem 1.3. Since X' and Y' are C^1G diffeomorphic, there exists a C^1G diffeomorphism $f:X^- \to Y^-$ so that $f(X')=\partial Y'$. Hence we can approximate

$$f: (X^{-}, \Im X^{-}) \longrightarrow (Y^{-}, \Im Y^{-})$$

by a Nash G map

 $\mathfrak{p}:(\mathfrak{X}_{\bullet}, \mathfrak{G}\mathfrak{X},) \longrightarrow (\mathfrak{X}_{\bullet}, \mathfrak{G}\mathfrak{X},)$

because of Lemma 3.3 Since X⁻ is compact, h

is a diffeomorphism. Thus we have a Nash G diffeomorphism $h:(X^{-}, \partial X) \longrightarrow (Y^{-}, \partial Y)$. The restriction h|X is the required one $\Box \Box$.

Remark 3.4 The statement $(3) \longrightarrow (2)$ can be generalized the following form. Let G be a finite group. Let $L_1 \square L_2$. $L_1 \square L_2$ be the compact affine G manifolds possibly with boundary and compact Nash G manifolds with

$$\partial L_1 \cap L_2 = \partial L_1 \cap L_2 = \emptyset$$

If there is a C^rG diffeomorphism $(0 \le r \le \infty)$, from (L_1, L_2) to (L_1^r, L_2^r) , we can approximate it by a Nash one in the C^r topology \square .

We return to the proof of Theorem 1.3. We now show that (1) implies (3). Let X_1 and Y_1 be the doubles of **X** and **Y**, respectively. By the construction of the compactification, there exists a non-negative proper Nash **G** map

 $f: X \longrightarrow R$ (resp. $h: Y \longrightarrow R$)

such that $f^{-1}([0, n])$ (resp. $h^{-1}([0, m])$) is Nash G diffeomorphic to X' (resp. Y'), where n (resp. m) is a upper bound of the set of critical values of f (resp. h). By hypothesis and Fact 2.4, there exists a C^{∞} G diffeomorphism

Therefore \mathbf{X}^* is $\mathbb{C}^{\infty} \mathbf{G}$ ($\mathbb{C}^1 \mathbf{G}$) diffeomorphic to \mathbf{Y}^* .

References

- [1] S. Akbulut and H. C. King, A relative Nash theorem, Transactions of the Amer. Math. Soc., vol 267 (1981), 465-481.
- [2] K. H. Doverman, M. Masuda and T. Petrie, Fixed point free algebraic actions on varieties diffeomorphic to Rⁿ. Topological

C'G vector bundles and Nash G manifolds.

Method in Algebraic Transformation Groups (H.Kraft, T.Petrie and G.Schwarz, eds), Progress in Mathematics, Boston, Basel, Berlin, vol 80 (1989), 49-80.

- [3] T. Kawakami, An equivariant generalization of Nash vector bundles, Bulletin of Osaka Prefectural College of Technology, vol 26 (1992), 79-83.
- [4] T.Kawakami, Algebraic G vector bundles and Nash G vector bundles, preprint.
- [5] T. Matumoto and M. Shiota, Unique triangulation of orbit space of a differential transformation groups and its applications, Advanced Studies in Pure Mathematics, vol 9, Homotopy Theory and Related

Topics (1986), 41-55.

- [6] M. Shiota, Abstract Nash manifolds, Proceedings of the Amer. Math. Soc., vol 96 (1986), 155-162.
- [7] M. Shiota. Classification of Nash manifolds, Ann. Inst. Fourier (Grenoble), vol 33 (1983), 209-232.
- [8] M. Shiota, Nash manifolds, Lecture Notes in mathematics, vol 1269, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, (1987).
- [9] M. Shiota, Nash functions and manifolds, preprint.
- [10] A. G. Wasserman, Equivariant differential topology, Topology 8, (1969) 127-150.