T8 ARBIAT  SHH®R Y #2 b Y

Osaka Metropolitan University

C~rG vector bundles and Nash G manifolds

5B eng

HhRE

~EH: 2013-12-05
*F—7—FK (Ja):

*—7— K (En):

{ER & - Kawakami, Tomohiro
X=)LT7 KL R:

il

https://doi.org/10.24729/00007796




C'G vector bundles

and

Nash G manifolds

Tomohiro KAWAKAMI®

abstract

¥e prove that any C'G (r>2) vector bundle

unique C- G (resp. C? G) vector bundle structure
C® G imbedding of a nonaffine Nash G manifold, existence of compactifications of

over a compact C G (resp. C¥ G) manifold has a

compact Lie group. We consider a
affine Nash G

when G is a

manifolds and uniqueness of them up to Nash G diffeomorphism.
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1. Introduction

the following
two topics. One is the of a CT 6
(resp. (¥ G) vector bundle structure of a C'G
aC” G (resp. C¥6)
group. The

In this paper we consider

existence

(r>1) vector bundle over
manifold when G is a compact Lie
other is imbeddings and compactifications of
Nash G manifolds when G is a Nash group.

It is known [3] that any C'G (r>1) vector
bundle n over an affine Nash G manifold has a
bundle

isomorphism.

unique Nash G vector

bundle
there exist a Nash G vector bundle { over X
such that » and ¢ are C'G vector bundle iso-

structure up to

Nash G vector Namely,

morphic and that { is unique up to Nash G
vector bundle isomorphism.
Theorem 1.1 Let G be a compact Lie group

a compact or compactifiable ¢~ G
Any C*G (r>2) vector
C” G (resp. C¥¢)
vector bundle structure up to C~ G (resp. (¥ G)

and let X be
(resp. C¥G)
bundle over X has a

manifold.
unique

vector bundle isomorphism.

A C*G manifold
able as a C'G manifold when G is a compact Lie

is not always compactifi-
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Imbeddings, Compactifications.

every affine Nash G manifold is
as a C G manifold when G is a

group, but
compactifiable
compact affine Nash group [4). In addition, if
G is a finite group then it is compactifiable

as a Nash G manifold because an analogous

proof of [9] works in this case, and the re-
sulting Nash G manifold is affine.
that Theorem 1.1 holds

our proof does not

¥e can conjecture
true when r= 0 or 1, but
vork.

Regarding a C~ G imbedding of a Nash G
manifold, it is possible if it is compact [3].
W¥e have the following result as a partial gen-

eralization [3].

Theoream 1.2 Nash manifold
is C* imbeddable into some Euclidean space as

Every nonaffine
an affine Nash manifold.
Clearly we cannot replace "C” " by "Nash”.

that
remains valid in the equivariant category, but

Moreover we can conjecture Theorem 1.2

we do not know the proof. We get the next re-
sult as an equivariant generalization [7, The-
orem 2] (See Remark 3.2).

Let G be a finite group. Let X,
Y be and X°, Y its
affine compactifications as Nash G manifolds
the foilowing three condi-

Theorem 1.3
affine Nash G manifolds

respectively. Then
tions are equivalent.
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(1) X and Y are Nash G diffeomorphic.
(2) X* and Y are Nash G diffeomorphic

(3) X" and Y are C'G diffeomorphic.

add the condition that "X and Y
the above condi-

¥e cannot
are C° G diffeomorphic™ to
trivial group. There
exist Nash manifolds
such that but not
Nash diffeomorphic [7, section 5]. In particu-
lar a compactification of Nash manifold as a
¢* manifold unique up to
Nash diffeomorphism. But that a
compactification of an affine Nash manifold as
is unique up to Nash
diffeomorphism [9]. For two compact affine
Nash G manifolds, they are C” G diffeomorphic
if and only if they are Nash G diffeomorphic
when G is a affine Nash group [4].
Therefore, in this case, if an affine Nash G

tions even if G is a
t¥o non-compact affine

they are C* diffeomorphic

is not necessarily
it is known

an affine Nash manifold

compact
manifold is compactifiable as an affine Nash
G manifold then this compactification is
unique up to Nash G diffeomorphism.

This paper is organized as follows. We
prove Theorem 1.1 in section 2. In section 3,
we show Theorem 1.2 and 1.3. Unless otherwise
stated, Nash manifolds and Nash G manifolds
are of class C% Nash.
bundles

2. C'G vector

First of all, recall the definitions we

need. In this section G denotes a compact Lie
group. A G vector bundle » = (B, p, X) is
called a C'G (0sr=< @) vector bundle if the

total space E, the base space X are C'G man-
ifolds and the
The following

prove Theorem 1. 1.

projection p is of class CT.
three results are important to

Lemma 2.1 Let X be a C G (resp. (% 6) man-
ifold. Suppose that n and ¢ are C G (resp.
C%?G) vector bundles over X. Then »®C,
2® . n° (the dual of ) and Hom(m,l)

are C° G (resp. C% G) vector bundles over X. [J

Proposition 2.2 Every C°G section of a C~ €
(resp. C? @) vector bundle over a compact C~ G
(resp. C% @) manifold can be approximated by a
C® G (resp. C# @) one. O

Theorem 2.8 For any two C" G (resp. C¥?G)
vector bundle over a compact ¢~ G (resp. C% @)
manifold, they are C°G vector
morphic if and only if they are €~ G (resp. C¥

bundle iso-

G) vector isomorphic. ]

of ¢ G
vhen X

Theorem 2.3 shows uniqueness

{(resp. C¥ @) vector bundle structure
is compact. To prove Theorem 1.1 the case when
X is a non-compact C'G manifold, we
take the double of a C*G manifold with bound-

ary. The next fact guarantees to do so.

have to

Fact 2.4 (Bxistence of a collar) A com-
pact C*G manifold X (0<rSw) with boundary
C™G collar (i.e. there

has a exist a C*G im-

bedding
p: X x [0, 1]/

such that p |(X X 0)=id, where the action on
[0, 1] is trivial). O

We quote the next two results proved by A.
G. Wassermann [10].

Theorem 2.5 Let G be a compact Lie group.
Suppose that n=(E. =, M x [0, 1]) is a C'G
(I<r€w) vector bundle. Then
C'G vector bundle isomorphism

there exists a

(Bl (M x 0)) x [0, 1]—/E.
Here the action on [0, 1] is trivial. (J
Corollary 2.6 If np=(B =, X) is a C'G
vector bundle (1<rSw) and f, h:Y—X are C*
G homotopic then f*(p) and h*(n) are C*G

vector bundle isomorphic. [J

¥e are in position to prove Theorem 1.1.

June. 1994,
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Proof of Theores 1.1.

Let 7 be a C'G vector bundle over X. Without
loss of generality, we can assume that g has
the same rank n. Since X is compact, the total
space E of » has only finitely many orbit
types. So by [5), B can be C'G imbeddable into
some representation Q of G. We identify B
with the image. Take the classifying map
h:X—G(Q, n) of the normal bundle of X in
ECQ. The map h is C*~'G map because E is a
C¥G manifold. We now approximate h by a C G
(resp. C? G) map. We regard h as a C*~'G map
from X to Mx(R), where k denotes the dimension
of Q and the action on Mk(R) is determined by
Q. Since G is compact, we may assume that h
is approximated by a polynomial G map [2]. On
the other hand, one <can find an equivariant
Nash tubular neighborhood (U, q) of G(Q., n)
in Mx(R) [3,4). If the approximation is close

enough then the image of q is in 0. Set f =

q°h. Then £ is a C" G (resp. C¥G) map and
C*'G homotopic to h, namely, there exists a
C*'G map

F: X x [0, 1]/

so that F(x, 0) = f(x), F(x, 1) = h(x) for any
1 EX, vhere the action on [0, 1] is trivial.
By assumption, r>l. Using Corollary 2.6, we
have that n and £¥(7 (Q. n)) are C*!G vec-
tor bundle isomorphic. Thus it remains to show
that n and £*(y (Q, n)) are C'G vector bun-
dle isomorphic. By Theorem 2.3, the result is
proved when X is compact. We now prove when
the base space is not compact but compactifi-
able. Let X be a compactifiable C* G (resp.
€% G) manifold. Let X° be the compactification
of XasaC G (resp. C¥G) manifold. By the
construction of X', 7 is naturally extensible
Because of Fact 2.4, we can take the
a C” G (resp. C¥6G) manifold with

Y be the double of X' and 7°
of . Then ¥ is a

over X',
double of
boundary. Let
the double

(resp. C% G) manifold without boundary (closed
G manifold) €” 6 (resp. ¢¥?6)
bundle over Y. Applying the

compact C” G

and n° is a

vector compact
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Nash G manifolds.

case, we have a C 6 (resp. C¥G) vector bun-
dle n~ over Y which is C° G (resp. C¥G) vec-

.

tor bundle isomorphic to n»°. Hence 7IX is

the desired one. [
3.

Nonaffine Nash G

manifolds

In this section G denotes a finite group
unless otherwise stated.

We recall definitions of Nash G manifolds
and affine Nash G manifolds.
Definition 3.1 Let G be an affine Nash
group.
(1)A Nash manifold is called a Nash G manifold
if it has a G action whose action map G X X
—X is a Nash map.

(2)A Nash G manifold X is said to be affine if

there exist some representation Q and a Nash
G submanifold Y of Q such that X is Nash G
diffeomorphic to Y.

(3)Let X,Y be Nash G manifolds. We say ‘that X

and Y are Nash G diffeomorphic if there exist
Nash G maps f:X—Y and h:Y—X so that f°h
=id. he f=id.

W¥e now prove Theorem 1.2

Proof of Theorem 1. 2.

Let X be a nonaffine Nash manifold. We can
compactify X as a C~ manifold [6], and let X'
be a compactification of X. Then X' is a com-

pact C* manifold with boundary so that X is ¢~
diffeomorphic to the interior of X'. Let Y be
the double of XK. We apply a relative Nash
theorem [1] to a pair (Y, 9X'). Thus we have
a pair (Z, Z°) of nonsingular
which is pairwise C* diffeomorphic to the pair
(Y, 9X’). Therefore some connected components
of Z-7°
union of connected components of a nonsingular

algebraic sets

are C* diffeomorphic to X. Since a

algebraic set is an affine Nash manifold, X is
¢” diffeomorphic to an affine Nash manifold. [J

Remark 3.2 In the equivariant category, we
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do not knov whether a relative Nash theorem is
true or not. But in this case we can also make
the double Y by Lemma 3.2, and Y is C" 6 im-
beddable into some representation of ¢ as a
Nash G submanifold Z [3]. However Z-Z° may not
be a Nash G manifold.

¥e next prove Theorem 1.3

Proof of Theorem 1.83.

Since the implications (2)—=(3), (2)—(1)

are clear, we have only to show (8)—>(2) and
(1)=——(3). First we show that (3)—(2).

Let X” and Y™ be the double of X and Y, re-
spectively. To show the implication (3)——3(2),
we need the following lemma.

Let G be
compact affine Nash G manifolds, X2
Nash G submanifolds, respectively.
Suppose that f:(X1, X2)—(Y1, Y2) is a C’G
map (2<r<{=) so that the restriction on Xy is
of class C% Nash. Then f
the C* topology by a Nash G map

Lemma 3.3 a finite group. Let X1
and X2 be

and Y2 its

is approximated in

h: (X1, X2)—(Y1. Y2)

with fIX = h{X.

Proof of Lemma 3.3. The above result is ob-
applying the averaging operator be-

already known

tained by
cause non-equivariant cases are

(8] 0.

We continue the proof of Theorem 1.3.
Since X" and Y are C'G diffeomorphic, there
exists a C1G diffeomorphism £:X"—Y" so that

f(X')=9Y . Hence we can approximate
f: (X°, X )—(¥", 9Y)
by a Nash G map
b: (X7, 9X)—(¥", 2Y)
compact, h

because of Lemma 3.3 Since X is

is a diffeomorphism. Thus we have a Nash G
diffeomorphism h:(X". @X)—(Y", 9Y). The
restriction hlX is the required one (J[J.

Remark 3.4 The statement (8)—2(2) can be
generalized the following form. Let G be a fi-
nite group. Let L1CL2, L1"C L2° be
pact affine G manifolds possibly with boundary
and compact Nash G manifolds with

the com-

dL1NLz = 9L’ NL' =@,

(0<r<=),
approxi-

If there is a C'G diffeomorphism
from (L1, L2) to (L1°, L2°), we can
mate it by a Nash one in the CT topology [1.

We return to the proof of Theorem 1.3. We now
show that (1) implies (3). Let X1 and Y1 be
the doubles of X* and Y, respectively. By the
compactification,

construction of the there

exists a non-negative proper Nash G map

f: R (resp. h:Y—R)
such that £71([0, n]) (resp. h~([0, u])) is
Nash G diffeomorphic to X' (resp. Y'), where
n (resp. m) is a upper bound of the set of

critical values of f (resp. h). By hypothesis
and Fact 2.4,
phism

there exists a C~ G diffeomor-

1:£72([0. n])—h*([0, n]).

Therefore X is € G (C'G) diffeomorphic to Y°.
O
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