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On Stochastic Parabolic Equations with Subdifferentials and

Stochastic Variational Inequalities

Masaaki ISHIKAWA *

Abstract

This paper is concerned with a mathematical formulation of stochastic parabolic equations with sub-
differentials. The concept of the subdifferential strongly relates to a variational inequality which appeats in
modeling various kinds of nonlinear phenomena including obstacle and dam problems, so calied, free boundary
problems. In this paper, we will propose how to formulate the stochastic distributed parameter system with
the subdifferential by the stochastic variational inequality using a random measure.
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1. Introduction

Since many problems in various fields of
physics and engineering have inherently non-
linear aspects, nonlinear ordinary and partial
differential equations are often used in mathe-
matical descriptions of physical phenomena.
Particularly, as typical examples of problems
described by nonlinear partial differential
equations, free boundary problems are con-
sidered. In theoretical analysis of free boundary
problems, a variational inequality have important
Unfortunately although all free boundary
problems are not necessarily transformed into
the variational inequality, effectuality of the
variational inequality admits of no doubt in a
mathematical formulation of a large variety of
physical problems. ‘Up to date, the deterministic
and stochastic variational inequalities are studied
in many articles 1) ~ 6). In 4) “weak” and
“almost weak” solutions for stochastic varia-
tional inequality are defined. On the other hand,
in 6) the existence and uniqueness of the strong
solution for the nonnegative valued stochastic
variational inequality have been proved. Our
approach is similar to 6), however, the con-
sidered stochastic variational inequality is some-
what general. The problem considered in 6) is an

role.
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obstacle problem with the obstacle zero. The

problem in this paper includes the obstacle

problems. For readers’ better understanding,

principal symbols used here are listed below;

t; time variable belongs to 7 = ]O0, #/[

x; spatial variable belongs to G =10, 1]

LP(X); space of the p-th power integrable
functions on X

C(X;Y); space of continuous functions on X

taking values in Y

space of signed measures on X which

is identified with the dual of C(X)

H"(X); Sobolev space of order n on X

H; (X); space of functions f such that
fEH'(X), =0 on the boundary of

M(X);

X

H'(X); dual of Hy(X)

Q; sample space

<,>;  pairing between H~'(G) and HL(G)

(,), ! I; inner product and norm in L2(G)

I Ix; norm in the space X, where X is
omitted if X =H(G)

A, Laplacian

E; mathematical expectation

2. Mathematical Model of System Dynamics

Consider the following equation with a sub-
differential
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9%u
ax?

=) uo(x)+f;fds, tET, x€G (2.1)

u(t, x)— fota ds+f;udw+ fotaﬁ(u)ds

with the boundary conditions

u(t,0) = u(r,1)=0 (2.2)

where a is a positive constant, w(t) is a
standard Brownian motion process and 98(u)
denotes the subdifferential at u of a lower-
semicontinuous convex function B(x) which
may takes the value +eo, but not identically
equal to +o. For example, in the obstacle
probleml)’z), the function B is given by

0 , A<V

+ oo N A> wo (2.3)

sy -1
where ¥, denotes the obstacle. From (2.3),it
is easily found that B is only defined when A<
Vo.

Let’s consider the precise formulation of (2.1)
with (2.2). Let V and H be two Hilbert spaces
such that

V=H,(G)CH=L*G) (2.4)
Identifying H with its dual, we have
VCHCV (=HY(G) (2.5

Then, the subdifferential 98
defined by

of B precisely

aB(u) = [x&€ V' Iﬁ(u) —Bu)><x,v—u>,
WEV] (2.6)

In this paper, we assume that the function S
has the following properties.

Properties

(P-1) the function v ~ B(v) is lowersemi-

continuous convex function from V= ]—oo, o0],

but B(v) Foo.

(P-2) 0 € 36(0)

(P-3) 98 takes either a nonnegative or a non-
positive value

(P-4) there exists n€ V', r € R' such that
B(wY=<h,v>+r, YvEV

(P-5) there exists vy € V' such that
B(vg) < C (Const.)

From (2.6), (2.1) can be rewritten by the follow-
ing stochastic variational inequality

(1)) +J, <Au, p>ds+ [ (u, p)dw
+ 1 <X(), 9> ds = (uo, 9)+ J(f,9)ds
for YoEV (2.7)
and for W& V

B(v) — Bu)=<X(u),v—u> 28

where for Yo, yEV

EYRRIN

<Ap, Yy>= R
%V ”(ax ox

It is difficult to prove the existence of the
solution to (2.7) and (2.8) because X(u) €
L*(Q x T; V') can not be proved. Then, in
order to formulate (2.7) by a weak form, we will
show X(u)dsdx € L*(Q; M(T x G)). We can
now define precisely the solution of the
stochastic variational inequality.

Definition: 1f the pair (4, n) satisfies the follow-
ings, (u, ) is the solution of (2.7) and (2.8);

’ u€L*(Q;L3(T; V)N C(T x G)) (29)

nEL* (S, M(T x G))

(ii) (u(f),so)*fot<Au,gp>ds+ N
+ o g on(ds,dx) = (uo, 0) + [, (f, 0)ds
(2.10)
@) S [8v)—BG)] dr2 [ [ (v-uwyn(ds, dx)
for e C(T x G) (2.11)

for YoV

Remark: Since the region G is one-dimension,
it follows from Sobolev’s imbedding theorem®)
that

October. 1990.
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Vv CC(G). (2.12)

From (2.12), (2.10) and (2.11) makes a sense.

3. Existence and Uniqueness Theorem

First, we will begin with the approximation of
(2.10) and (2.11). Define for Ye > 0,

B.(u) = inf [% lu— vl + B(v), vEV]

(3.1
Then, from 7), we have
B.(u)= —% Nu — Juli> +B(J u), 3.2)
aBE(u)=%F(u—Jeu) (3.3)
and
BJeu)<B(u)<B(u), 'uev (3.4)

where F is a duality mapping of V defined by

Fu=[u*eV i<u*,u>=lul?
2
=lu*ll] (3.5

and

Jeu= (F+€df) " Fu (3.6)

With the function 98, the stochastic variational
inequality (2.10) and (2.11) are approximated by

(e(1), ) + [y <A, 0> ds + [ (e, 9)dw
+ [y <0Be(ue), p>ds = (o, ) + [, (f, 9)ds

for YpyEV (3.7

Lemma 3.1; With the following conditions
(C-1) uo € LX(Q; H),
C2) reL*(Q; v,

there exists a unique solution u. to (3.7) such
that

U ELX(QxT; V) (3.8)
and

%E [ e = Jeue 12ds ] < Const. (3.9)
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In order to prove the existence of the solution
to the stochastic variational inequality (2.10)
and (2.11), first we must prove the regularity
property of the solution to the approximate
equation (3.7). We assume here the differenti-
ability of 0f., because this assumption is
justified by using the difference quotient in the
case where 98, is not differentiable.

Lemma 3.2; With the conditions

(C3) uo€L*(Q; V),

(C4) feLX(T;H),

there exists a solution to (3.7) such that

u, ELY(Q x T; H*X(G)). (3.10)
Lemma 3.3; With (C-4) and

(C-5) uo €LY V),

the following estimates holds
E [sup z%"f 14+ (571 Au, 1%d1]?] < Const.
t

(3.11)
and

E[ [fO’flaﬁe |dt]*] < Const.. (3.12)

Lemma 3.4; With the same conditions as_in
Lemma 3.2, {uc} is Cauchy in L2(Q; C(T x
G)).

Theorem 3.1 With the conditions (C-1) to (C-5)
there exists a unique solution # to the stochas-
tic variational inequality (2.10) and (2.11).

Proof: Define

ne(dt, dx) = 8B, (u)dtdx. (3.13)

From Lemmas 3.1 and 3.3, because u. and 7.
are bounded in L*(Q2 x T; V) and L*(%;
M(TxG)), we can extract subsequences  u,’
and ¢ such that

uge = u  weaklyin L2 (QxT;V) (3.14)
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Ne' > 1 weakly starin  L2(S; M(T x G))
(3.15)

From (3.14) and (3.15), taking a limit in (3.7),
we have for Vo€V

(u(0), @)+ fy <Au, p>ds + [ (u, ¢)dw

41y f edn = (uo, )+ [, (f, 9)ds  (3.16)

From the definition of 9f., we have
t
ST 1B (v) - Be(ue)] dt

> [T <0B.(ue), v—uc>dr
for 'weV

(3.17)

Noting that

B(Jeue) < Be(ue) < B(ue)
and from Lemma 3.4

uo ~ u strongly in L3*(Q; C(TxG))

and § is lower-semicontinuous, (3.17) implies

17 18— BT dr > [ 7 [ van,
for YweC(Tx G).

The uniqueness property of the solution
follows from the monotone property of 4p.
The proof has thus been completed.

Conclusion

By introducing the random measure, it has
been shown that the stochastic parabolic system
with the subdifferential was formulated by the
stochastic variational inequality. Furthermore,
the existence and uniqueness properties of the
solution to the stochastic variational inequality
was proved with the help of regularity and
compactness theorems. The main part of the
proof relies on the Sobolev imbedding theorem
of one dimensional spatial variable, so the
method proposed in this paper requires the
space dimension one. By guaranteeing the regu-
larity properties of the higher order, this restric-
tion will be removed.

References

[1] M. Ishikawa and Sh. Aihara: Optimal Con-
trol for One Phase Stefan Problem with
Random Emission, Appl. Math. & Optim,,
Vol. 20, 261-295, 1989

{2] M. Ishikawa: Studies on State Estimation
for Stochastic Distributed Parameter System
with Free Boundaries, Thesis, Kyoto Univer-
sity, 1987

[3] M. Ishikawa et al.: Filtering for Systems
Modeled by Variational Inequalities asso-
ciated with One Phase Stochastic Stefan
Problem, Int. J. Contr., Vol. 47, No. 1, 1—
15,1988

[4] A. Rascanu:  Existence for a Class of
Stochastic Parabolic Variational Inequalities,
Stochastics, 5, 201-239, 1981

[5] G. Duvaut and J.L. Lions: Les Inéquations
en Mécanique et en Physique, Dunod, 1972

[6] U.G. Haussmann and E. Pardoux: Stochas-
tic Variational Inequalities of Parabolic
Type, Appl. Math. & Optim., No. 20, 163—
192, 1989

[7] V. Barbu and Th. Precupanu: Convexity
and Optimization in Banach Spaces, Reidel,
1986

Appendices

Appendix A (Proof of Lemma 3.1): Let
{ei};l be the orthonormal basis of H which
is made up of elements of V. Let v, be the
function satisfies (P-4). We choose e; and e,
in such a way that uy, and v, belong to the
the space [e;, e;] spanned by e, and e,.
Then, consider the following finite dimensional
stochastic equation

(u2(t), e)+ f0t<Au:', e;>ds +f0t(u'e', e;)dw
t

+fy <0Be(up), ,>ds = (uo, e;)

+Jy(fren)ds, for 1<i<n (A1)

Applying the Ito lemma to lul — vy 12, we

have

October. 1990.
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w2 (£) —vol* +2 fOt<Au'e’, ul — vy >ds
+2 [ <BB(ul), ul—vo >ds
+ 2f0t(u:’, U — vo)dw
=lug —vol? +2 fot(f, u? — vo)ds
+f7 lul12ds (A.2)
It should be noted that

<Be(up), ug —vo> 2 Be(ug) — fe (vo)

(from (3.2) and (3.3))

> 715 e~ Jou W B(JuT) - B(vo)
(from (P.4) and (P.5))

> 21— N~ Jou" W2 + <, Jeu">+r-C
€

2 o Tl = ek
€

2 2 s 2
(A.3)
21(f, ug_vo)lgé_ 2 426, lu” 1P

+28, llyg I1? (A.4)
and

21<Au, vy >1< 85 Hul 12 + El_nuo 12
3

(A.5)

Using (A.3), (A.4) and (A.5) in (A.2) and taking
a mathematical expectation, we have

E[lu™(t)—vo )*] +(a— 8)E [fo’nu: 1% ds]

1 t
+_2_6_E[f0 lu? —J, u?1ds]

SE[luo—vo|2]+2E[f(:lu:—vo|2ds]

+C;. (A.6)

where 6 =8, + 6, + 83 and C,; isaconstant
depends on f, vy, A4 and ¢ but independent of
n and e.

In (A.6), choosing & as a — § 2a>0 (ais
constant) and using Gronwall’s inequality, we
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have
E[fIu?1?ds) < C (A7)
and
—IG—E[f(:flluZ—Jeu;‘Ilzds] <C  (A8)

where C, and Cj; are respectively constants
independent of n and €. Therefore, we can
extract a subsequence u] of u? (for fixed €)
such that

u" > u, weaklyin L2(QxT; V).

€ €

(A9

Because 8B, is monotone, (3.9) follows from

(A.9).

Appendix B (Proof of Lemma 3.2 We
introduce the special base {e; };, such that

(B.1)

Substituting this special base into (A.l) and
multiplying by X; and using the relation (B.1),
we have

2(?), (~A)e)+ [y (Aul, (~B)e;)ds
[ (Ul (~A)er)dw + [ <BBe, (~A)e;>ds

= (tto, (~A)es) + [y (f, (~D)e;)ds

(—A)ei = 7\,’6,', e; € vV

(B.2)

n
Because u] = X (ul, ¢;) e; and e; € H*(G)
i1

N V, the second term of the L.H.S. of (B.2)
makes a sense. From (A.1) and (B.2) (where
taking a special base in (A.1)), we have

au? 2 t ni2 t au? 2

| —= | +2af0|AueIds+2f0l o [“dw
t du

+2 [ <3P (ul), (~A)ul>ds=| a; |2

r, ouy t
+f "5;— |2ds+2f0 (f, (~&)u")ds. (B.3)
From the monotonicity of 08., we have

<3Be (Axth)) — 3Be(v(x)), w(x+h)

—-p(x)>2>0 (B.4)
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Because 0f. is assumed to be differentiable,
from (B.4), we obtain

3 1)

- — 0. B.5
<o (Be(0)), 5> 2 B5)

From (B.1) and (B.5), we have
n

| S 2 +(2a-5)f‘ | Au™12ds

0x
+sz’| e 12 gla“°|

t
+f0! a; |ds+—5—f0|f| ds. (B.6)

Taking a mathematical expectation to the both
sides of (B.6) and using the Gronwall inequality
we have

(B.7)

In (B.7), by extracting a subsequence with
respect to n, we have (3.10).

E[J71Aul1ds] < Const.

Appendix C (Proof of Lemma 3.3): It follows
from (B.7) that
E [sup | —5—= 0uc(s) 2
s<t ox

+(2a_a)25'[fo lAu? 1%ds]

]

3[E 1=

+81_2 [J]1£1ds]2] (C.1)

Using the Gronwall inequality, we obtain (3.11).
From Lemmas 3.1 and 3.2, we can extract a
subsequence u of ul such that

v

u? - u. weaklyin L*(Q;L%(T;H?*(G)))
€2)

u:" - u. weakly starin L*(; L7(T; V)
(C3)

and since 98, is monotone from V to V',

3B (™) > 3B (ue) weaklyin LE(QxT; V")
(C.4)

Furthermore, from Lemma 3.2,

3B (u") > 3B (ue) weaklyin L*(Qx T;H)
(€.5)

Therefore, we have for any ¢ €H,

(ue(1), 9)+ [, (At 9)ds + [ (e, 9)dw

= (u0, 9) + fo (f, @) ds - [ (3Be(ue), 9)ds
(C.6)

The Ito lemma implies that
lug () + k12 +2f0' (Aue, u, +k)ds
+2f) (e, e + K)dw + 21 (3Be, uc + k)ds
= lug +k 1P +2 [ (f,u, +k)ds+f0t|u€ 12ds
(€.7)

where k is chosen as 1 (or —1)if 9f, is nonne-
gative (or nonpositive). From (P-2) and the
monotonicity of 9f,, we have

(3Be(ue), ue)) > 0.
From (C.7) and (C.8), we conclude that
E[[S) 106, 1ds]*< CE[[f71 Au, 12ds]?

t
I ue +k1%ds+ [ u 14ds

(C.8)

+lug +k14] +C [T £ 1%ds

< Const. €9
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