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On Stochastic Parabolic Equations with Subdifferentials and

            Stochastic Variational Inequalities

Masaaki IsH IKAWA *

                                  Abstract
  This paper is concerned with a mathematical formulation of stochastic parabolic equations with sub-

differentials. The concept of the subdifferential strongly relates to a variational inequality which appears in

modeling various kinds of nonlinear phenomena including obstacle and dam problems, so caHed, free boundary

problems. In this paper, we wil1 propose how to formulate the stochastic distributed parameter system with

the subdifferential by the stochastic variational inequality using a random measure.
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1. Introduction

  Since many problems in various fields of
physics and engineering have inherently non-
linear aspects, nonlinear ordinary and partial

differential equations are often used in mathe-

matical descriptions of physical phenomena.
Particularly, as typical examples of problerns

described by nonlinear partial differential

equations, free boundary problems are con-
sidered. In theoretical analysis offree boundary

problems, a variational inequality have important

role. Unfortunately although all free boundary

problems are not necessarily transformed into

the variational inequality, effectuality of the

variational inequality admits of no doubt in a

mathematical formulation of a large variety of

physical problems. •Up to date, the deterministic

and stochastic variational inequalities are studied

in many articles 1) "" 6). In 4) "weak" and
"almost weak" solutions for stochastic varia-
tional inequality are defined. On the other hand,

in 6) the existence and uniqueness of the strong

solution for the nonnegative valued stochastic

variational inequality have been proved. Our
approach is sirnilar to 6), however, the con-

sidered stochastic variational inequality is some-

what general. The problem considered in 6) is an

obstacle problem with the obstacle zero. The

problem in this paper includes the obstacle
problems. For readers' better understanding,

principal symbols used here are listed below;

t; time variable belongs to T=IO, tf[
x; spatial variable belongs to G=]O, 1[
LP(X); space of the p-th power integrable
        functions on X
C(X; Y);space of continuous functions on X
        taking values in Y

M(X); space of signed measures on X which
        is identified with the dual of C(X)

H" (X); Sobolev space of order n on X
H,i(X); space offunctions f such that

        fEHi(X), f= O on the boundary of

        X
H-'(X); dual of H6(X)

st; sample space
<,>; pairingbetween H-i(G) and H5(G)
(, ),1 l; innerproduct andnorm in L2(G)

II llx; norm in the space X, where X is
        omitted if X=HS(G)

A; Laplacian
E; mathematical expectation

2. Mathemqtical Model of System Dynamics

  Consider the following equation with a sub-
differential
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  u( t, x) - fota Ob 2.g ds + f,' ud vv + fo' aB(u )ds

       Duo(x)+f,'fds, tET, xEG (2.1)

with the boundary conditions

  u(t, O)=u(t, 1) -=O (2.2)
where a is a positive constant, w(t) is a
standard Brownian motion process and OB(u)

denotes the subdifferential at u of alower-

semicontinuous convex function B(u) which
may takes the value +oo, but not identical!y

equal to +co. For example, in the obstacle
problemi)'2), the function B is given by

  B(x) :l2..: };X: (2•3)

where W. denotes the obstacle. From (2.3),it
is easily found that 6 is only defined when A :;{

Wo•
  Let's consider the precise formulation of (2.1)

with (2.2). Let V and H be two Hilbert spaces

such that

  V- Hg (G) CH= L2(G) (2.4)
Identifying H with its dual, we have

  VCHC V' (= H-i(G)) (2.5)
Then, the subdifferential OB of 6 precisely
defined by

  aB(u) = [xE V' 1 6(v) - B(u) -> < x, v-u>,

                    VvEV] (2.6)

In this paper, we assume that the function 6
has the following properties.

Rroperties

(P-1) the function v - B(v) is lowersemi-
continuous convex function from V- ]-oe, oe],
but B(v) iit oo.

(P-2) O E OB(O)

(P-3) OB takes either a nonnegative or a non-

    positive value
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(P-4) there exists hE V', rERi such that

    S(v).><h,v>+r, VvEV
(P-5) there exists vo E V such that

    B(vo) sg C (Const.)

From (2.6), (2.1) can be rewritten by the follow-

ing stochastic variational inequality

(u (t), g)+f'<Au, g>ds +f'(u, q)dw

         oo +ft<x(u),g>ds :(u,,g)+f'(f,g)ds

             for VgEV (2.7)
and for VvEV

  B(v) - B(u).> < x(u), v- u> (2.8)

where for Vq, WEV

                ag ow
  <Ag, W>=a( ox , ax )'

  It is difficult to prove the existence of the

solution to (2.7) and (2.8) because X(u) E
L2(S2 Å~ T; V') can not be proved. Then, in

order to formulate (2.7) by a weak form, we will

show x(u)ds dx E L2 (SZ; M(T x G)). We can

now define precisely the solution of the
stochastic variational inequality.

Definition: If the pair (u, n) satisfies the follow-

ings, (u, n) is the solution of(2.7) and (2.8);

(i)I"nEELL22((SsZzlLM2 ((TT'; ,Vb-[i)l)C(T-Å~`{ii)) (2.g)

(ii) (u (t), q) + f,' <Au, g>ds + f,' (u, q)dw

    + f,' fG gn(ds, dx) = (uo, g) + f,'(f, q)ds

                  for VvEV (2.10)
(iii) f,tf [5(v)- B(u)] dtll) f,'ff. (v-u)n(dt, dx)

                  for VvEC(TÅ~G) (2.11)

Remark: Since the region G is one-dimension,

it follows from Sobolev's imbedding theorem6)
that
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        VC C(G ). (2.12)
From (2.12), (2.1O) and (2.11) makes a sense.

3. Existence and Uniqueness 71heorem

  First, we will begin with the approximation of

(2.10) and (2.11). Define for Ve > O,

 Be(")=in.f [ 21, 11u-vII2+6(v), vEV]

                                (3.1)

Then, from 7), we have

 l3E(")= 21, llU'tl'eUli2+i3(Jeu), (3.2)

 aB, (u)E -il- F(u - J', u) (3 .3)

and

 6(ur, u) f{; B, (u) .< B(u), Vu E V (3 .4)

where F is a duality rnapping of Y defined by

 Fu == [u"e V' i<u*,u>= ll u 112

                     = uu* ll 2.•} (3.s)

and

 J,u= (F+eaB)-' Fu (3.6)
With the function O6e, the stochastic variational

inequality (2.1O) and (2.1 1) are approximated by

 (Ue( t), 9) + fo'<AUe, 9> dS + f,' (Ue, q)dVV

 + fo'<OBe(Ue), g>dS = (Uo, sp)+ f,'(f, g7)ds

                 for VgEV (3.7)

Lemma 3.1 ; With the following conditions

(C-1) uoEL2(SZ;H),

(C-2) fEL2(st; V'),

there exists a unique solution tt, to (3.7) such

that

  u,EL2(SZxT; V) (3.8)
and
  -2-E [fo'fllueh le ue ll2ds ] s{ Const• (3.9)
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  In order to prove the existence ofthe solution

to the stochastic variational inequality (2.10)

and (2.11), first we must prove the regularity

property of the solution to the approximate
equation (3.7). We assume here the differenti-

ability of aP,, because this assumption is
justified by using the difference quotient in the

case where OB, is not differentiable.

Lemma 3.2; With the conditions

(C-3) uoEL2(S2; V),

(C-4) fEL2(T;H),

there exists a solution to (3.7) such that

  u,EL2(S)xT;H2(G)). (3.10)

Lemma 3.3; With (C-4) and

(C-5) u,EL`(SZ; V),

the following estimates holds

 E[s,up l`Olff:-". 1`+ (f,'f 1Au, 12dtl2] SConst.

                               (3.11)
and

 E[[f,'flbB, ldt]2] S; Const.. (3.12)

Lemma 3.4; With the same conditions as in
Lemma 32, {u,} is Cauchy in L2(SZ;C(TÅ~
G- )).

theorem 3.1 With the conditions (C-1) to (C-5)

there exists a unique solution u to the stochas-

tic variational inequality (2.1O) and (2.1 1).

Proof: Define

  T}e(dt, dX) == aBe(ue)dtdx. (3.13)

From Lemmas3.1 and 3.3,because u, and ne
are bounded in L2(SZ Å~ T; V) and L2(S);

M(TxG)), we can extract subsequences u,,
and n,, such that

  u,t . u weakly in L2(S'Z x T; V) (3.14)
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  ne' '> n weakly star in L2 (S2;M(TÅ~ G))

                                (3.15)

From (3.14) and (3.15), taking a limit in (3.7),

we have for VqEV

 (u(t), q) + f,' <Au, g>ds + f,'(u, g) dw

 + f,' fG 9dn = (uo, g)+ f,' (f, q)ds (3.16)

From the definition of aB,, we have

 f,'f [l3E (V) - l3e (Ue) ] dt

   -> f,'f<OB,(u,), v- u,>dt (3.17)

             for VvEV

Noting that

  l3 (JeUe) Sg l3E(Ue) S; l3 (Ue)

and from Lemma 3.4

  uE -> u strongly in L2( .Q; C(TxG ))

and B is lower-semicontinuous, (3.17) implies

  f,'f [B(v)-B(u)] dt -> f,'ff.vdn,

               for VvEC(TÅ~G).

  The uniqueness property of the solution
follows from the monotone property of a6.
  The proofhas thus been completed.

              Conclusion

  By introducing the random measure, it has
been shown that the stochastic parabolic system

with the subdifferential was formulated by the

stochastic variational inequality. Furthermore,

the existence and uniqueness properties of the

solution to the stochastic variational inequality

was proved with the help of regularity and
compactness theorems. The main part of the
proof relies on the Sobolev imbedding theorem

of one dimensional spatial variable, so the

method proposed in this paper requires the
space dimension one. By guaranteeing the regu-

larity properties of the higher order, this restric-

tion wil1 be removed.
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              Appendices

  AppendjCx A (Proof of Lemma 3.1): Let
{ei};.i be the orthonormal basis of H which

is made up of elements of V. Let vo be the
function satisfies (P-4). We choose ei and e2

in suchaway that uo and vo belong to the
the space {ei, e2] spanned by ei and e2.
Then, consider the following finite dimensional

stochastic equation

 (uZ(t), ei)+ f,'<Au:, ei> ds + f,' (u:, ei)dw

 + f,' <OB, (u :), ei>ds = (uo, ei)

 +f,'(f,ei)ds, for lSi-<n (A.1)

Applying the Ito lemma to Iu: - vo 12, we
have

-12- October. 1990.
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 1 u:(t) - vo I2 +2 fot<Au:, u:- vo >ds

 + 2 f,t <a6, (u 7), u:- vo > ds

 +2 f,'(u:, uZ- vo)dw

 = luo - vo I2 +2 fot (f, u:- vo)ds

 + f,' IuZ 12ds (A.2)
It should be noted that

 <al3,(uZ), u:- vo > 2}r l3,(u:) - i3,(vo)

       (from (3.2) and (3.3))

  2 i [lu,"-Jeu:II2+6(Jeu:)-6(vo)

       (from (P.4) and (P.5))

  .> i 11 U?- Je U: i[2 +<h, Je u:>+rff C

  2 41, ll u7- J, u: ll2 - 6 11 h II 2.•

    - 62, ll h li 2v• -}' li u: u2 +rT c,

                             (A.3)
 2I(f, u:- vo) I -< 61, Ilfli 2.t + 26, 11 u: H2

               +262 1ivo ll2 (A.4)
and

 2l<Au:l, vo>iS63 liu:l ll2+ 61, Il vo H2

                             (A.5)

Using (A.3), (A.4) and (A.5) in (A.2) and taking

a mathematical expectation, we have

 E [luC(t)- vo l2] + (a - 6)E [f,' 11 u: Il2d.e]

  ' i E[f,' ll u:-1, u: ll2ds]

  s;E[1uo - vo 12]+ 2E [ f,' lu7- v, l2ds]

  +C,. (A.6)
whe re 6 = 6i + 62 + 63 and Ci is a constant
depends on f, vo, h and t but independent of

n and e.

  In (A.6), choosing 6 as a-621a>O (a is
constant) and using Gronwall's inequality, we
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have

 E[f,'flluZil2ds] -< C2 (A.7)

and

 -:- E[ f,'f ll uZ-J, u: ll2ds] -< C3 (A.8)

where C2 and C3 are respectively constants
independent of n and e. Therefore, we can
extracta subsequence u,"'  of u," (forfixed e)

such that

  ' u: . u, weakly in L2 (S) Å~ T; V). (A.9)

Because a6, is monotone, (3.9) follows from
(A.9).

  Appendix B (Proof of Lemma 3.2): We
introduce the special base {ei};.i such that

  (-A)ei=Xiei, eiEV (B.1)
Substituting this special base into (A.1) and

multiplying by Xi and using the relation (B.1),

we have

 (u :(t), (-A) ei) + f,t (A uZ, GA) ei) ds

  + f,' (u 7, (-A) ei)dw + f,'<a6,, (-A) ei>ds

  = (tto, (-A) ei)+ f,' (f, (- A) ei) ds (B.2)

            nBecause u," = Z (u ,", ei) ei and ei E H2(G)
           i--1
n V, the second term of the L.H.S. of (B.2)
makes a sense. From (A.1) and (B.2) (where
taking a special base in (A.1)), we have

1 OoU.nE 12 + 2a .fj1 A u: l2 ds + 2 fo' L aaU."e I2dw

lig'i<a,kafelg:'l'.(J23tlS,i3.S;.le,:'lx?ii,.,,

From the monotonicity of OB,, we have

 < a 6, (q(x +h)) - a6, (g (x )), g(x +h)

 -g(x)> ;}rO (B.4)



Because OB, is assumed to be differentiable,
from (B.4), we obtain

                 OQ  <o     o. (Oee(q)), a. > -> O•                                  (B.5)

From (B.1) and (B.5), we have

   I ao".: 12 +(2a- 6)f,' lAuZ 12ds

  +2 fo'I aoUx"e I2dM7 s;1 OaUxO 12

  +f,'l ao".: 12ds+-il- f,'lfl2ds. (B.6)

Taking a mathematical expectation to the both
sides of (B.6) and using the Gronwall inequality

we have

  E[f,'flAu:l2ds] -< Const. (B.7)

In (B.7), by extracting a subsequence with
respect to n, we have (3.1O).

  Appendix C (Proofof Lemma 3.3): It follows
frorn (B.7) that

 E [,,..gl ag:, (s) e]

  + (2a -6)2E[ f,' 1 Au: I2ds ]

  ,Eg3[E[1 aoU.o I4]+cE[f,tl Oou.: i4d,]

                 ' 612 [f,'lfl2ds]2] (c.1)

Using the Gronwall inequality, we obtain (3.11).

From Lemmas 3.1 and 3.2, we can extract a
            'subsequence u," of u," such that

   t u? . u, weaklyin L4(S);L2(T;H2(G)))

                                 (C.2)
   ' u7 -"' ue weaklystarin L`(s2;LeO(T; v))

                                 (C.3)

andsince 06, ismonotone from V to V',

      ' a6e(u:) -> 06,(u,) weakly in L2(9Å~T; V')

                                 (C.4)

Furthermore, from Lemma 3.2,
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 aBe (uZ ) -' aB, (u,) weakly in L2(SZ Å~ T; H)

                                  (C.5)

Therefore, we have for any ÅëEH,

 (Ue(t), g7)+ f,' (AU,, g)ds + f,'(U,, gp) dw

  = (uo, g) + f,'(f, g) ds - f,' (aB, (u,), g) ds

                                 (C.6)

The Ito lemma implies that

 I ue(t) +k 12 +2fo' (A UE, Ue +k)dS

 + 2 fo' (ue, Ue + k) dW + 2 fo' (a 6e, UE + k) dS

 = 1uo +k 12 +2fo'(f, u, + k) ds + fo'1u, 12ds

                                 (C.7)

where k is chosen as 1 (or -1) if OB, is nonne-

gative (or nonpositive). From (P-2) and the

monotonicity of aB,, we have

  (Og3e(Ue), UE)) -> O• (C.8)
From (C.7) and (C.8), we conclude that

 E[[ f,'f 1 O6, l ds] 2]L< CE [[ f,'f lAu, i2ds]2

  + fo'f1ue + k 14ds + fo'f1ue i4ds

  + 1 uo +k i`] +C fo'f lfl`ds

  KConst. (C .9)
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