

表層地盤を伝播するLove波特性に関する模型実験

メタデータ	言語: jpn
	出版者:
	公開日: 2013-11-21
	キーワード (Ja):
	キーワード (En):
	作成者: 宮脇, 幸治郎
	メールアドレス:
	所属:
URL	https://doi.org/10.24729/00007904

表層地盤を伝播する Love 波特性に関する模型実験

宮 脇 幸治郎*

Experimental Studies on Characteristics of Love Waves Propagating along the Surface Layer

Kojiro Miyawaki*

ABSTRACT

This paper dealt with modeling tests of the Love-wave character on surface layer. Exciting methods are two kinds of impulsive and sinsoidal steady wave. A material of surface layer model was used urethanfoam with many porosityes, that is, with heigh damping medium.

The results of experiment dealt with autocorrelation function, cross-correlation function, Fourier spectral density from the data of time hystories, and obtained a phase velosity and a group velosity of Love-waves with respect to the period or the wave length. The waves character along surface overlaped a direct surface wave and reflection-refraction wave and consisted of wave propagation with a dispered nature.

Key Words: Love-wave, Dispersion wave, Phase velosity, Group velosity

1. はしがき

ライフラインと呼ばれる上下水道,ガス管などを含む 埋設構造物は,そのほとんどが地下数mに集中している ため,地表面近くで振幅が卓越する表面波の性質を知る ことは,埋設構造物の耐震性を考える上で基本量となる. そして一般に表面波は分散性の波動特性を持った波であ るため工学上非常に興味ある研究課題^{11,21,31}の一つで もある.

本研究は表面波,特にLove 波の特性を実験的に把握 するために基層の上に表層があるようなモデルを作製し て衝撃波実験と強制正弦波振動実験を行い,波動の動的 特性を検討することを試みた.なお,基層は,剛基盤に 近いモデルで実験を実施した.

実験結果は、時刻歴の波動特性から自己相関関数、相 互相関関数、フーリエスペクトルといった基礎的なデー タ処理で、位相速度、群速度を振動数(周期)や波長と の関係を求めた.両実験結果より、弾性体内に発生した Love 波の応答は、地表面上を伝わる直接波と、境界面 上で屈折・反射してくる屈折波との空間的な重ね合わせ によって現れ、分散性をもった波動の伝播特性となって いることがわかった.

平成元年4月10日受理

* 土木工学科 (Department of Civil Engineering)

2. 実験装置

(1) 実験概要

実験は、図ー1に示すような弾性層モデルの表面に鋼棒(幅32mm×厚6mm)を接着し、この鋼棒を水平に加振 することによって、弾性層内に水平方向のみの成分をもった波を発生させた。波動特性は、モデル地盤の表面に 加速度計を配置して検出することにした。加速度計の配 置は、波動の伝播する方向に一定間隔(20cm)に4個 $(H_j: j = 1 \sim 4)$ 設置した。記録された波動から、位相速 度や群速度など表面波を特徴付ける物理量が周期や波長 との関係で算出された.

加振方法は、鋼棒の端部にハンマーによって衝撃を与 える衝撃波実験と、加振装置(IMV製,VSL-3202C 型,加振力80kg・G,振動数1~100 Hz)によって強制 的に正弦波を与える強制波実験とを実施した、強制波加 振によって発生する表面波は、非常に高次のモードの加 振が困難であるため、1次モードより低い振動数による 加振を実施した。

波動の検出に加速度の物理量を用いたのは、実施した 実験装置ならびに周波数領域から、波動量として変位や 速度の振幅がかなり小さく、検出が困難であるためであ る.

(2) モデル地盤

実験に使用したモデル地盤は、幅108cm×長さ208cm×

図-1 実験装置概要図

層厚10cmの寸法のものをコンクリート盤の上に設置した. 材質は、ウレタンフォウムであり、表一1に示すような 諸元をもったものを使用した.

境界条件は、半無限平行表層地盤モデルであるが、実際は図ー1に示すように波動の伝播する方向ならびに直角方向の鉛直境界面は自由境界になるように設置した.加振する位置から発生した波動がこれらの境界面で反射して戻ってくる波動は非常に小さい.すなわち、用いたモデル地盤の材質が多孔質のウレタンフォウムであるため伝播する波の減衰が大きく、1次の卓越振動数付近で20%近い値をもっており、自由境界面での反射波の影響は無視できるモデル地盤となっている.

3. 計測システム

(1) 計測機器

本実験に使用した計測用機器類には、つぎのようなものがある.

加速度成分は各加速度計(新興通信工業製,非接着型, 5L)からピックアップされ、ブリッジヘッド(三栄測 器製)で起電圧ならびに変動電圧を取り出し、これを動

加振方向幅 a(cm)	108
伝播方向幅 b(cm)	208
表 層 厚 c(cm)	10
単位体積重量 r(gr/cml)	0.0154
縦弾性係数 E(gr/cm)	239.6
ポアソン比 ν	0.2
縦波速度 Vp(cm/sec)	4117
横波速度 Vs(cm/sec)	2521

表一1 モデル地盤の諸元

ひずみ計(三栄測器製. 6 M91)で増幅し. データーレ コーダー(TEAC製, R-210)に記録した. 記録には, ミニライター(渡部測器製, WTR751)も補助的に用い た.

(2) データ処理のフロー

加速度の波形データは、ミニライターあるいはデータ ーレコーダーに時刻歴として記録した.データーレコー ダー記録はパソコン(NEC, PC9801 Vm2)に取り付 けた ADコンバーターを通して、デジタル化し、時刻歴 波形データーから自己相関、相互相関、フーリエスペク トルを算定した.

4. データ処理方法

(1) 位相速度

実験は,空間的には2次元的に波動が伝播するが,地 盤表面においては1次元的に伝播するので,波動の伝播 する方向に観測点を近接して2点以上配置したデータよ り算定できる.すなわち,

1) 衝撃波加振に対する2観測点間の距離L_{AB}を,記録された時刻歴波形データから各位置の同位相の時間 (たとえば,最大となるピーク値間) t_{AB}で割ることにより求められる.

 $c = L_{AB}/t_{AB}$

2) 正弦波強制加振に対する2観測点間の相互相関関数を求め、最初のピークを示すタイムラグの時間 r_{AB}を 求める. 同様に距離 L_{AB}を r_{AB} で割ることにより求めら れる.

 $c = L_{AB} / \tau_{AB}$

3) 2観測点 x_A , x_B での波動のフーリエ変換 $V(x_A; \omega)$, $V(x_B; \omega)$ を求め, それぞれの偏角の差 θ_{AB} を求める. 同様に, 距離 L_{AB} に角振動数 ω を乗じたものを θ_{AB} で割ることにより求められる⁴⁾.

$$c(\omega) = -\omega L_{AB}/\theta_{AB}$$

$$\zeta \subset \mathcal{I}\zeta,$$

$$V(x_j;\omega) = -\frac{1}{2\pi} \int_{-\infty}^{\infty} v(x_j;t) \cdot \exp(-i\omega t) dt$$

(j = A, B)

$$\theta_{AB} = \arg\{V(x_A; \omega)\} - \arg\{V(x_B; \omega)\}$$
(2) 群速度

群速度は、本実験モデルの場合、解析的には位相速度 を表層の横波速度で除した値の逆数として求められる. しかし、直接2観測点での時刻歴波形から観測するのは、 非常に困難であるため、つぎのような方法で算定した.

まず,定常な正弦波強制加振に対する2観測点間の相 互相関関数を求め,得られた関数の振幅の変化(うなり) 第23巻

のピーク値を示すタイムラグの時間 T_{AB} を求める. しかるのちに2 観測点間距離 L_{AB} を T_{AB} で除して求められる.

 $c_g = L_{AB} / T_{AB}$

(3) 振動数, 波長

衝撃波加振実験に対する振動数は,フーリェ解析によって定め,振動数特性を検討した.波長は,位相速度を 振動数で除して求め,その特性を検討した.

一方正弦波強制実験に対する振動数は,自己相関関数 から定め,波長は,相互相関関数から求めた位相速度を 振動数で除して求めた.

モデル地盤の表面波加振実験に対する結果および考察

(1) 衝擊波加振実験

(a) 時刻歴特性

図-2は、衝撃加振による加速度の時刻歴波形を空間 的な位置の順に図示したものである.波形は、衝撃を加 えた直後の加振点に近い記録波は、かなり振動数の高い 乱れた波形になっているが、時間の経過、ならびに距離 の増加に伴い比較的きれいな正弦波に近い波形を示して いる.記録は無限媒体中を伝播する波動特性のように距 離ならびに時間による明確な減衰特性を読みとれない. すなわち、反射・屈折を繰り返しながら表層を伝播する 波動特性のため、ピーク値の時間的な変化をみると振幅 の増幅が生じている、また、初期の波動の立ち上がりを 観察すると、 H_1 , H_2 の場合は正の側から始まるが, H_3 , H_4 は負の側から始まっている. このことは表面で SH 波的な衝撃加振の作用したことによる波動が基盤層によ って反射屈折し、加振点近傍の位相と離れた位置での位 相が逆点して現れているものと思われる.

ここでは、近似的に地盤の減衰能を示す指標としての Q値⁵¹は、2地点の最初のピーク値の減衰特性を採用し

図-2 衝撃波加振実験による時刻歴応答曲線の 空間的変化

図-3 衝撃波加振実験による フーリエ スペクトル曲線の空間的変化

て求めた.その結果

$$(1/Q) = 0.00586f$$
 $(H_1 \ge H_2 の関係)$

(1/Q) = 0.00236f (H₃ と H₄ の関係)

ここに, f: 波動の振動数

となっていた.すなわち,加振点近傍の減衰が大きくなっている.

(b) フーリエスペクトル特性

図-3は、図-2の波形をフーリエスペクトル解析したものである.解析結果は、加振点に一番近い位置の結果では19.5Hz付近と66.4Hz付近に2個ピークを有するが、加振点から離れると19.5Hz付近にピークが1個になっている.また、ピークの大きさも距離の増加にしたがって小さくなっている.

ここで、66.4Hz 付近の卓越する振動数は、表層の1 次の固有振動数69.92Hz に相当している.また、加振点 から距離が増加するにしたがい高次の振動数が減衰して いるのは、使用した表層材料の媒体としての減衰特性が 大きいことを意味し、また一般的な高次の振動数ほど伝 播中の減衰が大きいということも裏付けている.

なお、図ー2の波形 H1 の0.256秒ごとの時刻的なフー リエスペクトル結果によれば、23.4、31.3、66.4 Hz 付近 のピークは時刻の最初の振動数領域には現れているが、 時刻が経つと23.4 Hz 付近の振動数領域の成分のみが卓 越した振動数特性になっていた. すなわち、20 Hz 付近 の振動数がこのモデル地盤の表面波の基本振動数となっ ている.

(c) 相関関数の特性

図ー4は、 $H_1 \sim H_4$ に対する自己相関関数の結果例で ある. $H_1 \sim H_4$ のそれぞれの最も相関が高くなる時間 ずれ (タイムラグ)は、0.0490、0.0605、0.0430、0.0450秒 であり、 H_1 には高振動数を含んでいる少し乱れがみら れ、 H_2 は少しピーク間のタイムラグが長くなっている.

図-6 衝撃波加振実験による位相速度と周期とによる 分散曲線(位相速度は H₁ と H₂ との相互相関関 数より算出)

 H_1 , H_3 , H_4 のタイムラグはほぼ等しい値で生じており, 21.9Hz に相当している.

図-5は、 H_1 に対する H_2 , H_3 , H_4 との相互相関関数の結果例である.最も相関の高い値を示すタイムラグは、0.1235、0.1255、0.1315秒になっており、最初のピークを示すタイムラグは、0.0250、0.0315、0.0385秒になっている. このタイムラグが各2測定点間の伝播速度を現すとみなすならば、8.0m/s、12.7m/s、15.6m/sとなる.これは、加振点から離れると見かけ上伝播速度が速くなっていることを示し、基盤に衝突した波は、臨界角で一

度入射し,境界面に沿って伝播して,再び表面層に屈折 して戻ってきた波動特性を意味している.すなわち,自 由境界面に沿って伝播する波動より,基盤層を伝播して きた屈折波の方が速く伝播している波線理論的な現象説 明ができることになる.

(d) 位相速度の特性

図一6は、 $H_1 \ge H_2 \ge 0$ フーリエ変換によって位相 速度を求め、周期との関係で実験結果を図示したもので ある.また図は波動理論から求めた1から4次のモード の曲線も同時に図示している.結果から衝撃波加振の波 動には、高次の表面波の成分が多く含まれており、理論 的な現象と比較的容易に対応ずけられる.

このことは、本衝撃波加振実験によってLove 波的な 表面波の発生していたことが確かめられた。

(2) 正弦波強制加振実験

(a) 相関関数の特性

図-7(a)~(d)は、加振振動数9.6, 20.0, 31.7, 40.8 Hz に対する相互相関関数の結果例である。相関をとった成 分は、いずれも H_1 に対する H_2 , H_3 , H_4 の加速度であ り、 H_1 の波動の立ち上がりから約1.0秒間のデータ(1024 個)を用いて計算したものである。いずれの結果につい ても、加振した振動数に対応した周期性の強い相関関係 を示しており、それぞれの位相差およびピークの振幅の 変化が現れている。現象が定常なうなりをもった波動な ら、最初の相間の強いピークにおけるタイムラグは、位 相速度に起因する値であり、うなりに相当する包絡線の 最初のピークにおけるタイムラグは、群速度に起因する 値を意味している。

(b) 位相速度の特性

図-8は、図-7の相互相関関数よりそれぞれ求めた 位相速度と振動数との関係を図示した結果である。なお、 位相速度は表層のせん断速度 c1 で無次元化している。 いくつかの鋭いピークをもった振動数特性を示している。

いくつかの鋭いピークをもった振動数特性を示している 図一9は、同様に、位相速度を波長との関係を図示し

た結果である.波長は表層厚さHで無次元化している. 図には,波動理論から求められる1次から4次までのモードの曲線も図示している.結果から実験値は,1次の モードより低い状態の定常な表面波が発生し,伝播していることを意味している.

(c) 群速度の特性

図-10は、図-7の相互相関関数より群速度と振動数 との関係を図示した結果である。結果は、位相速度に比 べて非常に小さい値を示している。これは、本実験モデ ルの場合波動理論から導かれる群速度が位相速度の逆数

の関係になっていることを、実験的に確かめられたことになる.

図-11は、同様に群速度と波長との関係を図示した結 果である、図には、波動理論から求められる10~160次 のモードの曲線も図示している、結果から実験値は、群 速度のモードが非常に高い次数に相当する領域に現れて いる、すなわち、表面波の群速度の伝播は見かけ上高次 のモードとなっている。

図一12は、図一10の結果を群速度の伝播するときの振 動数で整理し、図示した結果である.実験値は、振動数

の増加にしたがって非常に滑らかな下に凸な2次の曲線 となっている。

図-13は、同様に図-11の結果を群速度の伝播すると きの波長で表示した結果である.図-12の結果と逆に上 に凸の2次曲線に沿って結果が現れている.表面波動が 1次のモードより低い状態で加振されている場合,群速 度は位相速度に対応する振動数や波長でなく,群速度に 対応して整理してみればその特性が読み取り易い結果と なって、振動数や波長による群速度が変化する分散性を もった表面波が発生していることが確かめられたことに

図-14 正弦波強制振動実験による空間的な波動の 応答倍率

なる.

図-14は,正弦波の加振が定常になった状態において 空間的な波動の応答特性が加振振動数で対応づけて図示 したものである.結果は、9.6,11.4,14.4,24.0 Hz に比 較的高いピークが現れており、 H_4/H_1 は9.6,14.4 Hzで, H_3/H_1 は11.4 Hz で, H_2/H_1 は14.4,24.0 Hz で卓越し た応答を示している.加振される振動数によって異なる が、加振点からの距離によりそのピーク大きさが異なる. すなわち、加振される波動の振動数によって直接波と屈 折波との重なり状態が距離によって異なってくることを 意味している.

また,全体的に振動数の増加に伴って応答倍率は低減 する傾向を示している.

6. まとめ

本研究は,表層地盤モデルにLove 波的な表面波を発 生させ,表層地盤を伝播する表面波の分散性に注目して 実験を実施した.本実験では比軟的簡単な方法で,分散 性をもった波動を発生させ,定量的に波動理論(波線理 論も含む)の現象が把握できた.実験によって得られた 結果にはつぎのようなものがある.

(1) 衝撃波加振によって発生する表面波のフーリエス ペクトル解析より,表層の卓越振動数近傍の波動は波動 の伝播距離によって急激に減少し無くなるが,表面波の 基本振動数付近の波動は,伝播距離によらず遠くまで伝 播する.

(2) 衝撃波加振による表面波の位相速度は周期によっ て大きく変動し、1次から非常に高次のモードの位相速 度も含まれ、これを容易に実験的に計測できる。

(3) 強制波加振による表面波の相互相関関数の解析に より波動は位相速度および群速度ともに振動数あるいは 波長の関数となっている.しかし,加振が1次モードよ り低い領域になっている場合群速度は群速度に対する振 第23巻

動数あるいは波長との対応で表示したほうがよい.

(4) 強制波加振による表面波の空間的な応答特性は, 加振される振動数によって異なるが,加振点からの距離 によりそのピーク大きさが異なり,波線理論的な現象説 明ができる.

これらの結果を通じて、検討すべき課題はつぎのよう な項目がある.

(1) 表面波の検証としてモデル地盤中の鉛直方向の波動分布(加速度あるいは変位)の測定が必要である.

(2) 実験はモデルにおける波動現象のみを注目して実施されたが、相似律の検討として実物と模型との対応が必要である.

(3) 計測技術として波動の伝播特性を2次元あるいは 3次元的に計測し全体的に把握するためには画像処理的 な手法が必要と考えられる。

(4) 耐震工学的な立場として埋設管構造物のモデルを モデル地盤中に設置して,表面波による挙動を検討する 必要がある. 最後に実験の際には多くの協力を頂いた本校卒業生の 丸山浩史,古山謙二君に深く感謝の意を表します.

参考文献

- 森地重輝・田村浩一:地盤内を伝播する Love 波に 関する一模型実験方法について、土木学会第42回年 次学術講演会、1987.9、pp.606,607.
- 2) 大町達夫・年縄 巧:2層粘弾性地盤におけるラブ 波の特性をもつ振動モード,第18回地震工学研究発 表会,1987.7, pp.125-128.
- 3)山田善一・野田 茂・上松英二:地盤構成と表面波 による地震動特性に関する研究,土木学会関西支部 年次学術講演会概要集,1982, pp.Ⅰ-33-1,2.
- 4) 佐藤泰夫:弾性波動論, 1987. 3, pp. 251-259.
- 5) 土岐憲三:構造物の耐震解析, 1982. 6, pp.77 80.