

学術情報リポジトリ

How many miles to β X? II - Approximations to β X versus cofinal types of sets of metrics

メタデータ	言語: eng
	出版者:
	公開日: 2012-02-01
	キーワード (Ja):
	キーワード (En):
	作成者: Kada, Masaru
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10466/12486

How many miles to βX ? II — Approximations to βX versus cofinal types of sets of metrics

Masaru Kada*

Abstract

Kada, Tomoyasu and Yoshinobu proved that the Stone–Čech compactification of a locally compact separable metrizable space is approximated by the collection of \mathfrak{d} -many Smirnov compactifications, where \mathfrak{d} is the dominating number. By refining the proof of this result, we will show that the collection of compatible metrics on a locally compact separable metrizable space has the same cofinal type, in the sense of Tukey relation, as the set of functions from ω to ω with respect to eventually dominating order.

1 Tukey relations between directed sets

We use standard terminology and refer the readers to [1] for undefined settheoretic notions. For $a \in \mathbb{R}$, $\lfloor a \rfloor$ denotes the largest integer not exceeding a, and $\lceil a \rceil$ denotes the smallest integer not below a. For $f, g \in \omega^{\omega}$, we say $f \leq^* g$ if for all but finitely many $n < \omega$ we have $f(n) \leq g(n)$. A subset of ω^{ω} is called a *dominating family* if it is cofinal in ω^{ω} with respect to \leq^* . The *dominating number* \mathfrak{d} is the smallest size of a dominating family. We let $\omega^{\uparrow \omega}$ denote the set of strictly increasing functions in ω^{ω} .

Let (D, \leq) and (E, \leq) directed partially ordered sets. A mapping φ from D to E is called a *Tukey mapping* if the image of an unbounded subset of D by φ is an unbounded subset of E, or equivalently, if the inverse image of a bounded subset of E is a bounded subset of D. We write $(D, \leq) \leq_T (E, \leq)$

2000 AMS Classification: Primary 54D35; Secondary 03E17, 06A07, 54E35.

^{*}Graduate School of Science, Osaka Prefecture University. Sakai, Osaka 599–8531 JAPAN

E-mail address: kada@mi.s.osakafu-u.ac.jp (M. Kada).

Keywords: Smirnov compactification, Stone-Čech compactification, metrizable space, Tukey relation.

(and often say D is Tukey below E, or E is cofinally finer than D) if there is a Tukey mapping from D to E. We will write $D \leq_T E$ if referred order relations on D and E are clear from the context.

A mapping ψ from E to D is called a *convergent mapping* if the image of a cofinal subset of E by ψ is a cofinal subset of D. It is easily checked that $D \leq_T E$ if and only if there is a convergent mapping from E to D.

We write $D \equiv_T E$ (and often say D is *Tukey equivalent to* E, D is *cofinally* similar to E, or D and E have the same cofinal type) if both $D \leq_T E$ and $E \leq_T D$ hold. In particular, if there is a mapping from D to E which is both Tukey and convergent, then $D \equiv_T E$ holds.

It is easy to see that $(\omega^{\omega}, \leq^*) \equiv_T (\omega^{\uparrow \omega}, \leq^*)$ holds.

For a directed partially ordered set (D, \leq) , $\operatorname{add}((D, \leq))$ or $\operatorname{add}(D)$ denotes the smallest size of an unbounded subset of D, and $\operatorname{cof}((D, \leq))$ or $\operatorname{cof}(D)$ denotes the smallest size of a cofinal subset of D. It is easy to see that $D \leq_T E$ implies $\operatorname{add}(D) \geq \operatorname{add}(E)$ and $\operatorname{cof}(D) \leq \operatorname{cof}(E)$. Using this notation, the dominating number \mathfrak{d} is described as $\mathfrak{d} = \operatorname{cof}((\omega^{\omega}, \leq^*)) = \operatorname{cof}((\omega^{\uparrow \omega}, \leq^*))$.

2 Compactifications of metrizable spaces

A compactification of a completely regular Hausdorff space X is a compact Hausdorff space which contains X as a dense subspace. For compactifications αX and γX of X, we write $\alpha X \leq \gamma X$ if there is a continuous surjection $f: \gamma X \to \alpha X$ such that $f \upharpoonright X$ is the identity map on X. If such an fcan be chosen to be a homeomorphism, we write $\alpha X \simeq \gamma X$. Let Cpt(X)denote the class of compactifications of X. When we identify \simeq -equivalent compactifications, we may regard Cpt(X) as a set, and the order structure $(Cpt(X), \leq)$ is a complete upper semilattice whose largest element is the Stone–Čech compactification βX .

The Smirnov compactification of a metric space (X, d), denoted by $u_d X$, is the unique compactification characterized by the following property: A bounded continuous function f from X to \mathbb{R} is continuously extended over $u_d X$ if and only if f is uniformly continuous with respect to the metric d.

The following theorem tells us that the Stone–Cech compactification of a metrizable space is approximated by the collection of all Smirnov compactifications. Let M(X) denote the set of all metrics on X which are compatible with the topology on X.

Theorem 2.1. [5, Theorem 2.11] For a noncompact metrizable space X, we have $\beta X \simeq \sup\{u_d X : d \in M(X)\}$ (the supremum is taken in the upper semilattice $(Cpt(X), \leq)$).

Now we define the following cardinal function.

Definition 2.2. [3, Definition 2.2] For a noncompact metrizable space X, let $\mathfrak{sa}(X) = \min\{|D| : D \subseteq M(X) \text{ and } \beta X \simeq \sup\{u_d X : d \in D\}\}.$

For a topological space $X, X^{(1)}$ denotes the first Cantor-Bendixson derivative of X, that is, the subspace of X which consists of all nonisolated points of X. Note that $\mathfrak{sa}(X) = 1$ holds if and only if there is a metric $d \in M(X)$ which makes (X, d) an Atsuji space (also called a UC-space), which is known to be equivalent to the compactness of $X^{(1)}$ [5, Corollary 3.5].

Kada, Tomoyasu and Yoshinobu [4] proved the following theorem.

Theorem 2.3. [4, Theorem 2.10] For a locally compact separable metrizable space X such that $X^{(1)}$ is not compact, $\mathfrak{sa}(X) = \mathfrak{d}$ holds.

For a compactification αX of X and a pair A, B of closed subsets of X, we write $A \parallel B \ (\alpha X)$ if $\operatorname{cl}_{\alpha X} A \cap \operatorname{cl}_{\alpha X} B = \emptyset$, and otherwise $A \not\parallel B \ (\alpha X)$. It is known that, for a normal space $X, \alpha X \simeq \beta X$ holds if and only if $A \parallel B \ (\alpha X)$ for any pair A, B of disjoint closed subsets of X [2, Theorem 6.5]. For Smirnov compactification $u_d X$ of (X, d), it is known that $A \parallel B \ (u_d X)$ if and only if d(A, B) > 0 [5, Theorem 2.5].

For $d_1, d_2 \in M(X)$, we write $d_1 \leq d_2$ if the identity function on X is uniformly continuous as a function from (X, d_2) to (X, d_1) . The following equivalent conditions for $d_1 \leq d_2$ are known.

Proposition 2.4. For a metrizable space X and $d_1, d_2 \in M(X)$, the following conditions are equivalent.

- 1. $d_1 \leq d_2$.
- 2. $u_{d_1}X \le u_{d_2}X$.
- 3. For closed subsets A, B of X, if $A \parallel B$ $(u_{d_1}X)$ then $A \parallel B$ $(u_{d_2}X)$.
- 4. For closed subsets A, B of X, if $d_1(A, B) > 0$ then $d_2(A, B) > 0$.

For $d_1, d_2 \in M(X)$, we write $d_1 \sim d_2$ if d_1 and d_2 are uniformly equivalent, that is, if both $d_1 \leq d_2$ and $d_2 \leq d_1$ hold. We will identify uniformly equivalent metrics on X and simply write M(X) to denote the quotient set $M(X)/\sim$. Then $(M(X), \leq)$ is a directed ordered set.

Woods showed (in the proof of [5, Theorem 2.11]) that for any pair A, Bof disjoint nonempty closed subsets of a metric space X there is a metric $d \in M(X)$ such that d(A, B) > 0. Hence, if $D \subset M(X)$ is cofinal with respect to \preceq , then $\sup\{u_d X : d \in D\} \simeq \beta X$. As a consequence, we have $\mathfrak{sa}(X) \leq \operatorname{cof}((M(X), \preceq))$. In the next section, we will prove the Tukey equivalence $(M(X), \preceq) \equiv_T (\omega^{\omega}, \leq^*)$ for a locally compact separable metrizable space X such that $X^{(1)}$ is not compact. It will be proved by refining the proof of Theorem 2.3 ([4, Theorem 2.10]) to fit in a context of Tukey relation.

3 The main theorem

This section is devoted to the proof of the following theorem.

Theorem 3.1. Let X be a locally compact separable metrizable space such that $X^{(1)}$ is not compact. Then $(M(X), \preceq) \equiv_T (\omega^{\omega}, \leq^*)$ holds.

Throughout this section, we assume that X is a locally compact separable metrizable space and $X^{(1)}$ is not compact. Since X is embedded into the Hilbert cube $\mathbb{H} = [0, 1]^{\omega}$ as a subspace, we fix such an embedding and regard X as a subspace of \mathbb{H} .

We will define a mapping from $\omega^{\uparrow \omega}$ to M(X) which is both Tukey and convergent, that is, the image of an unbounded set is unbounded and the image of a cofinal set is cofinal.

The following lemma, due to Kada, Tomoyasu and Yoshinobu [4, Lemma 2.8], is quite useful. Here we state this lemma in a modified and slightly strengthened form. Though it is not so difficult to modify the original proof to get the modified statement, we will present a complete proof for the reader's convenience. For a function φ from X to \mathbb{R} , we write $\varphi(x) \to \infty$ as $x \to \infty$ if, for any $M \in \mathbb{R}$ there is a compact subset K of X such that $\varphi(x) > M$ holds for all $x \in X \setminus K$.

Lemma 3.2. Suppose that X is a locally compact separable metrizable space, $d \in M(X)$, diam_d(X) is finite, and γ is a continuous function from X to $[0,\infty)$ such that $\gamma(x) \to \infty$ as $x \to \infty$. For $n \in \omega$, Let $K_n = \{x \in X :$ $\gamma(x) \leq \max\{n, \operatorname{diam}_d(X)\}\}$. Then we can define a mapping from $\omega^{\uparrow \omega}$ to M(X), which maps g to d_q , with the following properties.

- 1. If $x, y \in X \setminus K_n$, then $d_g(x, y) \ge g(n) \cdot d(x, y)$.
- 2. For $x, y \in X$, $d_q(x, y) \ge |\gamma(x) \gamma(y)|$.
- 3. For $g_1, g_2 \in \omega^{\uparrow \omega}$, $g_1 \leq^* g_2$ implies $d_{g_1} \preceq d_{g_2}$.

Proof. We may assume that $g(0) \ge 1$. Define an increasing continuous function f_g from $[0, \infty)$ to $[1, \infty)$ in the following way: For $s \in [0, \infty)$, let $k = \lfloor 2s \rfloor$, r = 2s - k and

$$f_g(s) = (1 - r) \cdot g(k) + r \cdot g(k+1).$$

Note that, by the definition of f_g , if $g_1 \leq^* g_2$, then there is an $M \in [0, \infty)$ such that for all $s \in [M, \infty)$ we have $f_{g_1}(s) \leq f_{g_2}(s)$.

For $s \in [0, \infty)$, let

$$F_g(s) = \int_0^s f_g(t)dt$$

Define functions ρ , ρ'_g from $X \times X$ to $[0, \infty)$ by the following:

$$\rho(x, y) = \max\{|\gamma(x) - \gamma(y)|, d(x, y)\},\$$
$$\rho'_g(x, y) = f_g(\max\{\gamma(x), \gamma(y)\}) \cdot \rho(x, y).$$

 ρ'_g is not necessarily a metric on X, because ρ'_g does not satisfy triangle inequality in general. So we define a function d_g from $X \times X$ to $[0, \infty)$ by the following:

$$d_g(x,y) = \inf \{ \rho'_g(x,z_0) + \dots + \rho'_g(z_i,z_{i+1}) + \dots + \rho'_g(z_{l-1},y) : l < \omega \text{ and } z_0, \dots, z_{l-1} \in X \}.$$

Note that, since f_g is increasing,

$$\rho'_g(x,y) = f_g(\max\{\gamma(x),\gamma(y)\}) \cdot \rho(x,y)$$

$$\geq f_g(\max\{\gamma(x),\gamma(y)\}) \cdot |\gamma(x) - \gamma(y)|$$

$$\geq |F_g(\gamma(x)) - F_g(\gamma(y))|.$$

Hence we have $d_g(x, y) \ge |F_g(\gamma(x)) - F_g(\gamma(y))|$, because

$$\rho'_{g}(x, z_{0}) + \dots + \rho'_{g}(z_{l-1}, y)
\geq |F_{g}(\gamma(x)) - F_{g}(\gamma(z_{0}))| + \dots + |F_{g}(\gamma(z_{l-1})) - F_{g}(\gamma(y))|
\geq |F_{g}(\gamma(x)) - F_{g}(\gamma(y))|.$$

Claim 1. For $n < \omega$ and $x, y \in X \setminus K_n$, $d_g(x, y) \ge f_g(n/2) \cdot d(x, y) = g(n) \cdot d(x, y)$.

Proof. We may assume that $\gamma(x) = r \ge s = \gamma(y)$. Since $y \in X \setminus K_n$ and by the definition of K_n , we have $s \ge n$. Since f_g is increasing, it suffices to show that $\rho'_g(x, z_0) + \cdots + \rho'_g(z_{l-1}, y) \ge f_g(s/2) \cdot d(x, y)$ holds for any $l < \omega$, $z_0, \ldots, z_{l-1} \in X$.

Case 1. Assume that $\gamma(z_i) > s/2$ for all i < l. Since f_g is increasing, the definition of ρ'_q yields

$$\rho'_{g}(x, z_{0}) + \dots + \rho'_{g}(z_{l-1}, y) > f_{g}(s/2) \cdot (\rho(x, z_{0}) + \dots + \rho(z_{l-1}, y))$$

$$\geq f_{g}(s/2) \cdot \rho(x, y)$$

$$\geq f_{g}(s/2) \cdot d(x, y).$$

Case 2. Assume that $\gamma(z_i) \leq s/2$ for some i < l. Fix such an i and then we have the following:

$$\rho'_g(x, z_0) + \dots + \rho'_g(z_{i-1}, z_i) \ge d_g(x, z_i) \ge F_g(\gamma(x)) - F_g(\gamma(z_i)),$$

$$\rho'_g(z_i, z_{i+1}) + \dots + \rho'_g(z_{l-1}, y) \ge d_g(z_i, y) \ge F_g(\gamma(y)) - F_g(\gamma(z_i)).$$

Hence it holds that

$$\rho'_g(x, z_0) + \dots + \rho'_g(z_{l-1}, y) \ge (F_g(r) - F_g(\gamma(z_i))) + (F_g(s) - F_g(\gamma(z_i)))$$

$$\ge (F_g(r) - F_g(s/2)) + (F_g(s) - F_g(s/2))$$

$$\ge (r - s/2) \cdot f_g(s/2) + (s/2) \cdot f_g(s/2)$$

$$= r \cdot f_g(s/2).$$

On the other hand, $d(x, y) \leq r$, because $x \in X \setminus K_n$ and hence $r = \gamma(x) \geq \text{diam}_d(X)$ by the definition of K_n . So we have

$$\rho'_q(x, z_0) + \dots + \rho'_q(z_{l-1}, y) \ge f_g(s/2) \cdot d(x, y).$$

This concludes the proof of the claim.

Clearly d_g is symmetric and satisfies the triangle inequality. Since $f_g(s) \ge 1$ for all $s \in [0, \infty)$, Claim 1 implies that d_g is a metric on X. It is easy to see that d_g is compatible with the topology of (X, d).

It is easy to check that, if $g_1 \leq^* g_2$, then there is a compact subset K of X such that for any $x, y \in X \setminus K$ we have $d_{g_1}(x, y) \leq d_{g_2}(x, y)$. Therefore, $g_1 \leq^* g_2$ implies $d_{g_1} \leq d_{g_2}$.

Finally, for any $x, y \in X$ we have $d_g(x, y) \ge \rho(x, y) \ge |\gamma(x) - \gamma(y)|$. \Box

Now we work on a fixed locally compact separable metrizable space X such that $X^{(1)}$ is not compact. We regard X as a subspace of the Hilbert cube \mathbb{H} . Let μ be a fixed metric function on \mathbb{H} . Since \mathbb{H} is compact, clearly diam_{μ}(X) is finite.

Let E be a countable discrete closed subset of $X^{(1)}$. Such a set E exists by our assumption. We can find a continuous function γ from X to $[0, \infty)$ and a sequence $\{e_n : n < \omega\} \subseteq E$ with the following properties:

- 1. $\gamma(x) \to \infty$ as $x \to \infty$,
- 2. For each $n, \gamma(e_n) = n + 1/2$.

For each n, choose a sequence $\langle e_{n,j} : j \in \omega \rangle$ in X so that:

1. $\langle e_{n,j} : j \in \omega \rangle$ converges to e_n ,

2. For all $j, n < \gamma(e_{n,j}) < n + 1$.

Now we consider the mapping from $(\omega^{\uparrow\omega}, \leq^*)$ to $(M(X), \preceq)$ obtained by applying Lemma 3.2 for X and μ , which maps $g \in \omega^{\uparrow\omega}$ to $\mu_g \in M(X)$. We will show that it is both a Tukey and a convergent mapping, which concludes the proof of Theorem 3.1.

To show this, we define two auxiliary mappings from M(X) to $\omega^{\uparrow \omega}$ as follows. For $n < \omega$, let K_n be the one which appears in the statement of Lemma 3.2. For $\rho \in M(X)$, define h_{ρ} recursively by letting h(0) = 0 and

$$h_{\rho}(n) = \min\{l : l > h_{\rho}(n-1) \text{ and } \forall x, y \in K_{n+2} \ (\rho(x,y) \ge 1/n \to \mu(x,y) \ge 1/l)\}$$

for $n \geq 1$. The set of *l*'s in the definition of $h_{\rho}(n)$ is nonempty because of compactness, and so h_{ρ} is well-defined. Also, for $\rho \in \mathcal{M}(X)$, define H_{ρ} recursively in the following way. For each $n \geq 1$, define $j_n^{\rho} \in \omega$ by

$$j_n^{\rho} = \min\{j : \rho(e_{n,j}, e_n) \le 1/n\}.$$

Let H(0) = 0 and

$$H_{\rho}(n) = \max \left\{ H_{\rho}(n-1) + 1, \left[1/\mu(e_{n,j_{n}^{\rho}}, e_{n}) \right] \right\}$$

for $n \geq 1$.

Lemma 3.3. The mapping from $\omega^{\uparrow \omega}$ to M(X) which maps g to μ_g is a convergent mapping, that is, the image of a cofinal subset of $\omega^{\uparrow \omega}$ is a cofinal subset of M(X).

Proof. It suffices to show that, for $\rho \in M(X)$ and $g \in \omega^{\uparrow \omega}$, if $h_{\rho} \leq^* g$ then $\rho \leq \mu_g$.

Suppose that $\rho \in M(X)$, $g \in \omega^{\uparrow \omega}$ and $h_{\rho} \leq^* g$. To show $\rho \preceq \mu_g$, take any pair A, B of closed subsets of X which satisfies $\rho(A, B) > 0$, and we shall show $\mu_g(A, B) > 0$.

Take $k \in \omega$ so that $\rho(A, B) > 1/k$ and $g(n) \ge h_{\rho}(n)$ for all $n \ge k$. By the definition of h_{ρ} , for all $n \ge k$ and $x, y \in K_{n+2} \setminus K_n$, if $\rho(x, y) \ge 1/n$ then $\mu(x, y) \ge 1/h_{\rho}(n)$. So we have

$$\mu(A \cap (K_{n+2} \smallsetminus K_n), B \cap (K_{n+2} \smallsetminus K_n)) \ge 1/h_{\rho}(n).$$

Since $g(n) \ge h_{\rho}(n)$ for all $n \ge k$ and by the property (1) in Lemma 3.2, we have

$$\mu_g(A \cap (K_{n+2} \smallsetminus K_n), B \cap (K_{n+2} \smallsetminus K_n)) \ge 1$$

for all $n \ge k$. Also, by the property (2) in Lemma 3.2 and the definition of K_n 's, for $m, n \in \omega$ with $k \le m < n$ we have $\mu_g(X \smallsetminus K_n, K_m) \ge n - m$ and so

$$\mu_g(A \cap (K_{n+2} \smallsetminus K_{n+1}), B \cap (K_{m+1} \smallsetminus K_m)) \ge 1$$

and

$$u_g(A \cap (K_{m+1} \smallsetminus K_m), B \cap (K_{n+2} \smallsetminus K_{n+1})) \ge 1.$$

Hence $\mu_g(A, B) \ge \min\{1, \mu_g(A \cap K_{k+1}, B \cap K_{k+1})\} > 0.$

Lemma 3.4. The mapping from $\omega^{\uparrow \omega}$ to M(X) which maps g to μ_g is a Tukey mapping, that is, the image of an unbounded subset of $\omega^{\uparrow \omega}$ is an unbounded subset of M(X).

Proof. It suffices to show that, for $\rho \in M(X)$ and $g \in \omega^{\uparrow \omega}$, if $g \not\leq^* H_{\rho}$ then $\mu_q \not\leq \rho$.

Suppose that $\rho \in M(X)$, $g \in \omega^{\uparrow \omega}$ and $g \not\leq^* H_{\rho}$. To show $\mu_g \not\leq \rho$, we shall find a pair A, B of closed subsets of X such that $\rho(A, B) = 0$ but $\mu_g(A, B) > 0$.

Let $U = \{n : H_{\rho}(n) < g(n)\}, A = \{e_{n,j_n^{\rho}} : n \in U\}$ and $B = \{e_n : n \in U\}$. Since $g \not\leq^* H_{\rho}$, U is an infinite subset of ω . By the choice of j_n^{ρ} , for each $n \in U$ we have $\rho(e_{n,j_n^{\rho}}, e_n) \leq 1/n$, and hence $\rho(A, B) = 0$. On the other hand, for each $n \in U$, since $g(n) > H_{\rho}(n) \geq 1/\mu(e_{n,j_n^{\rho}}, e_n)$ and by the property (1) in Lemma 3.2, we have $\mu_g(e_{n,j_n^{\rho}}, e_n) \geq g(n) \cdot \mu(e_{n,j_n^{\rho}}, e_n) \geq 1$. By the choice of $e_{n,j}$'s and the property (2) in Lemma 3.2, for any n, m, j with $n \neq m$ we have $\mu_g(e_{n,j}, e_m) > 1/2$. Hence $\mu_g(A, B) > 1/2$.

This concludes the proof of Theorem 3.1.

Acknowledgement

I would like to thank the referee for pointing out my errors in the first version of the paper.

References

- T. Bartoszyński and H. Judah. Set Theory: On the Structure of the Real Line. A. K. Peters, Wellesley, Massachusetts, 1995.
- [2] L. Gillman and M. Jerison. *Rings of continuous functions*. Van Nostrand, 1960.

- [3] M. Kada, K. Tomoyasu, and Y. Yoshinobu. How many miles to $\beta \omega$? — Approximating $\beta \omega$ by metric-dependent compactifications. *Topology Appl.*, 145:277–292, 2004.
- [4] M. Kada, K. Tomoyasu, and Y. Yoshinobu. How many miles to βX ? \mathfrak{d} miles, or just one foot. *Topology Appl.*, 153:3313–3319, 2006.
- [5] R. G. Woods. The minimum uniform compactification of a metric space. *Fund. Math.*, 147:39–59, 1995.