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How many miles to X7 II —Approximations
to BX versus cofinal types of sets of metrics

Masaru Kada*

Abstract

Kada, Tomoyasu and Yoshinobu proved that the Stone-Cech com-
pactification of a locally compact separable metrizable space is approx-
imated by the collection of 0-many Smirnov compactifications, where
0 is the dominating number. By refining the proof of this result, we
will show that the collection of compatible metrics on a locally com-
pact separable metrizable space has the same cofinal type, in the sense
of Tukey relation, as the set of functions from w to w with respect to
eventually dominating order.

1 Tukey relations between directed sets

We use standard terminology and refer the readers to [1] for undefined set-
theoretic notions. For a € R, |a] denotes the largest integer not exceeding
a, and [a] denotes the smallest integer not below a. For f,g € w*, we say
f <* g if for all but finitely many n < w we have f(n) < g(n). A subset of
w® is called a dominating family if it is cofinal in w* with respect to <*. The
dominating number 0 is the smallest size of a dominating family. We let w!*
denote the set of strictly increasing functions in w®.

Let (D, <) and (F, <) directed partially ordered sets. A mapping ¢ from
D to F is called a Tukey mapping if the image of an unbounded subset of D
by ¢ is an unbounded subset of F, or equivalently, if the inverse image of a
bounded subset of E is a bounded subset of D. We write (D, <) <p (F, <)
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(and often say D is Tukey below E, or E is cofinally finer than D) if there
is a Tukey mapping from D to E. We will write D <p FE if referred order
relations on D and E are clear from the context.

A mapping ¢ from E to D is called a convergent mapping if the image of
a cofinal subset of E by 1 is a cofinal subset of D. It is easily checked that
D <p F if and only if there is a convergent mapping from £ to D.

We write D = F (and often say D is Tukey equivalent to E, D is cofinally
similar to E, or D and FE have the same cofinal type) if both D < F and
E <7 D hold. In particular, if there is a mapping from D to F which is both
Tukey and convergent, then D =; E holds.

It is easy to see that (w¥, <*) =p (w*, <*) holds.

For a directed partially ordered set (D, <), add((D, <)) or add(D) denotes
the smallest size of an unbounded subset of D, and cof((D, <)) or cof(D)
denotes the smallest size of a cofinal subset of D. It is easy to see that
D <p Eimplies add(D) > add(E) and cof (D) < cof(E). Using this notation,
the dominating number 0 is described as 0 = cof ((w*, <*)) = cof ((w!¥, <*)).

2 Compactifications of metrizable spaces

A compactification of a completely regular Hausdorff space X is a compact
Hausdorff space which contains X as a dense subspace. For compactifications
aX and vX of X, we write aX < X if there is a continuous surjection
f X — aX such that f [ X is the identity map on X. If such an f
can be chosen to be a homeomorphism, we write X ~ vX. Let Cpt(X)
denote the class of compactifications of X. When we identify ~-equivalent
compactifications, we may regard Cpt(X) as a set, and the order structure
(Cpt(X), <) is a complete upper semilattice whose largest element is the
Stone-Cech compactification 5.X.

The Smirnov compactification of a metric space (X, d), denoted by ugzX,
is the unique compactification characterized by the following property: A
bounded continuous function f from X to R is continuously extended over
ugX if and only if f is uniformly continuous with respect to the metric d.

The following theorem tells us that the Stone-Cech compactification of a
metrizable space is approximated by the collection of all Smirnov compacti-
fications. Let M(X) denote the set of all metrics on X which are compatible
with the topology on X.

Theorem 2.1. [5, Theorem 2.11] For a noncompact metrizable space X, we
have BX =~ sup{uqX : d € M(X)} (the supremum is taken in the upper
semilattice (Cpt(X), <)).



Now we define the following cardinal function.

Definition 2.2. [3, Definition 2.2] For a noncompact metrizable space X,
let sa(X) = min{|D|: D C M(X) and X ~ sup{usX : d € D}}.

For a topological space X, X1 denotes the first Cantor-Bendixson deriva-
tive of X, that is, the subspace of X which consists of all nonisolated points
of X. Note that sa(X) = 1 holds if and only if there is a metric d € M(X)
which makes (X, d) an Atsuji space (also called a UC-space), which is known
to be equivalent to the compactness of X1 [5, Corollary 3.5].

Kada, Tomoyasu and Yoshinobu [4] proved the following theorem.

Theorem 2.3. [4, Theorem 2.10] For a locally compact separable metrizable
space X such that XV is not compact, sa(X) =0 holds.

For a compactification aX of X and a pair A, B of closed subsets of X, we
write A || B (aX) if clox ANclyx B =0, and otherwise A f B (aX). It is
known that, for a normal space X, aX ~ X holdsifandonlyif A || B (aX)
for any pair A, B of disjoint closed subsets of X [2, Theorem 6.5]. For Smirnov
compactification usX of (X, d), it is known that A || B (uqX) if and only if
d(A, B) > 0 [5, Theorem 2.5].

For dy,dy € M(X), we write d; = dy if the identity function on X is
uniformly continuous as a function from (X, ds) to (X,d;). The following
equivalent conditions for d; < dy are known.

Proposition 2.4. For a metrizable space X and dy, ds € M(X), the following
conditions are equivalent.

1. dy < ds.

2. ug, X < ug,X.

3. For closed subsets A, B of X, if A|| B (ug,X) then A || B (ug,X).
4. For closed subsets A, B of X, if di(A, B) > 0 then d3(A, B) > 0.

For dy,dy € M(X), we write dy ~ dg if d; and dy are uniformly equivalent,
that is, if both d; < dy and dy < d; hold. We will identify uniformly
equivalent metrics on X and simply write M(X) to denote the quotient set
M(X)/~. Then (M(X), =) is a directed ordered set.

Woods showed (in the proof of [5, Theorem 2.11]) that for any pair A, B
of disjoint nonempty closed subsets of a metric space X there is a metric
d € M(X) such that d(A,B) > 0. Hence, if D C M(X) is cofinal with
respect to =<, then sup{uysX : d € D} ~ X. As a consequence, we have
sa(X) < cof ((M(X), <)),



In the next section, we will prove the Tukey equivalence (M(X), <) =¢
(w¥, <*) for a locally compact separable metrizable space X such that X
is not compact. It will be proved by refining the proof of Theorem 2.3 ([4,
Theorem 2.10]) to fit in a context of Tukey relation.

3 The main theorem

This section is devoted to the proof of the following theorem.

Theorem 3.1. Let X be a locally compact separable metrizable space such
that XY is not compact. Then (M(X), =) =¢ (v, <*) holds.

Throughout this section, we assume that X is a locally compact separable
metrizable space and X is not compact. Since X is embedded into the
Hilbert cube H = [0, 1]* as a subspace, we fix such an embedding and regard
X as a subspace of H.

We will define a mapping from w'® to M(X) which is both Tukey and
convergent, that is, the image of an unbounded set is unbounded and the
image of a cofinal set is cofinal.

The following lemma, due to Kada, Tomoyasu and Yoshinobu [4, Lemma 2.8],
is quite useful. Here we state this lemma in a modified and slightly strength-
ened form. Though it is not so difficult to modify the original proof to get
the modified statement, we will present a complete proof for the reader’s
convenience. For a function ¢ from X to R, we write p(z) — 00 as z — o
if, for any M € R there is a compact subset K of X such that ¢(z) > M
holds for all x € X \ K.

Lemma 3.2. Suppose that X is a locally compact separable metrizable space,
d € M(X), diamgy(X) is finite, and v is a continuous function from X to
[0,00) such that v(x) — oo as x — oo. Forn € w, Let K,, = {z € X :
v(x) < max{n,diamy(X)}}. Then we can define a mapping from w'* to
M(X), which maps g to d,, with the following properties.

1. Ifx,y € X \ Ky, then dy(x,y) > g(n) - d(z,y).
2. Forz,y € X, dy(w,y) > |y(z) —v(v)l.
3. For g1,g2 € W', g1 <* gy implies dg, = dg,.

Proof. We may assume that g(0) > 1. Define an increasing continuous
function f, from [0,00) to [1,00) in the following way: For s € [0, 00), let
k=12s],r=2s—k and

fo(s) = (A —=r)-g(k) +r-g(k+1).
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Note that, by the definition of f,, if g1 <* g, then there is an M € [0, c0)
such that for all s € [M, 00) we have fy,(s) < f,,(s).

For s € [0, 00), let
9= [ sl

Define functions p, p;, from X x X to [0, 00) by the following:

p(z,y) = max{|y(z) —v(y)|,d(x,y)},
py(x,y) = fo(max{y(x),v(y)}) - p(,y).

P, is not necessarily a metric on X, because p) does not satisfy triangle
inequality in general. So we define a function d, from X x X to [0,00) by
the following;:

dg(,y) = inf{p) (v, 20) + -+ -+ py(zi, zig1) + -+ p(z1,y) :
| <wand zp,...,21 € X}.

Note that, since f, is increasing,

P, (2, y) = fy(max{y(z),vy ()) ( Y)
> fo(max{y(z),(y)

> [Fy(v(x) — Fy(v(y
Hence we have d,(z,y) > |F,(v(z)) — F,(7(y

Po(@,20) + -+ + pylz1-1,y)
> |Fy(y(@)) = Fy(y(20))| + -+ + [Fy(v(21-1)) — Fy (v ()]
> |Fy(v(x)) — Fy(v(y))] -

Claim 1. Forn < w and z,y € X N\ K,,, dy(z,y) > f,(n/2) - d(z,y) =
g(n) - d(z,y).

Proof. We may assume that y(z) =r > s = v(y). Since y € X \ K,, and
by the definition of K,,, we have s > n. Since f, is increasing, it suffices to
show that pi (2, 20) + - + p(21-1,y) > fy(5/2) - d(z,y) holds for any | < w,
20,5211 € X.

Case 1. Assume that vy(z;) > s/2 for all ¢ <. Since f, is increasing, the
definition of p yields

Pg(,20) + -+ pylz-1,y) > fo(s/2) - (p(w, 20) + -+ + pl21-1,9))



Case 2. Assume that v(z;) < s/2 for some i < [. Fix such an i and then
we have the following:

p;(xuzO) + - +Pg<Zz 1722) Z d ( ) Z
0y (26, zig1) + -+ p(21,y) = dg(2i,y) >

Hence it holds that

Py, 20) + -+ pyz-1,y) 2 (Fy(r) — Fy(v(2))) + (Fy(s) — Fo(v(z)))
(Fy(r) = Fy(s/2)) + (Fy(s) — Fy(s/2))
(r—=5/2) - fo(5/2) + (s/2) - fo(s/2)

fo(s/2).
On the other hand, d(x,y) < r, because x € X \ K,, and hence r = v(x) >
diamg4(X) by the definition of K,. So we have

AVARAVARLV]

Py, 20) + -+ Pl (2121, y) > fo(s/2) - d(z,y).
This concludes the proof of the claim. n

Clearly d, is symmetric and satisfies the triangle inequality. Since f,(s) >
1 for all s € [0,00), Claim 1 implies that d, is a metric on X. It is easy to
see that d, is compatible with the topology of (X, d).

It is easy to check that, if g; <* go, then there is a compact subset K of
X such that for any z,y € X \ K we have d,, (z,y) < dg,(z,y). Therefore,
g1 <* go implies dg, = d,.

Finally, for any z,y € X we have dy(x,y) > p(x,y) > |y(x) —v(y)|. O

Now we work on a fixed locally compact separable metrizable space X
such that X is not compact. We regard X as a subspace of the Hilbert
cube H. Let u be a fixed metric function on H. Since H is compact, clearly
diam,, (X) is finite.

Let E be a countable discrete closed subset of X(). Such a set E exists
by our assumption. We can find a continuous function vy from X to [0, c0)
and a sequence {e, : n < w} C E with the following properties:

1. y(z) — o0 as ¢ — o0,
2. For each n, y(e,) =n+1/2.
For each n, choose a sequence (e, ; : j € w) in X so that:

1. (e, : J € w) converges to e,,



2. For all j, n < (e, ;) <n+1

Now we consider the mapping from (w!“, <*) to (M(X), <) obtained by
applying Lemma 3.2 for X and g, which maps g € w! to u, € M(X). We
will show that it is both a Tukey and a convergent mapping, which concludes
the proof of Theorem 3.1.

To show this, we define two auxiliary mappings from M(X) to w'* as
follows. For n < w, let K,, be the one which appears in the statement of
Lemma 3.2. For p € M(X), define h, recursively by letting h(0) = 0 and

hy(n) =min{l : I > h,(n—1) and Vz,y € K,12 (p(z,y) > 1/n — p(z,y) > 1/1)}

for n > 1. The set of I’s in the definition of h,(n) is nonempty because
of compactness, and so h, is well-defined. Also, for p € M(X), define H,
recursively in the following way. For each n > 1, define j2 € w by

g =min{j : p(enj,e,) < 1/n}.
Let H(0) =0 and

H,(n) = max {Hp(n —1)+1, (1/M(€n,j£= enﬂ}
for n > 1.

Lemma 3.3. The mapping from w'® to M(X) which maps g to p, is a
convergent mapping, that is, the image of a cofinal subset of w!'“ is a cofinal

subset of M(X).

Proof. Tt suffices to show that, for p € M(X) and g € W', if h, <* g then
P = Mg

Suppose that p € M(X), g € w'“ and h, <* g. To show p =< p,, take any
pair A, B of closed subsets of X which satisfies p(A, B) > 0, and we shall
show p4(A, B) > 0.

Take k € w so that p(A, B) > 1/k and g(n) > h,(n) for all n > k. By the
definition of h,, for all n > k and z,y € K,12 N\ K,,, if p(z,y) > 1/n then
p(z,y) > 1/h,(n). So we have

AN (Kpyz ~ Kp), BN (Knsa ~ Kp)) > 1/h,(n).

Since g(n) > h,(n) for all n > k and by the property (1) in Lemma 3.2, we
have
,ug(A N (Kn+2 AN Kn), BN (KTL+2 AN Kn>> 2 1.



for all n > k. Also, by the property (2) in Lemma 3.2 and the definition of
K,’s, for m,n € w with k < m < n we have p,(X \ K, K,;,) > n —m and
SO

ug(A N (Kn+2 N Kn+1>, Bn (Km+1 AN Km)) 2 1

and
/,Lg(A M (Km+1 AN Km), B N (Kn+2 AN Kn+1)) 2 1

Hence p,(A, B) > min{1, p,(AN Kyy1, BN Kjyq)} > 0. O

Lemma 3.4. The mapping from w'® to M(X) which maps g to fg is a Tukey
mapping, that is, the image of an unbounded subset of W' is an unbounded
subset of M(X).

Proof. 1t suffices to show that, for p € M(X) and g € W', if g £* H, then
tg 2 p-

Suppose that p € M(X), g € w'“ and g £* H,. To show u, A p, we
shall find a pair A, B of closed subsets of X such that p(A,B) = 0 but
py(A, B) > 0.

Let U= {n:H,n)<g(n)}, A={e,;p :ncU}and B = {e, :n c U}.
Since g £* H,, U is an infinite subset of w. By the choice of j#, for each
n € U we have p(e,, ¢, e,) < 1/n, and hence p(A, B) = 0. On the other hand,
for each n € U, since g(n) > H,(n) > 1/u(e, jo,e,) and by the property (1)
in Lemma 3.2, we have pi4(e,, 2, €,) > g(n) - p(e, s, e,) > 1. By the choice
of e, ;’s and the property (2) in Lemma 3.2, for any n,m, j with n # m we
have pi4(€n j, €m,) > 1/2. Hence py(A, B) > 1/2. O

This concludes the proof of Theorem 3.1.

Acknowledgement

I would like to thank the referee for pointing out my errors in the first version
of the paper.

References

[1] T. Bartoszyniski and H. Judah. Set Theory: On the Structure of the Real
Line. A. K. Peters, Wellesley, Massachusetts, 1995.

[2] L. Gillman and M. Jerison. Rings of continuous functions. Van Nostrand,
1960.



[3] M. Kada, K. Tomoyasu, and Y. Yoshinobu. How many miles to fSw?
— Approximating Sw by metric-dependent compactifications. Topology
Appl., 145:277-292, 2004.

[4] M. Kada, K. Tomoyasu, and Y. Yoshinobu. How many miles to fX7 —
0 miles, or just one foot. Topology Appl., 153:3313-3319, 2006.

[5] R. G. Woods. The minimum uniform compactification of a metric space.
Fund. Math., 147:39-59, 1995.



