
How many miles to βX? II - Approximations to
βX versus cofinal types of sets of metrics

言語: eng

出版者: 

公開日: 2012-02-01

キーワード (Ja): 

キーワード (En): 

作成者: Kada, Masaru

メールアドレス: 

所属: 

メタデータ

http://hdl.handle.net/10466/12486URL



How many miles to βX? II —Approximations
to βX versus cofinal types of sets of metrics

Masaru Kada∗

Abstract

Kada, Tomoyasu and Yoshinobu proved that the Stone–Čech com-
pactification of a locally compact separable metrizable space is approx-
imated by the collection of d-many Smirnov compactifications, where
d is the dominating number. By refining the proof of this result, we
will show that the collection of compatible metrics on a locally com-
pact separable metrizable space has the same cofinal type, in the sense
of Tukey relation, as the set of functions from ω to ω with respect to
eventually dominating order.

1 Tukey relations between directed sets

We use standard terminology and refer the readers to [1] for undefined set-
theoretic notions. For a ∈ R, bac denotes the largest integer not exceeding
a, and dae denotes the smallest integer not below a. For f, g ∈ ωω, we say
f ≤∗ g if for all but finitely many n < ω we have f(n) ≤ g(n). A subset of
ωω is called a dominating family if it is cofinal in ωω with respect to ≤∗. The
dominating number d is the smallest size of a dominating family. We let ω↑ω

denote the set of strictly increasing functions in ωω.
Let (D,≤) and (E,≤) directed partially ordered sets. A mapping ϕ from

D to E is called a Tukey mapping if the image of an unbounded subset of D
by ϕ is an unbounded subset of E, or equivalently, if the inverse image of a
bounded subset of E is a bounded subset of D. We write (D,≤) ≤T (E,≤)
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(and often say D is Tukey below E, or E is cofinally finer than D) if there
is a Tukey mapping from D to E. We will write D ≤T E if referred order
relations on D and E are clear from the context.

A mapping ψ from E to D is called a convergent mapping if the image of
a cofinal subset of E by ψ is a cofinal subset of D. It is easily checked that
D ≤T E if and only if there is a convergent mapping from E to D.

We writeD ≡T E (and often sayD is Tukey equivalent to E, D is cofinally
similar to E, or D and E have the same cofinal type) if both D ≤T E and
E ≤T D hold. In particular, if there is a mapping from D to E which is both
Tukey and convergent, then D ≡T E holds.

It is easy to see that (ωω,≤∗) ≡T (ω↑ω,≤∗) holds.
For a directed partially ordered set (D,≤), add((D,≤)) or add(D) denotes

the smallest size of an unbounded subset of D, and cof((D,≤)) or cof(D)
denotes the smallest size of a cofinal subset of D. It is easy to see that
D ≤T E implies add(D) ≥ add(E) and cof(D) ≤ cof(E). Using this notation,
the dominating number d is described as d = cof((ωω,≤∗)) = cof((ω↑ω,≤∗)).

2 Compactifications of metrizable spaces

A compactification of a completely regular Hausdorff space X is a compact
Hausdorff space which contains X as a dense subspace. For compactifications
αX and γX of X, we write αX ≤ γX if there is a continuous surjection
f : γX → αX such that f � X is the identity map on X. If such an f
can be chosen to be a homeomorphism, we write αX ' γX. Let Cpt(X)
denote the class of compactifications of X. When we identify '-equivalent
compactifications, we may regard Cpt(X) as a set, and the order structure
(Cpt(X),≤) is a complete upper semilattice whose largest element is the
Stone–Čech compactification βX.

The Smirnov compactification of a metric space (X, d), denoted by udX,
is the unique compactification characterized by the following property: A
bounded continuous function f from X to R is continuously extended over
udX if and only if f is uniformly continuous with respect to the metric d.

The following theorem tells us that the Stone–Čech compactification of a
metrizable space is approximated by the collection of all Smirnov compacti-
fications. Let M(X) denote the set of all metrics on X which are compatible
with the topology on X.

Theorem 2.1. [5, Theorem 2.11] For a noncompact metrizable space X, we
have βX ' sup{udX : d ∈ M(X)} (the supremum is taken in the upper
semilattice (Cpt(X),≤)).
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Now we define the following cardinal function.

Definition 2.2. [3, Definition 2.2] For a noncompact metrizable space X,
let sa(X) = min{|D| : D ⊆ M(X) and βX ' sup{udX : d ∈ D}}.

For a topological spaceX,X(1) denotes the first Cantor–Bendixson deriva-
tive of X, that is, the subspace of X which consists of all nonisolated points
of X. Note that sa(X) = 1 holds if and only if there is a metric d ∈ M(X)
which makes (X, d) an Atsuji space (also called a UC-space), which is known
to be equivalent to the compactness of X(1) [5, Corollary 3.5].

Kada, Tomoyasu and Yoshinobu [4] proved the following theorem.

Theorem 2.3. [4, Theorem 2.10] For a locally compact separable metrizable
space X such that X(1) is not compact, sa(X) = d holds.

For a compactification αX of X and a pair A,B of closed subsets of X, we
write A ‖ B (αX) if clαX A ∩ clαX B = ∅, and otherwise A 6 ‖ B (αX). It is
known that, for a normal spaceX, αX ' βX holds if and only if A ‖ B (αX)
for any pair A,B of disjoint closed subsets ofX [2, Theorem 6.5]. For Smirnov
compactification udX of (X, d), it is known that A ‖ B (udX) if and only if
d(A,B) > 0 [5, Theorem 2.5].

For d1, d2 ∈ M(X), we write d1 � d2 if the identity function on X is
uniformly continuous as a function from (X, d2) to (X, d1). The following
equivalent conditions for d1 � d2 are known.

Proposition 2.4. For a metrizable space X and d1, d2 ∈ M(X), the following
conditions are equivalent.

1. d1 � d2.

2. ud1X ≤ ud2X.

3. For closed subsets A,B of X, if A ‖ B (ud1X) then A ‖ B (ud2X).

4. For closed subsets A,B of X, if d1(A,B) > 0 then d2(A,B) > 0.

For d1, d2 ∈ M(X), we write d1 ∼ d2 if d1 and d2 are uniformly equivalent,
that is, if both d1 � d2 and d2 � d1 hold. We will identify uniformly
equivalent metrics on X and simply write M(X) to denote the quotient set
M(X)/∼. Then (M(X),�) is a directed ordered set.

Woods showed (in the proof of [5, Theorem 2.11]) that for any pair A,B
of disjoint nonempty closed subsets of a metric space X there is a metric
d ∈ M(X) such that d(A,B) > 0. Hence, if D ⊂ M(X) is cofinal with
respect to �, then sup{udX : d ∈ D} ' βX. As a consequence, we have
sa(X) ≤ cof((M(X),�)).
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In the next section, we will prove the Tukey equivalence (M(X),�) ≡T

(ωω,≤∗) for a locally compact separable metrizable space X such that X(1)

is not compact. It will be proved by refining the proof of Theorem 2.3 ([4,
Theorem 2.10]) to fit in a context of Tukey relation.

3 The main theorem

This section is devoted to the proof of the following theorem.

Theorem 3.1. Let X be a locally compact separable metrizable space such
that X(1) is not compact. Then (M(X),�) ≡T (ωω,≤∗) holds.

Throughout this section, we assume that X is a locally compact separable
metrizable space and X(1) is not compact. Since X is embedded into the
Hilbert cube H = [0, 1]ω as a subspace, we fix such an embedding and regard
X as a subspace of H.

We will define a mapping from ω↑ω to M(X) which is both Tukey and
convergent, that is, the image of an unbounded set is unbounded and the
image of a cofinal set is cofinal.

The following lemma, due to Kada, Tomoyasu and Yoshinobu [4, Lemma 2.8],
is quite useful. Here we state this lemma in a modified and slightly strength-
ened form. Though it is not so difficult to modify the original proof to get
the modified statement, we will present a complete proof for the reader’s
convenience. For a function ϕ from X to R, we write ϕ(x) →∞ as x→∞
if, for any M ∈ R there is a compact subset K of X such that ϕ(x) > M
holds for all x ∈ X rK.

Lemma 3.2. Suppose that X is a locally compact separable metrizable space,
d ∈ M(X), diamd(X) is finite, and γ is a continuous function from X to
[0,∞) such that γ(x) → ∞ as x → ∞. For n ∈ ω, Let Kn = {x ∈ X :
γ(x) ≤ max{n, diamd(X)}}. Then we can define a mapping from ω↑ω to
M(X), which maps g to dg, with the following properties.

1. If x, y ∈ X rKn, then dg(x, y) ≥ g(n) · d(x, y).

2. For x, y ∈ X, dg(x, y) ≥ |γ(x)− γ(y)|.

3. For g1, g2 ∈ ω↑ω, g1 ≤∗ g2 implies dg1 � dg2.

Proof. We may assume that g(0) ≥ 1. Define an increasing continuous
function fg from [0,∞) to [1,∞) in the following way: For s ∈ [0,∞), let
k = b2sc, r = 2s− k and

fg(s) = (1− r) · g(k) + r · g(k + 1).
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Note that, by the definition of fg, if g1 ≤∗ g2, then there is an M ∈ [0,∞)
such that for all s ∈ [M,∞) we have fg1(s) ≤ fg2(s).

For s ∈ [0,∞), let

Fg(s) =

∫ s

0

fg(t)dt.

Define functions ρ, ρ′g from X ×X to [0,∞) by the following:

ρ(x, y) = max{|γ(x)− γ(y)| , d(x, y)},

ρ′g(x, y) = fg(max{γ(x), γ(y)}) · ρ(x, y).
ρ′g is not necessarily a metric on X, because ρ′g does not satisfy triangle
inequality in general. So we define a function dg from X × X to [0,∞) by
the following:

dg(x, y) = inf{ρ′g(x, z0) + · · ·+ ρ′g(zi, zi+1) + · · ·+ ρ′g(zl−1, y) :

l < ω and z0, . . . , zl−1 ∈ X}.

Note that, since fg is increasing,

ρ′g(x, y) = fg(max{γ(x), γ(y)}) · ρ(x, y)
≥ fg(max{γ(x), γ(y)}) · |γ(x)− γ(y)|
≥ |Fg(γ(x))− Fg(γ(y))| .

Hence we have dg(x, y) ≥ |Fg(γ(x))− Fg(γ(y))|, because

ρ′g(x, z0) + · · ·+ ρ′g(zl−1, y)

≥ |Fg(γ(x))− Fg(γ(z0))|+ · · ·+ |Fg(γ(zl−1))− Fg(γ(y))|
≥ |Fg(γ(x))− Fg(γ(y))| .

Claim 1. For n < ω and x, y ∈ X r Kn, dg(x, y) ≥ fg(n/2) · d(x, y) =
g(n) · d(x, y).

Proof. We may assume that γ(x) = r ≥ s = γ(y). Since y ∈ X r Kn and
by the definition of Kn, we have s ≥ n. Since fg is increasing, it suffices to
show that ρ′g(x, z0) + · · ·+ ρ′g(zl−1, y) ≥ fg(s/2) · d(x, y) holds for any l < ω,
z0, . . . , zl−1 ∈ X.

Case 1. Assume that γ(zi) > s/2 for all i < l. Since fg is increasing, the
definition of ρ′g yields

ρ′g(x, z0) + · · ·+ ρ′g(zl−1, y) > fg(s/2) · (ρ(x, z0) + · · ·+ ρ(zl−1, y))

≥ fg(s/2) · ρ(x, y)
≥ fg(s/2) · d(x, y).
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Case 2. Assume that γ(zi) ≤ s/2 for some i < l. Fix such an i and then
we have the following:

ρ′g(x, z0) + · · ·+ ρ′g(zi−1, zi) ≥ dg(x, zi) ≥ Fg(γ(x))− Fg(γ(zi)),

ρ′g(zi, zi+1) + · · ·+ ρ′g(zl−1, y) ≥ dg(zi, y) ≥ Fg(γ(y))− Fg(γ(zi)).

Hence it holds that

ρ′g(x, z0) + · · ·+ ρ′g(zl−1, y) ≥ (Fg(r)− Fg(γ(zi))) + (Fg(s)− Fg(γ(zi)))

≥ (Fg(r)− Fg(s/2)) + (Fg(s)− Fg(s/2))

≥ (r − s/2) · fg(s/2) + (s/2) · fg(s/2)

= r · fg(s/2).

On the other hand, d(x, y) ≤ r, because x ∈ X rKn and hence r = γ(x) ≥
diamd(X) by the definition of Kn. So we have

ρ′g(x, z0) + · · ·+ ρ′g(zl−1, y) ≥ fg(s/2) · d(x, y).

This concludes the proof of the claim.

Clearly dg is symmetric and satisfies the triangle inequality. Since fg(s) ≥
1 for all s ∈ [0,∞), Claim 1 implies that dg is a metric on X. It is easy to
see that dg is compatible with the topology of (X, d).

It is easy to check that, if g1 ≤∗ g2, then there is a compact subset K of
X such that for any x, y ∈ X r K we have dg1(x, y) ≤ dg2(x, y). Therefore,
g1 ≤∗ g2 implies dg1 � dg2 .

Finally, for any x, y ∈ X we have dg(x, y) ≥ ρ(x, y) ≥ |γ(x)− γ(y)|.

Now we work on a fixed locally compact separable metrizable space X
such that X(1) is not compact. We regard X as a subspace of the Hilbert
cube H. Let µ be a fixed metric function on H. Since H is compact, clearly
diamµ(X) is finite.

Let E be a countable discrete closed subset of X(1). Such a set E exists
by our assumption. We can find a continuous function γ from X to [0,∞)
and a sequence {en : n < ω} ⊆ E with the following properties:

1. γ(x) →∞ as x→∞,

2. For each n, γ(en) = n+ 1/2.

For each n, choose a sequence 〈en,j : j ∈ ω〉 in X so that:

1. 〈en,j : j ∈ ω〉 converges to en,
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2. For all j, n < γ(en,j) < n+ 1.

Now we consider the mapping from (ω↑ω,≤∗) to (M(X),�) obtained by
applying Lemma 3.2 for X and µ, which maps g ∈ ω↑ω to µg ∈ M(X). We
will show that it is both a Tukey and a convergent mapping, which concludes
the proof of Theorem 3.1.

To show this, we define two auxiliary mappings from M(X) to ω↑ω as
follows. For n < ω, let Kn be the one which appears in the statement of
Lemma 3.2. For ρ ∈ M(X), define hρ recursively by letting h(0) = 0 and

hρ(n) = min{l : l > hρ(n−1) and ∀x, y ∈ Kn+2 (ρ(x, y) ≥ 1/n→ µ(x, y) ≥ 1/l)}

for n ≥ 1. The set of l’s in the definition of hρ(n) is nonempty because
of compactness, and so hρ is well-defined. Also, for ρ ∈ M(X), define Hρ

recursively in the following way. For each n ≥ 1, define jρ
n ∈ ω by

jρ
n = min{j : ρ(en,j, en) ≤ 1/n}.

Let H(0) = 0 and

Hρ(n) = max
{
Hρ(n− 1) + 1,

⌈
1/µ(en,jρ

n
, en)

⌉}
for n ≥ 1.

Lemma 3.3. The mapping from ω↑ω to M(X) which maps g to µg is a
convergent mapping, that is, the image of a cofinal subset of ω↑ω is a cofinal
subset of M(X).

Proof. It suffices to show that, for ρ ∈ M(X) and g ∈ ω↑ω, if hρ ≤∗ g then
ρ � µg.

Suppose that ρ ∈ M(X), g ∈ ω↑ω and hρ ≤∗ g. To show ρ � µg, take any
pair A,B of closed subsets of X which satisfies ρ(A,B) > 0, and we shall
show µg(A,B) > 0.

Take k ∈ ω so that ρ(A,B) > 1/k and g(n) ≥ hρ(n) for all n ≥ k. By the
definition of hρ, for all n ≥ k and x, y ∈ Kn+2 r Kn, if ρ(x, y) ≥ 1/n then
µ(x, y) ≥ 1/hρ(n). So we have

µ(A ∩ (Kn+2 rKn), B ∩ (Kn+2 rKn)) ≥ 1/hρ(n).

Since g(n) ≥ hρ(n) for all n ≥ k and by the property (1) in Lemma 3.2, we
have

µg(A ∩ (Kn+2 rKn), B ∩ (Kn+2 rKn)) ≥ 1.
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for all n ≥ k. Also, by the property (2) in Lemma 3.2 and the definition of
Kn’s, for m,n ∈ ω with k ≤ m < n we have µg(X r Kn, Km) ≥ n −m and
so

µg(A ∩ (Kn+2 rKn+1), B ∩ (Km+1 rKm)) ≥ 1

and
µg(A ∩ (Km+1 rKm), B ∩ (Kn+2 rKn+1)) ≥ 1.

Hence µg(A,B) ≥ min{1, µg(A ∩Kk+1, B ∩Kk+1)} > 0.

Lemma 3.4. The mapping from ω↑ω to M(X) which maps g to µg is a Tukey
mapping, that is, the image of an unbounded subset of ω↑ω is an unbounded
subset of M(X).

Proof. It suffices to show that, for ρ ∈ M(X) and g ∈ ω↑ω, if g 6≤∗ Hρ then
µg 6� ρ.

Suppose that ρ ∈ M(X), g ∈ ω↑ω and g 6≤∗ Hρ. To show µg 6� ρ, we
shall find a pair A,B of closed subsets of X such that ρ(A,B) = 0 but
µg(A,B) > 0.

Let U = {n : Hρ(n) < g(n)}, A = {en,jρ
n

: n ∈ U} and B = {en : n ∈ U}.
Since g 6≤∗ Hρ, U is an infinite subset of ω. By the choice of jρ

n, for each
n ∈ U we have ρ(en,jρ

n
, en) ≤ 1/n, and hence ρ(A,B) = 0. On the other hand,

for each n ∈ U , since g(n) > Hρ(n) ≥ 1/µ(en,jρ
n
, en) and by the property (1)

in Lemma 3.2, we have µg(en,jρ
n
, en) ≥ g(n) · µ(en,jρ

n
, en) ≥ 1. By the choice

of en,j’s and the property (2) in Lemma 3.2, for any n,m, j with n 6= m we
have µg(en,j, em) > 1/2. Hence µg(A,B) > 1/2.

This concludes the proof of Theorem 3.1.
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