

学術情報リポジトリ

Covering a bounded set of functions by an increasing chain of slaloms

メタデータ	言語: eng
	出版者:
	公開日: 2012-02-01
	キーワード (Ja):
	キーワード (En):
	作成者: Kada, Masaru
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10466/12488

Covering a bounded set of functions by an increasing chain of slaloms

Masaru Kada*

Abstract

A slalom is a sequence of finite sets of length ω . Slaloms are ordered by coordinatewise inclusion with finitely many exceptions. Improving earlier results of Mildenberger, Shelah and Tsaban, we prove consistency results concerning existence and non-existence of an increasing sequence of a certain type of slaloms which covers a bounded set of functions in ω^{ω} .

1 Introduction

We use standard terminology and refer the readers to [2] for undefined settheoretic notions.

Bartoszyński [1] introduced the combinatorial concept of *slalom* to study combinatorial aspects of measure and category on the real line.

We call a sequence of finite subsets of ω of length ω a slalom. For a function $g \in \omega^{\omega}$, let \mathcal{S}^g be the set of slaloms φ such that $|\varphi(n)| \leq g(n)$ for all $n < \omega$. \mathcal{S} denotes \mathcal{S}^g for $g(n) = 2^n$. For two slaloms φ and ψ , we write $\varphi \sqsubseteq \psi$ if $\varphi(n) \subseteq \psi(n)$ for all but finitely many $n < \omega$. For a function $f \in \omega^{\omega}$ and a slalom φ , $f \sqsubseteq \varphi$ if $\langle \{f(n)\} : n < \omega \rangle \sqsubseteq \varphi$.

Mildenberger, Shelah and Tsaban [9] defined cardinals θ_h for $h \in \omega^{\omega}$ and θ_* to give a partial characterization of the cardinal \mathfrak{od} , the critical cardinality of a certain selection principle for open covers.

The definition of θ_h in [9] is described using a combinatorial property which is called *o-diagonalization*. Here we redefine θ_h to fit in the present

^{*}Graduate School of Science, Osaka Prefecture University. Sakai, Osaka 599–8531 JAPAN

²⁰⁰⁰ AMS Classification: Primary 03E17; Secondary 03E35.

Keywords: cardinal characteristics of the continuum, slalom, Martin's axiom, Laver property.

context. It is easy to see that the following definition is equivalent to the original one. For a function $h \in (\omega \setminus \{0,1\})^{\omega}$, let h-1 denote the function $h' \in \omega^{\omega}$ which is defined by h'(n) = h(n) - 1 for all n.

Definition 1.1. For a function $h \in (\omega \setminus \{0,1\})^{\omega}$, θ_h is the smallest size of a subset Φ of \mathcal{S}^{h-1} which satisfies the following, if such a set Φ exists:

- 1. Φ is well-ordered by \sqsubseteq ;
- 2. For every $f \in \prod_{n < \omega} h(n)$ there is a $\varphi \in \Phi$ such that $f \sqsubseteq \varphi$.

If there is no such Φ , we define $\theta_h = \mathfrak{c}^+$.

It is easy to see that $h_1 \leq^* h_2$ implies $\theta_{h_1} \geq \theta_{h_2}$.

Definition 1.2 ([9]). $\theta_* = \min\{\theta_h : h \in \omega^{\omega}\}.$

In Section 2, we will show that $\theta_* = \mathfrak{c}^+$ is consistent with ZFC.

We say a proper forcing notion \mathbb{P} has the Laver property if, for any $h \in \omega^{\omega}$, $p \in \mathbb{P}$ and a \mathbb{P} -name \dot{f} for a function in ω^{ω} such that $p \Vdash_{\mathbb{P}} \dot{f} \in \prod_{n < \omega} h(n)$, there exist $q \in \mathbb{P}$ and $\varphi \in \mathcal{S}$ such that q is stronger than p and $q \Vdash_{\mathbb{P}} \dot{f} \sqsubseteq \varphi$.

Mildenberger, Shelah and Tsaban proved that $\theta_* = \aleph_1$ holds in all forcing models by a proper forcing notion with the Laver property over a model for CH, the continuum hypothesis [9]. In section 2, we refine their result and state a sufficient condition for $\theta_* \leq \mathfrak{c}$. As a consequence, we will show that Martin's axiom implies $\theta_* = \mathfrak{c}$.

In Section 3, we give an application of the lemma presented in Section 2 to another problem in topology. We answer a question on approximations to the Stone–Čech compactification of ω by Higson compactifications of ω , which was posed by Kada, Tomoyasu and Yoshinobu [6].

2 Facts on the cardinal θ_*

First we observe that $\theta_* = \mathfrak{c}^+$ is consistent with ZFC. We use the following theorem, which is a corollary of Kunen's classical result [7]. For the readers' convenience, we present a complete proof in Section 4.

Theorem 2.1. Suppose that $\kappa \geq \aleph_2$. The following holds in the forcing model obtained by adding κ Cohen reals over a model for CH: Let \mathcal{X} be a Polish space and $A \subseteq \mathcal{X} \times \mathcal{X}$ a Borel set. Then there is no sequence $\langle r_{\alpha} : \alpha < \omega_2 \rangle$ in \mathcal{X} which satisfies

$$\alpha \leq \beta < \omega_2 \text{ if and only if } \langle r_{\alpha}, r_{\beta} \rangle \in A.$$

Fix $h \in \omega^{\omega}$. We may regard \mathcal{S}^{h-1} as a product space of countably many finite discrete spaces, and then the relation \sqsubseteq on \mathcal{S}^{h-1} is a Borel subset of $\mathcal{S}^{h-1} \times \mathcal{S}^{h-1}$.

Theorem 2.2. $\theta_* = \mathfrak{c}^+$ holds in the forcing model obtained by adding \aleph_2 Cohen reals over a model for CH.

Proof. Fix $h \in \omega^{\omega}$. By Theorem 2.1, in the forcing model obtained by adding \aleph_2 Cohen reals over a model for CH, there is no \sqsubseteq -increasing chain of length ω_2 in \mathcal{S}^{h-1} . This means that θ_h must be \aleph_1 whenever $\theta_h \leq \mathfrak{c}$.

On the other hand, $cov(\mathcal{M}) = \aleph_2$ holds in the same model. Also, by [9] we have $cov(\mathcal{M}) \leq \mathfrak{od} \leq \theta_h$. This means that θ_h cannot be \aleph_1 in this model, and hence $\theta_h = \mathfrak{c}^+$.

Next we state a sufficient condition for $\theta_* \leq \mathfrak{c}$. We use the following characterization of $\mathsf{add}(\mathcal{N})$.

Theorem 2.3 ([2, Theorem 2.3.9]). $\mathsf{add}(\mathcal{N})$ is the smallest size of a subset F of ω^{ω} such that, for every $\varphi \in \mathcal{S}$ there is an $f \in F$ such that $f \not\sqsubseteq \varphi$.

Definition 2.4 ([5, Section 5]). For a function $h \in \omega^{\omega}$, \mathfrak{l}_h is the smallest size of a subset Φ of \mathcal{S} such that for all $f \in \prod_{n < \omega} h(n)$ there is a $\varphi \in \Phi$ such that $f \sqsubseteq \varphi$. Let $\mathfrak{l} = \sup\{\mathfrak{l}_h : h \in \omega^{\omega}\}$.

Note that $h_1 \leq^* h_2$ implies $\mathfrak{l}_{h_1} \leq \mathfrak{l}_{h_2}$.

If CH holds in a ground model V, $h \in \omega^{\omega} \cap V$, and a proper forcing notion \mathbb{P} has the Laver property, then $\mathfrak{l}_h = \aleph_1$ holds in the model $V^{\mathbb{P}}$. Consequently, if CH holds in V, $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \omega_2 \rangle$ is a countable support iteration of proper forcings, $\mathbb{P} = \lim_{\alpha < \omega_2} \mathbb{P}_{\alpha}$ and

$$\Vdash_{\mathbb{P}_{\alpha}}$$
 " $|\dot{\mathbb{Q}}_{\alpha}| \leq \aleph_1$ and $\dot{\mathbb{Q}}_{\alpha}$ has the Laver property"

holds for every $\alpha < \omega_2$, then $\mathfrak{l} = \aleph_1$ holds in $V^{\mathbb{P}}$, since every function h in $V^{\mathbb{P}}$ appears in $V^{\mathbb{P}_{\alpha}}$ for some $\alpha < \omega_2$, where CH holds.¹

Now we define a subset S^+ of S as follows:

$$\mathcal{S}^+ = \left\{ \varphi \in \mathcal{S} : \lim_{n \to \infty} \frac{|\varphi(n)|}{2^n} = 0 \right\}.$$

Let \mathfrak{l}'_h be the smallest size of a subset Φ of \mathcal{S}^+ such that for all $f \in \prod_{n < \omega} h(n)$ there is a $\varphi \in \Phi$ such that $f \sqsubseteq \varphi$. Clearly we have $\mathfrak{l}_h \leq \mathfrak{l}'_h$, and it is easy to see that for every $h \in \omega^{\omega}$ there is an $h^* \in \omega^{\omega}$ such that $\mathfrak{l}'_h \leq \mathfrak{l}_{h^*}$. Hence we have $\mathfrak{l} = \sup\{\mathfrak{l}'_h : h \in \omega^{\omega}\}$.

¹In the paper [6], the authors state "If CH holds in a ground model V, and a proper forcing notion \mathbb{P} has the Laver property, then $\mathfrak{l}=\aleph_1$ holds in the model $V^{\mathbb{P}}$ ". But it is inaccurate, since we do not see the values of \mathfrak{l}_h for functions $h \in V^{\mathbb{P}}$ which are not bounded by any function from V.

Lemma 2.5. For a subset Φ of S^+ of size less than $\operatorname{add}(\mathcal{N})$, there is a $\psi \in S^+$ such that $\varphi \sqsubseteq \psi$ for all $\varphi \in \Phi$.

Proof. For each $\varphi \in \mathcal{S}^+$, define an increasing function $\eta_{\varphi} \in \omega^{\omega}$ by letting

$$\eta_{\varphi}(m) = \min \left\{ l < \omega : \forall k \ge l \left(|\varphi(k)| < \frac{2^k}{m \cdot 2^m} \right) \right\}$$

for all $m < \omega$. η_{φ} is well-defined by the definition of \mathcal{S}^+ .

Suppose $\kappa < \mathsf{add}(\mathcal{N})$ and fix a set $\Phi \subseteq \mathcal{S}^+$ of size κ arbitrarily. Since $\kappa < \mathsf{add}(\mathcal{N}) \leq \mathfrak{b}$, there is a function $\eta \in \omega^{\omega}$ such that $\lim_{n \to \infty} \eta(n)/2^n = \infty$ and for all $\varphi \in \Phi$ we have $\eta_{\varphi} \leq^* \eta$. For each $m < \omega$, let $I_m = \{\eta(m), \eta(m) + 1, \ldots, \eta(m+1) - 1\}$ and enumerate $\prod_{n \in I_m} [\omega]^{\leq \lfloor 2^n/(m \cdot 2^m) \rfloor}$ as $\{s_{m,i} : i < \omega\}$, where $\lfloor r \rfloor$ denotes the largest integer which does not exceed the real number r.

For $\varphi \in \Phi$, define $\tilde{\varphi} \in \omega^{\omega}$ as follows. If there is an $i < \omega$ such that $\varphi \upharpoonright I_m = s_{m,i}$, then let $\tilde{\varphi}(m) = i$; otherwise $\tilde{\varphi}(m)$ is arbitrary.

Since $|\Phi| = \kappa < \mathsf{add}(\mathcal{N})$ and by Theorem 2.3, there is a $\hat{\psi} \in \mathcal{S}$ such that, for all $\varphi \in \Phi$ we have $\tilde{\varphi} \sqsubseteq \hat{\psi}$. Define ψ by letting for each n, if $n \in I_m$ then $\psi(n) = \bigcup \{s_{m,i}(n) : i \in \hat{\psi}(m)\}$, and if $n < \eta(0)$ then $\psi(n) = \emptyset$. It is straightforward to check that $\psi \in \mathcal{S}^+$ and $\varphi \sqsubseteq \psi$ for all $\varphi \in \Phi$.

Lemma 2.6. Suppose that $h \in \omega^{\omega}$ satisfies $h(n) > n^2$ for all $n < \omega$. If $\mathsf{add}(\mathcal{N}) = \mathfrak{l}'_h = \kappa$, then there is an \sqsubseteq -increasing sequence $\langle \sigma_{\alpha} : \alpha < \kappa \rangle$ in \mathcal{S}^+ such that, for all $f \in \prod_{n < \omega} h(n)$ there is an $\alpha < \kappa$ such that $f \sqsubseteq \varphi_{\alpha}$.

Proof. Fix a sequence $\langle \varphi_{\alpha} : \alpha < \kappa \rangle$ in \mathcal{S}^+ so that for all $f \in \prod_{n < \omega} h(n)$ there is an $\alpha < \kappa$ such that $f \sqsubseteq \varphi_{\alpha}$. Using the previous lemma, inductively construct an \sqsubseteq -increasing sequence $\langle \sigma_{\alpha} : \alpha < \kappa \rangle$ of elements of \mathcal{S}^+ so that $\varphi_{\alpha} \sqsubseteq \sigma_{\alpha}$ holds for each $\alpha < \omega_2$. Then $\langle \sigma_{\alpha} : \alpha < \kappa \rangle$ is as required.

Define $H_1 \in \omega^{\omega}$ by letting $H_1(n) = 2^n + 1$ for all n.

Theorem 2.7. If $add(\mathcal{N}) = \mathfrak{l}'_{H_1}$, then $\theta_* = \mathfrak{od} = add(\mathcal{N})$.

Proof. Let $\kappa = \mathsf{add}(\mathcal{N}) = \mathfrak{l}'_{H_1}$. Since $\mathcal{S}^+ \subseteq \mathcal{S} \subseteq \mathcal{S}^{H_1-1}$, the previous lemma shows that $\theta_* \leq \theta_{H_1} \leq \kappa$. On the other hand, by [9], we have $\kappa = \mathsf{add}(\mathcal{N}) \leq \mathsf{cov}(\mathcal{M}) \leq \mathfrak{od} \leq \theta_*$.

Corollary 2.8 ([9]). If a ground model V satisfies CH, and a proper forcing notion \mathbb{P} has the Laver property, then $\theta_* = \aleph_1$ holds in the model $V^{\mathbb{P}}$.

Proof. Follows from Theorem 2.7 and the fact that $\mathsf{add}(\mathcal{N}) = \mathfrak{l}'_{H_1} = \mathfrak{l}_{H_1^*} = \aleph_1$ holds in the model $V^{\mathbb{P}}$.

Corollary 2.9. Martin's axiom implies $\theta_* = \mathfrak{c}$.

Proof. Follows from Theorem 2.7 and the fact that $\mathsf{add}(\mathcal{N}) = \mathfrak{l}'_{H_1} = \mathfrak{c}$ holds under Martin's axiom.

3 Application

In this section, we give an answer to a question which was posed by Kada, Tomoyasu and Yoshinobu [6]. We refer the reader to [6] for undefined topological notions.

For compactifications αX and γX of a completely regular Hausdorff space X, we write $\alpha X \leq \gamma X$ if there is a continuous surjection from γX to αX which fixes the points from X, and $\alpha X \simeq \gamma X$ if $\alpha X \leq \gamma X \leq \alpha X$. The Stone–Čech compactification βX of X is the maximal compactification of X in the sense of the order relation X among compactifications of X.

For a proper metric space (X, d), \overline{X}^d denotes the Higson compactification of X with respect to the metric d.

 \mathfrak{ht} is the smallest size of a set D of proper metrics on ω such that

- 1. $\{\overline{\omega}^d : d \in D\}$ is well-ordered by \leq ;
- 2. There is no $d \in D$ such that $\overline{\omega}^d \simeq \beta \omega$;
- 3. $\beta\omega \simeq \sup\{\overline{\omega}^d : d \in D\}$, where sup is in the sense of the order relation \leq among compactifications of ω ;

if such a set D exists. We define $\mathfrak{ht} = \mathfrak{c}^+$ if there is no such D.

Kada, Tomoyasu and Yoshinobu [6, Theorem 6.16] proved the consistency of $\mathfrak{ht} = \mathfrak{c}^+$ using a similar argument to the proof of Theorem 2.2. But the consistency of $\mathfrak{ht} \leq \mathfrak{c}$ was not addressed. Here we state a sufficient condition for $\mathfrak{ht} \leq \mathfrak{c}$, and show that it is consistent with ZFC.

Define $H_2 \in \omega^{\omega}$ by letting $H_2(n) = 2^{2^{(n^4)}}$ for all n. The following lemma is obtained as a corollary of the proof of [6, Theorem 6.11].

Lemma 3.1. Let κ be a cardinal. If there is an \sqsubseteq -increasing sequence $\langle \varphi_{\alpha} : \alpha < \kappa \rangle$ of slaloms in S such that for all $f \in \prod_{n < \omega} H_2(n)$ there is an $\alpha < \kappa$ such that $f \sqsubseteq \varphi_{\alpha}$, then $\mathfrak{ht} \leq \kappa$.

Now we have the following theorem.

Theorem 3.2. If $\operatorname{add}(\mathcal{N}) = \mathfrak{l}'_{H_2}$, then $\mathfrak{ht} = \operatorname{add}(\mathcal{N})$.

Proof. $\mathsf{add}(\mathcal{N}) \leq \mathfrak{ht}$ is proved in [6, Section 6]. To see $\mathfrak{ht} \leq \mathsf{add}(\mathcal{N})$, apply Lemma 2.6 for $h = H_2$ to get a sequence of slaloms which is required in Lemma 3.1.

Corollary 3.3. If a ground model V satisfies CH, and a proper forcing notion \mathbb{P} has the Laver property, then $\mathfrak{ht} = \aleph_1$ holds in the model $V^{\mathbb{P}}$.

Proof. Follows from Theorem 3.2 and the fact that $\mathsf{add}(\mathcal{N}) = \mathfrak{l}'_{H_2} = \mathfrak{l}_{H_2^*} = \aleph_1$ holds in the model $V^{\mathbb{P}}$.

Corollary 3.4. Martin's axiom implies $\mathfrak{ht} = \mathfrak{c}$.

Proof. Follows from Theorem 3.2 and the fact that $\mathsf{add}(\mathcal{N}) = \mathfrak{l}'_{H_2} = \mathfrak{c}$ holds under Martin's axiom.

4 Proof of Theorem 2.1

This section is devoted to the proof of Theorem 2.1. The idea of the proof is the same as the one in Kunen's original proof [7], which is known as the "isomorphism of names" argument. The same argument is also found in [4].

For an infinite set I, let $\mathbb{C}(I) = \operatorname{Fn}(I, 2, \aleph_0)$, the canonical Cohen forcing notion for the index set I. As described in [8, Chapter 7], for any $\mathbb{C}(I)$ -name \dot{r} for a subset of ω , we can find a countable subset J of I and a $nice\ \mathbb{C}(J)$ -name \dot{s} for a subset of ω such that $\Vdash_{\mathbb{C}(I)} \dot{s} = \dot{r}$. For a countable set I, there are only \mathfrak{c} nice $\mathbb{C}(I)$ -names for subsets of ω .

Proof of Theorem 2.1. Suppose that $\kappa \geq \aleph_2$. Let \mathcal{X} be a Polish space, \dot{A} a $\mathbb{C}(\kappa)$ -name for a Borel subset of $\mathcal{X} \times \mathcal{X}$, and $\langle \dot{r}_{\alpha} : \alpha < \omega_2 \rangle$ a sequence of $\mathbb{C}(\kappa)$ -names for elements of \mathcal{X} .

We will prove the following statement:

$$\Vdash_{\mathbb{C}(\kappa)} \exists \alpha < \omega_2 \, \exists \beta < \omega_2 \, (\alpha < \beta \wedge (\langle \dot{r}_{\alpha}, \dot{r}_{\beta} \rangle \notin \dot{A} \vee \langle \dot{r}_{\beta}, \dot{r}_{\alpha} \rangle \in \dot{A})).$$

There is nothing to do if it holds that

$$\Vdash_{\mathbb{C}(\kappa)} \exists \alpha < \omega_2 \,\exists \beta < \omega_2 \,(\alpha < \beta \wedge \langle \dot{r}_\alpha, \dot{r}_\beta \rangle \notin \dot{A}).$$

So we assume that it fails, and fix any $p \in \mathbb{C}(\kappa)$ which satisfies

$$p \Vdash_{\mathbb{C}(\kappa)} \forall \alpha < \omega_2 \, \forall \beta < \omega_2 \, (\alpha < \beta \to \langle \dot{r}_{\alpha}, \dot{r}_{\beta} \rangle \in \dot{A}). \tag{*}$$

We will find $\alpha, \beta < \omega_2$ such that $\alpha < \beta$ and $p \Vdash_{\mathbb{C}(\kappa)} \langle \dot{r}_{\beta}, \dot{r}_{\alpha} \rangle \in \dot{A}$, which concludes the proof.

Let $J_p = \text{dom}(p)$. Find a set $J_A \in [\kappa]^{\aleph_0}$ and a nice $\mathbb{C}(J_A)$ -name \dot{C}_A for a subset of ω such that

$$\Vdash_{\mathbb{C}(\kappa)}$$
 " \dot{C}_A is a Borel code of \dot{A} ."

For each $\alpha < \omega_2$, find a set $J_{\alpha} \in [\kappa]^{\aleph_0}$ and a nice $\mathbb{C}(J_{\alpha})$ -name \dot{C}_{α} for a subset of ω such that

$$\Vdash_{\mathbb{C}(\kappa)}$$
 " \dot{C}_{α} is a Borel code of $\{\dot{r}_{\alpha}\}$."

Using the Δ -system lemma [8, II Theorem 1.6], take $S \in [\kappa]^{\aleph_0}$ and $K \in [\omega_2]^{\aleph_2}$ so that $J_p \cup J_A \cup (J_\alpha \cap J_\beta) \subseteq S$ for any $\alpha, \beta \in K$ with $\alpha \neq \beta$. Without loss of generality we may assume that $|J_\alpha \setminus S| = \aleph_0$ for all $\alpha \in K$. For each $\alpha \in K$, enumerate $J_\alpha \setminus S$ as $\langle \delta_n^\alpha : n < \omega \rangle$.

For $\alpha, \beta \in K$, and let $\sigma_{\alpha,\beta}$ be the involution (automorphism of order 2) of $\mathbb{C}(\kappa)$ obtained by the permutation of coordinates which interchanges δ_n^{α} with δ_n^{β} for each n. $\sigma_{\alpha,\beta}$ naturally induces an involution of the class of all $\mathbb{C}(\kappa)$ -names: We simply denote it by $\sigma_{\alpha,\beta}$. Since $J_p \cup J_A \subseteq S$, for all $\alpha, \beta \in K$ we have $\sigma_{\alpha,\beta}(p) = p$, $\sigma_{\alpha,\beta}(\dot{C}_A) = \dot{C}_A$ and $\Vdash_{\mathbb{C}(\kappa)} \sigma_{\alpha,\beta}(\dot{A}) = \dot{A}$.

Since $|K| = \aleph_2$ and there are only $\mathfrak{c} = \aleph_1$ nice names for subsets of ω over a countable index set, we can find $\alpha, \beta \in K$ with $\alpha < \beta$ such that $\sigma_{\alpha,\beta}(\dot{C}_{\alpha}) = \dot{C}_{\beta}$. Then $\sigma_{\alpha,\beta}(\dot{C}_{\beta}) = \dot{C}_{\alpha}$ and

$$\Vdash_{\mathbb{C}(\kappa)}$$
 " $\sigma_{\alpha,\beta}(\dot{r}_{\alpha}) = \dot{r}_{\beta}$ and $\sigma_{\alpha,\beta}(\dot{r}_{\beta}) = \dot{r}_{\alpha}$."

By (*), we have $p \Vdash_{\mathbb{C}(\kappa)} \langle \dot{r}_{\alpha}, \dot{r}_{\beta} \rangle \in \dot{A}$. Since $\sigma_{\alpha,\beta}$ is an automorphism of $\mathbb{C}(\kappa)$, we have

$$\sigma_{\alpha,\beta}(p) \Vdash_{\mathbb{C}(\kappa)} \langle \sigma_{\alpha,\beta}(\dot{r}_{\alpha}), \sigma_{\alpha,\beta}(\dot{r}_{\beta}) \rangle \in \sigma_{\alpha,\beta}(\dot{A})$$

and hence $p \Vdash_{\mathbb{C}(\kappa)} \langle \dot{r}_{\beta}, \dot{r}_{\alpha} \rangle \in \dot{A}$.

Remark 1. Fuchino pointed out that Theorem 2.1 is generalized in the following two ways [3]: (1) The set A is not necessarily Borel, but is "definable" by some formula. (2) We can prove a similar result for a forcing extension by a side-by-side product of the same forcing notions, each generically adds a real in a natural way. The argument in the above proof also works in those generalized settings.

Acknowledgement

I thank Sakaé Fuchino, Hiroshi Fujita, Teruyuki Yorioka and the referee for helpful comments and remarks on Theorem 2.1 and its proof.

References

- [1] T. Bartoszyński. Combinatorial aspects of measure and category. Fund. Math., 127:225–239, 1987.
- [2] T. Bartoszyński and H. Judah. Set Theory: On the Structure of the Real Line. A. K. Peters, Wellesley, Massachusetts, 1995.

- [3] J. Brendle and S. Fuchino. Coloring ordinals by reals. preprint.
- [4] I. Juhász, L. Soukup, and Z. Szentmiklóssy. Combinatorial principles from adding Cohen reals. In J. A. Makowsky, editor, *Logic Colloquium 95*, *Proceedings of the Annual European Summer Meeting of the Association of Symbolic Logic*, Lecture Notes in Logic. 11., pages 79–103, Haifa, Israel, 1998. Springer.
- [5] M. Kada. More on Cichoń's diagram and infinite games. *J. Symbolic Logic*, 65:1713–1724, 2000.
- [6] M. Kada, K. Tomoyasu, and Y. Yoshinobu. How many miles to $\beta\omega$?

 Approximating $\beta\omega$ by metric-dependent compactifications. *Topology Appl.*, 145:277–292, 2004.
- [7] K. Kunen. *Inaccessibility properties of cardinals*. Ph.D. dissertation, Stanford, 1968.
- [8] K. Kunen. Set Theory: an introduction to independence proofs, volume 102 of Studies in Logic. North Holland, 1980.
- [9] H. Mildenberger, S. Shelah, and B. Tsaban. The combinatorics of τ -covers. *Topology Appl.*, to appear.