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                                 Abstract

   A step,testing method that can obtain the dY.namics of a desired test section from the

step responses measured at the points before and behind the test section is proposed. Discus-

sion was made on the processing accuracy of this testing method by numerical experiments. As
a practical application of this method, the dynamics of a desired part in a packed bed along the

flow direction were computed from the experimental step responses.
   The results are as follows; the step testing method has been found to be a usefu1 tool for

the observation of the dynamics in chemical equipments. The procedure developed here for the

dynamic analysis of a desired test section has been proved to be useful when the section has

non-linearity.

                               Introduction
   In the study of chemical processes, it is often necessary to determine the dynamics ofa
desired part or section, but the position of tracer input is restricted in some degree. In such

cases, a conventional method to det.ermine the dynamics is a frequency response method. In its

implementation, a sinusoidal input, when imposed upon a real process, requires such a compli-

cated input facility that its setting-up and operation are more time consuming than step or
impulse input, since several frequencies must be tested and transients eliminatedbefore measure-

ment. A second method, a statistical approach using auto- and cross-correction functions7,
needs a very long measurement time. In addition, if the process contains some non-linearity, an

error is unavoidable in the dynamics and the error can not be estimated. As the other more
convenient method to determine the dynamics in a short measurement time, the pulse testing
method2 has been proposed and used in dynamic analysis across-the-board from the compo-
nents to the complete plant. This method has been playing a very important role in process
analysis to obtain the dynamics 6fthe desired part of the plant, in a short observation time.

  In the present study, as anotherprocess dynamicstesting algorithm using a short observation

period, the step testing method is proposed. This method utilizes step responses in a manner

analogous to the way the pulse testing method employes impulse responses. A step response can
sometimes sirbplify the experimental facility compared with a statistical signal or a frequency

response. For instance, step changes in the inlet concentration and flow rate ofthe process are

often imposed instantaneously, so the dynamics of the desired part can be easily obtained
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without any special facility. Furtherrnore, in the step testing method proposed, a step input
does not always necessitate an exact step function.

   The scope of our investigation is as follows.

(1) For dynamic analysis of the two points detection type, the computational error caused by
the data processing is investigated. (1-1) For both methods, the usual pulse testing method uiid•

the newly proposed step testing method, formulae of the first and the second order approx-
imation have been derived. (1-2) Utilizing the Nth delay system, G(S)=lf(S+1)N as a model,

the processing errors with these formulae are examined by numerical experiments. Also, the
processing error is discussed with the data including a'round off error.

(2) For an example of application, the effectiveness of the step testing method is demonstrated

in the measurement of the mixing dynamics of a shallow packed bed.

                           Derivation of Formulae
   For the first order approximate formula (derived as the sum of all the small triangle pulses)

of the pulse testing method, Hougen and Walshs' formula is well known. But, when ( Y(t))t.o
is not equal to zero, their formula needs to make a correction ot a right triangle pulse as shown

in Fig. 1-(a).

   For the forniula of the step testing method, the first order formula (as the sum of all the

narrow step wise stripes) is derived easily as shown in Fig. 1-(b) (see Appendix).

   With formulae for the second order approximation, pulses (Figs. 1-(c), (e)) or steps (Figs.

1-(d), (D) are approximated by applying the parabola that passes through three points: Yk-i,

Yk, Yk+i. Further, the formulae are derived as the sum of al1 stripes after Laplace transforma-
tion of each stripe'6. When s'umming up the stripes, two kinds of formulae are conceivable

both for the single stripe (Figs. 1-(e), (f)) and double stripes (Fig. 1-(c), (d)). All the formulae

obtained are listed in Table 1.
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Fig. 1 Pulse and step testing methods
(a) Correction for Hougen eqn.; eqn. (Pl)
(b) Step testing method; eqn. (Sl)

(c), (e) Pulse testing method (2nd order); eqns. (P2), (P3)

(d), (D Step testing method (2nd order); eqns. (S2), (S3)
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Table 1. Formulae for 1st and 2nd order approximation
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                            Numerical Experiments
    The procedure for the numerical experiment is as follows:

    First, the dynamics of the test section in frequency domain are obtained as the ratio of
eqn. (Sl), (S2) or (S3), at the outlet of the section to that at the inlet. That is, frequency

response, gain IG(fcJ)l and phase angle, LG U'co) of the test section can be computed for the

given frequency, w.

    Second, we can obtain the residence time curve(RTC) about the test part or section
from these gain and phase angle, by Johnson's method4 of harmonic analysis given in eqn. (4).

 ip (T) == -lt + Jl}l;. ,.,,,." IG (j,'nM `O)Isin[m tuT+ z( G(J'mtu)] <4)

The RTC of the test section is Qf importance for the mixing moqel identification.

   Third, the error which is calculated as the difference between the analytical solution
for the RTC of the test section and the above-mentioned numerical solution for the RTC
                                                   .through harmonic analysis of the test section, is evaluated on the basis of the root rnean square

crlterlon.

   Numerical experiments for all the formulae in Table 1 are carried out with a model system
as shown in Fig. 2. The test section of the system is first order delay. The delay order, 7V

between tracer input and the first detection point is set equal to 1, 2, 3, 4, 5 and 10, and
notch times (sampling time intervals), At are set to O.1, O.2 and O.3. Frequency responses of

the test sectjon are calculated for two hundred frequencies, w, in the jnterval (O.2-79.8) with

an interval size AwÅÄO.4. The final tailing value ofthe response curves, Yi , Y2 (generated in the

computer by analytical impulse and step functions of Nth order) at two detected points utilized

for the numerical experiments are terminated when the residuals (impulse: Yi , Y2 , step: 1-Yi ,

1-Y2) are less than O.OOOI.

   Figure 3 shows the test results obtained with the calculation of RTC, IG(icD)l and LG O'o)
for the N=1, At=O.1 case by the pulse and step testing methods. At high frequency, the
difference from the analytical G(S)=l1(S+1) becomes large. In general, difference in the errors

for both testing methods is not significant.

   In Figure 4, the processing errors on the RTC, gain and phase angle are plotted against N
(the delay order between tracer input and the first detected point) for At=O.1. Computation

was carried out to seven significant figures (exponential part; 8 Bits, mantissa part; 24 Bits).

There is no significant difference between the step testing rnethod and the pulse testing method

processing errors. As the value ofN becomes larger, the difference between the first and second

detection signals becomes less, and the processing error increases considerably in both methods.

In this model system, N, i.e., the delay order between the tracer input and the first detected

signals, must be less than four to keep the R.M.S. error on the RTC within O.l or 10%. When

Test Section

 di(t)'

Tracer

l

(S+1)N
1-

S+1

U(t) Y, (t) Y, (t) lnput lst Detection 2nd Detection
    Ftg. 2 Model system for numerical experiments
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the two detected signals become very similar and close owing to the big order of delay between

the tracer input point and the first detected point, exact estimation with the dynamics ofthe

test section is difficult in both methods.
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   In practice, experimental response curves usually involve some noise. Owing to the noise,

experimental data, which may also depend upon the precision of experiments, may not be
accurate to the 7 significant figuresdiscussed above. To evaluate this consideration, the processing

error with delay order was recalculated with Yi and Y2 preset to 1 , 2, 3 and 7 significarit digits.

Generation of the test data, Yi , Y2 having the desired significant figures was accomplished by

rounding off the seven significant digits data to the nearest requested whole number. Fig. 5-(a),

(b) and (c) present the R.M.S. error for RTC, gain and phase angle, respectively, agajnst the

significant figures of test data. Figure 5 shows that the processing errors are almost the same for

the first and second order approximate formulae (single stripe and double stripes), when the
significant figures of the data are less than three digits. Therefore, when the experimental data

have not enough significant figures, the formula of the first order approximation, which sur-

passes the second order approximation in computation speed, should be used for the step test-

ing method and the pulse testing method.
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10

      Computation Error of Model Parameter Estimation through the Integral Method
   As a method to estimate model parameters from experirnental response curves, a mpment
method in which integration of the response curves by adding various weights is made, is
often employed. By equating the moments of models and experiments, the model parameter,
such as number of tanks, is estimated. By utilizing the integral method, the error is examined

for the kinds of response from which tlie moments are calculated. The computation error
through impulse and step responses was discussed for numerical experiments, N-series tanks
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model was used as a model system. rlhe transfer function of N-series tanks model can be des-
cribed as eqn. (5).

      -vr/out(s)= 1 (5) G(S)      - wm(s)                 (S/N+1)N

Its impulse response is developed analytically by eqn. (6) and its step response is eqn. (7).

 w,(.)= l!(i<flllrTl))Nrr!' e-NT (6)
 lb .(T)=1" [1+(NT)+ (N2T! )2 +••••••+ ((11vV-T )1")-!' ]e-"T (7)

For the N-series tanks model, the mean and the variance of its residence time distribution can
be derived analytically as 7=1.0 and L:Ti=11?V. On the other hand, by applying the numerical

moment integration in impulse response, Wi(T) or step response, Ws(T), the variance of T2 is
calculated from eqn. (9) or (12). For the impulse response, Wi(7),7 and -7 can be expressed

by eqn. (8) and (9) from their definition.

 7= f,OO ift,(T) TdT/ f,OO YLt ,(T)dT (8)
 T2=[ f,OO gLt,(T)T2dr]/[ f,OeW,( T)dT.] -[ f,O yLt i(T)TdT/ f,coWi(T)dT]2 (9)

For the step response, iPs(T), T and72 are defined as eqns. (11) and (12) by paying attention to

the difference, Ws (T) from steady state value' .

 V.i G(O)- sLt .( T) (10)
rr  = f,Oe W.( T)dT (11)

 r2=2Å~ foco 0.(T)Tdr-[ fooo Ws(T)dd2 (12)
Consequently, the variance for the step response is computed by the T-weighted numerical
integration with Ws(T). But, the variance for the impulse response is computed by the 72-

weighted numerical integr.ation with Wi(T). 72-weighted integration gathers much noise at large

T values. So, it is forecasted that the step response has less error in its processing than that the

impulse response. To prove the above-mentioned forecast, the test data were generated from
impulse or step response according to eqn. (6) (impulse) or (7) (step), and from these data
respective variances are computed by eqn. (9) or (12). These computed variances, T2 were set

equal to the analytical variance of the N-series tanks model, T2=111V. Thus, the model para-
meter IV (number of tanks) could be estimated as Ncomputed=11T7 •

   As the criterion to evaluate numerical integration error with the number of tanks, relative

error, ErN defined by eqn. (13) was employed.

ErN = I IVanalytical - Ar computed j /Aranalytical X 100
(13)
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   In Figure 6, the relative error, ErN is plotted against the number of tanks, IV for a notch

tirne, i.e., sampling time interval of the test data sets equal to O.3. The computation was operat-

ed at significant bits of 32 and 64, but there was not so great difference in their results.Figure

6 shows that integration through the step response is more accurate than that through the
impulse response, as was forecasted. The same tendency was confirmed when a notch time of
test data was varied at several values; O.1, O.2, O.4 and O.5.

            Application of the Step Testing Method for the Measurement of
            Residence Time Curve at a Test Section in a Shallow Packed Bed
   The procedure which is thought to be a convenient way for the measurement ofRTC via
frequency domain and its mean and variance at a desired part of a shallow packed bed (see
Fig. 7) is outlined as follows.

r17 Measurement of expen'mental response curves
                  .   The prgcedure involves the step change in the inlet concentration into the packed bed and

the measurementof its concentration at the points before and behind a desired part downstream
from the inlet, point. This gives a pair ofexperimental step response curves.

r21 Computation offrequency responses by the step testing method
   By utilizing the formula of the step .testing method (eqn. Sl, S2 or S3), the frequency
responses of the desired part of the packed bed can be computed from the experimental step

response curves observed at the first and the second detected points in a packed bed along the

flow direction.
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r37 Computation ofRTC by lohnson 's method
   The RTC of the test part or section is computed from the frequency responsesby Johnson's
method of harmonic analysis (eqn. (4)).

r47 Computation of the mean and the varia4ce

   The mean and the variance of experimental step responses are computed by moment
integration. The moment wM be used for the model parameter estirnation.

    Figure 7 shows the tube bundle bed which was constructed as a model bed to obtain the
mixing dynamics in a shallow beads-packed-bed. Step-wise concentration changes, Yi, Y2 both
                                                                ,at the first void inlet and the fourth void outlet were detected by electric conductivity measure-

ment, when a step change in concentration was imposed on the fluid at the up-stream flow distri-

butor. The concentration change was given by a switch cock. The fluids, distilled water at
25Å}O.2UC, containing, respectively, O.02N (d=O.9974g/cm3) and O.04N (d=O.9978g/cm3)
hydrochloric acid were switched by the cock to select either, and to give a step change in
concentration into the bed. When the fluid was changed from the solution of low concen-
tration (O.02N-HCI) to that of high concentration (O.04N-HCI) the obtained response was
defined as the positive response, and inversely, when the fluid was changed from the high
concentration to the low concentration the obtained response was the negative response.

    The experimental residence time curves, Yi, Y2 at the two detection points in a shallow

packed bed were shown in Fig. 8-(a). The residence time curves in the desired test section
which were computed by the step testing method and Jolmson's method from the curves, Yi,
Y2 were shown in Fig. 8-(b). By use of the step tgsting method, we could measure the residence

time curves in the shallow bed which was only four folds of packing diameter in height.

   In Figure 8, the full line showsa positive response and the broken line showsa negative
one. The difference in density between the two fluids was about 4Å~10-4glcm3.These curves

are response curves at the laminar flow region.Figure 8-(b) shows that the respones forthe inputs

between posit'ive and negative are clearly distinguished, This difference in the response may be

due to difference in density. For the experiments in which direction of the fluid flow to the
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bed was changed from up-flow to down-flow wjtli respect to the gravity force, the responses

were the inverse of the shapes shown in Fig. 8-(b). Positive and negative change can be easily
imposed on the input by the step testing method, and the non-linearity of the system can` be

discussed. Since al1 the derivations of the forrnulae have been based on linear algebra, strict

evaluation of the non-linearity with the tested section in the process is not possible, but a

qualitative feature of the non-linearity is sure to be grasped by our procedure developed for the

measurement of the fluid mixing dynamics in a shallow packed bed.

                                 Conclusion
   The foregoing results lead to the following conclusions.

(1) The step testing method has been a useful technique for the measurement of dynamics of

a desired part in chemical equipments. As positive and negative change on the signal can be
                                ,easily applied by this testing method, non-linearity of the system, though qualitatively, can be

examined by the procedure developed here.
(2) For the estlmation of parameters in a chemical process model, the procedure through the

step response is more accurate than the impulse response.

                                Nomenclature
ErN relative error with N-series tartks model

G (S) transfer function

IV number of tankS or delay order
S Laplace operation
t• real time, sec
Y(t) response(experimental)

Greek symbol

At notch time, sampling time interval
W(T) response (theoretical or computational)
W(r) the difference from steady state value in response

T dimensionless time
7 mean of residence time distribution, in term of r
T2 variance of residence time distribution from rT, in terms of T

Subscript

i lst detection
2 2nd detection
cal numerical calculation
exact theoretical analysis

I impulse response
S step response
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                              Appendix
   This appendix shows how the results eqns. (Sl) and(S2)can be obtained.The response
curves at the detected points, Yi(t) and Y2(t) are approximated as the sum ofall the step wise

stripes, as stiown in Fig. 1-(b) and (d).

Linear approximation Note the step-wise stripe passing through the two points, (tk-i, Yk-i)

and (tk, Yk), and apply unit step function U(t-tk-i) to let Yk-i=O. (See Fig. A) A simple
step wise stripe is expressed by eqn. (A 1).

                                   Zic-Z,T,        Zic-Zh-i                                           (t-t,)XU(t-t,) (Al)                (t-tic-i)Å~U(t-th-i)- D,( t) ==
                                      At          At

where Z= Y- Yk-i and At=tk-tk.i •
   Laplace transformation of eqn. (Al) results in eqn. (A2).

 DL(S)= ZicA-tZsicii (e-th"iS-e-ticS) (A2)
   Equation (A2) is expressed as eqn. (A3) by setting S=icJ.

 Ds(J'co)= ZicA-tli:Li (1-e'A'W)e-'thw (A3)
Since Yk- Yk-i=Zk-Zk-i , the first order approximate formula, which is expressed as the sum
of eqn. (A3), becomes eqn. (S l).

Parabola approximation Note the step-wise stripes using the three points, (tk-i, Yk-i), (tk, Yk)

and (tk+i, Yk+i). (See Fig. B) When Z= Y- Yk-i , a parabola approximated function throughout
the three points, (tk-i, Zk-i), (tk, Zk) and (tk+i, Zk+ i) is rewritten by eqn. (B1).

D=A(t- t,J ,)2+B(t- t,. ,) (Bl)
         Z,.,-2Z,+Z,-,                            1where A== 2(At), ,B=2At (Z,.,-z,-,)-A+2At,-, and

At=tk+1 -tk=tk -tk-1 •
   The parabola equation which is symmetrical to eqn. (Bl) with respect to the axis of Z=
(Zk+i-Zk-i)12, passes through the three points, (tk-i, Zk+i), (tk, Zk+i -Zk) and (tk+i,O).
The eqn. (Bl) is rewritten as eqn. (B2).

D= A-(t- t,.,)2+ B-

whe re A-= - Zic" i( 2AZS +, ZicT i , B- -- - Zic'SitZ h- i - A' - 2 A-t lt.i .

   A parabola approximated step wise stripe is expressed by eqn. (B3).
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D.(t) == [A(t- t,-,)2+B(t- t,.,)]Å~ U(t- t,rr,)

     +[A(t- t,. ,)2+ B(t- t,.,)]X U( t- t..,) (B3)

   Laplace transformation ofeqn. (B3) gives rise to eqn. (B4).

D,(s)==
(2s4 + sB, )e-th-is+( 2sA-, + sB-, )e-th.,s (B4)

   Equation (B4) is written as eqn. (B5) by setting S=icL).

 D,(J' c,)= e-i'il Ce [(- 2coiil + JB. co )eJAtw+(- 2c,)4 + j`co )e-JAttu] (Bs)

since, Yk-i-2Yk+Yk+i=Zk-i-2Zk+Zk+i and Yk+i-Yk-i=Zk+Ni -Zk-i, Yp(iw) isexpressed
by eqn.(B6) as the sum of eqn.(B5).

 yp(jco)= jltu :ll.li,,,,..[(e'Atpa-e-'Atw> (- 2coA, ) + J.Bco e'Atbl

       +JB.-co e"Atto]e'JthCV (B6)
Thus, the second order (parabola) approximate formula becomes eqn. (S2).

   Equation (S3) with respect to a single stripe is developed by the same procedure as for
eqn.(S2).
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