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                                 Abstract

   Taylor (1953, 1954a) analysed the problem of the effective dispersion of soluble tracer
injected into a small-bore tube through which a solvent is flowing. ThecorrelationE=R2u2148D

is Shown to be valid for the condition 4LIR >>DluR >>x/2ig. Aris (1956, 1959) extended the
correlation so as to"include the axial diffusion effect and obtained the correlationE=D+R 2tt2/48D

for the validity condition excluding uRID>)hort2i$l. Lighthi11 (1966) found an exact analytical

solution for the radial diffusion and convection. A numerical method was developed here
incorporating both the axial and radial diffusion effects with convection, for the unsteady state

dispersion of the soluble tracer substance in fu11y-developed pipe flow. Finite-differenced with

respect to space variables, the question gave rise to a set of ordinary differential equations.

Unsteady state solution with respect to concentration change could be obtained by numerical
integration of these ordinary differential equations. From the unsteady state solution when the

tracer is continuously' introduced intoi the fluid flowing at average velocity u at an upstream cross-

section of the pipe, step response was computed, as the average concentration change in the

cross-section at distance L from the tracer input cross-section. The effective dispersion co-

efficient was numerically derived from the step response curve by moment integration, and
non-dimensionalized so as to give the effective Ped group, Ped=2uRIE. The Ped is correlated as

a function of ReXSc=2uRID, in comparison with the Taylor's and Aris' correlations, with
which our numerical experiment shows close agreement even for higher value of the slender
ratio (RIL). (R: radius of pipe, L: the length with which the response is concerned) General

Ped vs. ReXSc correlations are given as charts, that are valid even for higher value condition
of slender ratio, utilizing the slender ratio,R/L, as a parameter.

                              1. Introduction
   Dispersion of the fluid flowing through a tube or a duct is of considerable practical impor-

tance, since the dispersion greatly affects the performance of chemical equipments that have
the tubular fiow channel. The dynamics of tubular reactors and heat exchangers are directly
influenced by the dispersion. The yield of the tubular reactor is as well shifted by the fluid

mixing characteristics in the tube. From these technical requirements, the dispersion in a pipe

has been described by an effective dispersion coefficient, on introducing average flow rate and

concentration through the cross-section of the pipe. The dispersion effect in a pipe is caused

essentially by the axial and radial molecular diffusions of soluble tracer accompanied with the
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pattern of fiow velocity. The correlating equation between the molecular diffusion and the
effective dispersion, if obtained, wi11 be useful in the engineering field. In order to obtain this

correlation, the governing equation for diffusion andconvection must be solved, andexperiments

must be devised to check the accuracy of the solution or the correlating equation. Tliese require-

ments motivated many investigators to study the dispersion in the pipe flow analytically and

experimentally, initiated by Taylor (1953).

   In a series of papers, Taylor (1953, 1954a, b) has treated analytically and experimentally

.the problem of the effective dispersion of soluble tracer in a fluid flowing through a tube of

circular cross-section. For the laminar flow region, the concentration of tracer, c, as a function

of distance along the pipe, x, of radial distance from the axis of the pipe, r, and of time, t, is

described by the partial differential equation (1).

  gf-D( g;s+s,2g+"•g; )-2.(i- fil)gi, (i)

where u is the average linear velocity, R is the radius of the pipe andD is the molecular diffu-
sion coefficient. As the axial diffusion term, D. a2c/ax2is able to be neglected for a small-bore

tube of long size, Taylor discussed the dispersion by convection together with an ingenious

approximation technique for the case where radial diffusion was significant, and further found

the correlation between effective (or virtural) dispersion coefficient, E, and molecular diffusion

coefficient, D, as E=R2u21.48D. Taylor also obtained the conditions 4LIR>>DluR >>V2[g, in

which the correlation is valid, where L is the length of the pipe over which appreciable changes

in concentration occur. Aris (1956, 1959) and Bournia, Coull & Houghton (1961) considered
these validity conditions more closely. Aris extended the analysis of Taylor to include non-
cylindrical pipes and the effects of axial diffusion. In particular, for cylindrical pipes, he

obtained an approximate correlation which indicates that the effective dispersion coefficient is

given by the sum of molecular diffusivity and the dispersion coefficient owing to velocity
effect, i.e., E=D+R2u2/48D and that validity condition D!uR>V2iSi is not required. Bournia

et al. performed displacements with gases fiowing in cylindrical pipes and obtained good agree-

ment with Taylor's correlation. Data from this investigation did not agree so well with the
theoretical results of Aris in the low velocity range. Bailey and Gegarty (1962) obtained nume-
rical solution ofequation(1) by abbreviating as did Taylor,the axial diffusion term, D.a2clDx2.

Its solution was able to explain both Taylor's correlation and their experimental results for a

dilute solution of potassium permanganate in water flowing through a capillary tube. LighthM
(1966), after abbreviating the axial diffusion term in equation (1), found a fully exact solution

of the resulting equation by an elegant mathematical manipulation. Anathakrishiian, Gil1 and

Bardulm (1965, 1966) obtained finite difference solutions of equation (1) for both large and

small values of DluR. Gil1 (1967) and Chatwin (1970) carried out•numerical calculation of

equation (1) more precisely. Evans and Kenney (1965) experimentally measured the dispersion
coefficient of a pulse of ethylene injected into nitrogen flowing in a tube. Their data were in good

agreement with the theory for large values of dimensionless time, T=DtlR2 . Bruce Hunt (1977)

investigated the combination of analytical reasoning and experimental observation for diffusion

in fu11y-developed laminar pipe flow. His results indicated that diffusion in laminar flow
            tdepended very much upon the DluR.

   In this paper, numerical experiments were carried out for the case when all the terms in
equation (1) are taken into consideration in order to obtain a more general correlation between

the effective dispersion coefficient and the molecular diffusivity than the correlations of Taylor

and Aris. The numerical method utilized in this work for the numerical experiment was an
extended algorithm that had been proposed by us (1969) to solve a non-linear partial differen:
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tial equation, governjng a one dimension al dispersion model wjth non -linear chemjcal reactjon rate

process. As the average concentration change, computed from the solution of equation (1), at
a cross-section of the pipe, the step response cUrves when a tracer injected into the fu11y-

developed laminar pipe flow with axial and radial molecular diffusions 'were calculated nume-
rically. The variances of the residence time distribution from the mean residence time were

calculated via these step response curves by moment integration method in which integration

of the response curve by adding various tirne weight is made. The effective dispersion coeffi-
cient, E, is evaluated by setting the variance equal to E/uR, which is the variance of one dinien-

sional dispersion model. And the dependence ofRep Å~Sc (=2uRID) on the effective dispersion
coe fficient, E was discussed .

                             2. Numerical Method
   For fu11y-developed laminar pipe flow, the diffusionÅíonvection equation is given by equa-
tion (1). 'Ihe boundary conditions proposed by Danckwerts (1953), are as foliows:

t=o

t>o

x>o
x=o

x=L

r=O

r==R

c=o,
D( aaxC ).=, u<c

( gg ).=,-o,

( aaxC ).!,=O'

( g2 ).;,-o

  -Cin),
x=o

In dimensionless coordinates equation (1) can be written as follows;

gC, - .L. giC,+ .t.(g2,C,+" gC, )-2(,-y2) gf ,

with the conditions

T=O
T>O

X>o
X==o

X=1

y=o

Y=1
where C=clcin, T=utlL, X=xlL,
   Equation (1) is
second order finite-difference
parts in the axial direction and into K parts in the radial direction as shown in Fig

of concentration change is imposed
detected as the concentration change at the output plane

direction are

(2)

(3)

c == o,

( g2 ) ,=,= pex(c.=,-i)

( gf ),;,-- o• (4)
( OaCy ) v;o== O'

( a,C, ),;,-= o,

          Y=rlR, Pe.=uLID and Pe,=uR2IDL =Pe.Å~ (R IL )2 .

finitedifferenced with respect to dimensionless space variables Xand Y by

        approximation formulae. The fluid in the pipe is dividedintoN

                                                . 1 .,Step input
             at the input plane, and the output signal (step response) is

                             .The difference formulae for the axial
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        j
K+1

i

1 2 RNN
N

L

                       Input Plane Output Plane

         Fig. 1 Finite differenced cells with respect to axial and radial directions (i, i).

 aa2xC,a"=N2(c,.,,,+c,-,,,-2c,,), (5)

  aat`" =Y-(c,. ,,j-c,7 ,,j), (6)
where i andi represent se quential numbers oforder for the axi al and radial directions, respectively.

The formulae in the cases ofi=1 (at inlet) and i--N(at outlet) are given by us (1969a);

 i=i aaCT`"-41111i.(c,,j-c,,j)-{Il(c,rc,,,), (7)
               ' i=N aaCTrv" = 4lilll.[c,-,,j-c.-,,j-4(c,,j-c.-,,J)]-:l\-(c.7,.j-4c.-,,j+3c.,j).

                                                           (8)

The difference formulae for the radial direction are written as follows;

 02Caj     =K2(Caj+i+Caj-i-2Caj), (9)  aY2

 eoCy`' =!ll-<c,,.,-c,,-,). (lo)
The formulae in the cases ofi--1 (at center of the pipe) and1'--K+1 (at wall of the pipe) are as

follows ;

      ac,, 2K2J'=1 oT= pe. (C"2-C")' (11)
J' =K+1

      OC aj K2                              K       aT = pe. (C"K-Ct"'i)+ pe. (CaK+i-CaA')• (12)

By the difference formulae (5)-(1 2), equation (3) is represented in various conditions as follows;

 L=LJ=1
  ddCT`' = 2pK,l (Ci,2'Cin)+ 4(illl.(C3.i-Cii)-N[1-( j-Kl )2]<C2i-1•O)•

                                                     (13)
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i=1 ,J=2,•••,

 dC,j
  dT

 K
  K2
 Per
  N2+ 4Pe.
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(C,,j.,+C,.jT,-2C,,,)+ K2

(C,rC,,,)-N[1-(
2(j-1)Per

jMKi  )2

(Ci,j+i-CiJ-i)

](C,,-1.0),
(14)

i=1,j=K+1
    ddCil" pKi (Cw-i-CiJ)+ plil. (Ci•JmCi•j-i)+ 421i.(C3+'-CiJ)

       -N[1-( jK-1 )2 ](c,,,-lo), (ls)

i=2,•-, N- 1, J' =1

    dC,,, 2K2                   N2           (Ci2-Ct,i)+                     (C,..+C,-.-2C,.,)    dT Per                   Pex
       -N[1-( J'K-1 )2](Ct+ia-Ce-i"), (16)

i=2, •-, N- 1, J' -- 2, •-, K

    dC,/ K2                          K2           (Ci,j.,+C,,iL,-2C,,j)+                             (Ct,j+i'Ci,j-i)                       2(j-1)Per    dT Per
       + pNi. (C,+i,j+Ct-LJ-2Ci/)-N[1-( J'K-1 )2](Ci+w-Ctri,J),

                                        (17)i=2,-•, N-1, j' =K+1
    dC,,, K2                    K           (Caj-i-Ci/) +                      (C,,,-C,,j-,)    dT Per                    Per
       + pNi. (Ct+w+Ct-w-2Ci,j)-N[1-( J'K-1 )2](C,+i,J'C,"i.J),(18)

i= N, j=1
    dCaj
    dT

i=N, J' =2

    dC,,j
    dT

  ;;Eij (Ci,2-Cai)+ 4iillli. [Ct-m-Ci-3.i-4(Ct,i-C,-2")]

  [(K-N 1- J'-'  1 )2](c,-,,,-4Ci-m+3CDa),

, •••, K

= pKi (C`""i+C`"-i-2Cw)+2(J'"Kl2)pe.(C`"'i-C`"-i)

+ 4i]Ili. [c,-i/-c,-,,:-4(c,,,-c,-,,,)]

. N[ 1- ( J' K-1 )2 ](c,. ,., -4c,-.+3c ., ),

(19)

(20)
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i=N, j' --K+1
       dC,,, K2 (C,.j-,-C,,j)+ K

dT

+

Per

N2
4Pex

Per
(CirCw-i)

[C,-,,j-C,-,,j-4(C,.j-C,",,j)]

-N
[1-( j-1

K
)2 ] (c,- ,,, -4c,- ,,, +3Cw)•

(21 )

   The Kutta-Merson process, summarized by Lapidus and Seinfeld (1971), was employed for
integration of a set of these NX(K+1) ordinary differential equations, because automatic time
increment setting gives this process good stability. The step response..is expressed as the change

in mean concentration through the cross-section at the outlet of the pipe. From the numerical

solution of equation (1), the mean concentration is computed at X=1 by the integration of
equation (22);

(C- )x-i= .k2 f,R(C)x-LX2rrT dr=2 foi( C)x-iXYdY. (22)

The mean, 7 and variance, 'T" of residence time distribution are computed from the step

response by the moment integration method, which is developed by Danckwerts(1953) and
Van der Lann (1958) as follows;

T= fooo( C> x- i Å~ T dT, (23)

T-2 == fooo( C- ) x.iÅ~ T2 dT/ foco(C)x-iÅ~ T dT. (24)

                            3. Results and Discussion
   Figure 2 shows the influence of Pe, (=(uRID)(RIL)) on the sihape of the computed step
responses, while Pe. (=(uRILD)(LIR)) is fixed at 2i2=4096. Tlie shape ofa step response curve

is affected by the Pe, group. The maximum difference on the step response curves for Pe,=1
and Pe,=512 is found to be 359o. When Pe, decreases, the response becomes similar to that of

piston flow. Inversely, increase in Pe, gives rise to the long tailing on the step response curve.

   The numerical integration error, brought about by the method used to compute the step
response curve from equation (1) through equations (13)'v(22), was examined by the compu-
tations with two different numbers of division with respect to space variables. The test indi-

cates that the maximum error on the step responses for N=10, K=10 and N=20, K=20 is less
than O.059e. In this algorithm, the computing time to obtain a step response curve is about 10

minutes on a tiny general purpose electronic computer(Memory size =48K bytes) for whichthe

Gibbson-Mix value is 50"s. '   To reveal the influence ofPe. on the step response, the step responses for several values

of Pex qre shown in Table 1, while the value ofPe, is held at 4.0. The maximum difference in
the step response for Pe.=64.0 and Pe.=8.59Å~109 (!!233) is 39o. The influence of Pe. on the

step response is less than that ofPe,. Therefore,it is valid to neglect the term ofD•a2C/aX2 in
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LO

v .5

o

LO 16

Per=256

Pex=4096

o 1, O

T
2. 0 3. 0

Fig. 2 Step response (concentration change with time) detected at output palne when step input is imposed

on the input plane.

Table 1 Concentration change with time deteCted at output plane when step input is imposed on the input

       plane.

T C (T)

Pex=64 Pex=256 Pex=4096 Pex=8.59Å~10'

o.ooo

O.320

O.640

O.960

1.280

1.600

o.ooooooo
O.OO17484
O.1706966

O.5326071

O.8074933

O.9461374

o.ooooooo

O.OO08601

O.1502197

O.5210361

O.8150576

O.9648916

o.ooooooo
O.OO06581

O.1434003

O.5174938

O.8180043

O.9725180

o.ooooooo
O.OO06458

O.1429375

O.5172684
O.8182153

O.9730641

Per = 4.0 fixed

equation (1) in order to obtain the approximate solution of equation (1). However, when uLID
becomes small, i.e., when a fluid of relatively Iarge molecular diffusivity is flowing very slowly,

the influence ofPe. on the step response curve can not be neglected.

   When the effects of radial and axial diffusions and convection on the dynamics of chemical

process equipments involving rate processes, it is not easy to use the simulation model which is

expressed by equation (1). Thus,{the one-dimensional dispersion model is widely employed
instead of the simulation model expressed by equation (1). By utilizing the moment integration

method, the variance of resisdence time distribution with the step response of equation (1) was

calculated. On the other hand, the variance of the one-dimensional dispersion model is
expressed by equation (25). By equating these two variances, the effective dispersion
coefficient, E, is estimated as follows, and the effective Peclet group (Ped=2uR/E) can be

computed by E.

T-2== p2, = 2 .E
L (25 )

E= uL Å~ T-,
     2

(1[his T2 is from equation (24)) (26)
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   In figure 3, Ped (=uD/E=2uRIE) is plotted against the dimensionless group, ReXSe
(=2uRID). The Reynolds number, Re is based on the internal dimameter of the pipe. In addi-
tion, the approximate correlations of Taylor (1953) and Aris (19S6) are shown in figure 3.

These correlations hold on the condition of 4LIR>uR!D=ReXSc12. The condition of 4LIR=
uRID is shown by the dots in figure 3. Under the condition of 4LIR>ttRID, that is, the left
side 6f the dots in figure 3, the numerical solution shows good agreement with the Aris' and
                                                -t'Taylor's correlations. The relativq magnitude of axial and radial diffusion terms is thought to be

estimated approximately as the ratio of the coefficients, 1/Pe. and 11Pe,. The ratio becomes
Pe,IPe., or (LIR)2. The slender ratio RIL of the pipe, i.e. the ratio of the radius of the pipe

to the length of the section tested for its dynamics, wru influence the correlation. Our numeri-

cal results can be applied for the Ped vs. ReXSc correlation even with the slender condition
by the calculated correlations as is shown in figure 3. Less siender condition wil1 be realized in

pipe flow in chemical equipments,'while flow in a pipe line approximates the limiting slender

condition and so the axial diffusion term can be eliminated.
        '

ov

m

10

LO

O. 1

O.Ol

-h ts
Nts

Taylor

Aris

tla.020

      O. OOIO

e.t,

  xxo
    •oO6?s
    a9,Z,s,s

      q0,,[e

eg

                 10 102 103 10'
                                'Re Å~ Sc

     Fig. 3 Ped vs. ReXSc correlation, whenEin Ped is computed by moment integration method.

    The other method of estimation for an effective dispersion coefficient from the step
response, E, is as well derived as the inclination of step response curve at T=1.0, or the peak

concentration value of impulse response at T=1 .0. Impulse response of the dispersion model is

written by equation (27) as derived by us (1968) and summarized by Wen and Fan (1975),

 c-,(T)== lvZi5.lieJT/C'-i'2 (27)
'Ihe slope, m of the step response curve at T=1 .0 is derived as equation (28) from equation (27),

since time derivative (slope) of step response leads to impulse response,

 m-(dC-i(TT)),=,,-(c-,(T)),;,,- Sf-S (2s)
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ptov

10

LO

O. 1

O.Ol

R/L
= O. os25

O.03125

O. O156

Teylor

O. O078

O.O039

--"-S X-:
     O.O020

O.OOIO

        10 10t 103 104
                       ReÅ~Sc
Fig. 4 Ped vs. ReXSc correlation, when E in Ped is computed by slope method.

Then, effective Pe (=uLIE) becomesequal to 4m2n, and the effective dispersion coefficient,E is

estimated as uL14m2rr. Ped (=PeXdlL) which is obtained by this method, is plotted against

dimensionless groups, ReXSc (=2uRID) in figure 4. In this slope method, the results pfcalcu-

lation show good agreement with that of the moment method (figure 3) under the condition of

4LIR>uRID. But, when 4LIR<uRID, the correlations by the two methods give different
results. The Ped vs. ReX Sc correlation has been found, as seen in figures 3 and 4, to be affected

considerably by the slender ratio, R/L , which is directly related to the ratio of the coefficients

of the radial and axial diffusion terms in equation (1) or (3). Even for such slender case as
RIL =O.O078 in figure 3, the correlation'deviates from Taylor's forReÅ~Sc>5Å~102 . By compar-

ing figure 3 (moment integration method) with figure 4 (slope method), the correlation does
not seem to be affected by method for the highly slender case, i.e. R/L<O.OOI, with our
numerical experiment range ofReXSc. In the experimenis, the input-output plane length, L,

must be as much as 1,OOO times the diameter, R, to avoid deviation from the Taylor's cor-
relation, when ReXSe in greater than 104 . For relatively high ReXSc, the method to evaluate

the dispersion coefficient from the experimental step response should be considered, and the

dispersion coefficient obtained must be corrected by the factor as the difference in the cor-
relations (figures 3 and 4) produced in this work, according to slender ratio and the evaluating

method of the effective dispersion coefficient, used in the respective experimental work.
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