

上下動における液体貯蔵円筒形タンクの側板-底板 の連成挙動について

メタデータ	言語: jpn
	出版者:
	公開日: 2013-11-06
	キーワード (Ja):
	キーワード (En):
	作成者: 宮脇, 幸治郎
	メールアドレス:
	所属:
URL	https://doi.org/10.24729/00008128

上下動における液体貯蔵円筒形タンクの 側板一底板の連成挙動について

Cuppling Motions with Respect to the Cylindrical Shell-Circular Plate of Liquid Storage Tanks during Vertical Excitations

宮 脇 幸治郎*

Kohjiro MIYAWAKI**

(昭和51年9月6日 受理)

Synopsis

This paper dealt with motions couppling a cylindrical shell and circular plate of liquid storage tanks during vertical excitations. The analysis methods ware as follows.

The stored liquid was curried out introducing a fundamental equation of the dynamic liquid pressure with the equations of the Euler's motion and the continuity, and this equation was solved analytically with given boundary conditions. The cylindrical shell was treated as the Timoshenko-Love's shell and was considered external forces with respect to the dynamic liquid pressure and the inertia force of the shell. The circular plate was calculated deformations and bending moments from a plate theory during external forces of the dynamic liquid pressure, the ground reaction and the inertia force of the plate. The couppling behaviour was considered with the continuous conditions with respect to the lower edge of the shell and the edge of the plate.

1. はしがき

直下型の地震が発生した場合,相当大きな上下動が構造物には作用すると考えられる. タン ク構造物に対する水平動の検討は,数多くなされ^{1),2),3),4)}ているが,上下動に対する検討はほ とんどなされていないという現状にある.

上下動のタンク構造物の取扱いには種々あろうが、本報告は液体貯蔵円筒形タンクを対象に して解析的に取扱った.解析手法は、貯蔵流体は流体を Euler の運動方程式と連続方程式と によって動流体圧の基礎方程式を誘導し、所定の境界条件を合わすことによって解いた.また 底板は板の基礎方程式において外力項に動流体圧、基礎地盤反力および慣性力を考慮して、側 板は Timoshenko-Love の円筒シェルの基礎方程式において動流体圧および慣性などの外力 項を考慮して解析した.側板と底板との連成挙動は、側板の下端部と底板の縁端部での連続条 件を用いることによって求めた.

なお、動流体圧に対する数値計算による検討を若干行うことによって、タンク側板および底

^{*}土木工学科 **Department of Civil Engineering

宮 脇 幸治郎

板に作用する動流体圧の評価を行い、それぞれの基礎方程式からの解法がなされた.また、連 成挙動に対する数値計算における検討は、別の機会に報告することにした.

2. 上下動における動流体圧

(1) 基礎方程式

Fig. 5 に示すように座標軸をとり, 基礎地盤が上下方向に加振された場合について円筒タンク中の流体によって生ずる動流体圧を考える.

上下加振されたときの液体の動的挙動を厳密に取扱うことはきわめて困難であるため以下に 示すような近似的な取扱いを行う.まず r 方向, z 方向の流体速度を v_r, v_z とそれぞれす ると連続方程式は,

であり、また、半経 r で深さ H としたときのその断面を $A(=2\pi rH)$ 、その断面を r 方向に 通過する流量を $Q(=2\pi rHv_r)$ とすると、次式のようにも連続方程式が表せる.

$$\partial A/\partial t + \partial Q/\partial r = 0$$

すなわち,

$$\partial H/\partial t + H \partial v_r/\partial r + v_r + v_r H/r = 0$$
(2.2)

式 (2.1) と式 (2・2) との関係より,

となる. ここで, v, は簡略化のため z 方向に一様であるとして z に関して積分すれば,

ここに、 $v_{z_0} = dz_0/dt$:基盤での上下加振速度 となる.

つぎに、流体に対する Euler の運動方程式⁵⁾は、運動が z 軸対称であり、 v, が微少とす れば、

である. さらに、式 (2・4) を (2・5) の第2式に代入して、H および v_r の1次微係数の2 乗項を2次微係数項に比べて無視して、また簡略化のため v_{so} とH の1次微係数との積も無 視できるとすると、

となる.式(2·1)を *t* で偏微分し,式(2·5)の第1式に代入して再び低次の微係数の2乗 項を高次の微係数に比して無視すれば,

となる. さらに, 式 (2·7) を式 (2·6) に代入して, H=H₀+η, H₀≫η とすれば,

となる.式(2·8)は流体が上下加振されたときの動流体用 *p(r, z:t)* に関する基礎方程式である.

いま、基礎地盤の上下運動は定常的な加振であるとする. すなわち,

9)

ここに, z₀:基盤の上下加振振幅

このとき、式(2・8)の解は、つぎのように置く.

2)
$$r = R_0; \partial p(R_0, z:t) / \partial r = 0$$
(2.12)

を用いると、次式のようになる.

ここに、 $m_j: J_1(m_j) = 0$ なる零点 (j=1, 2, ...) $J_n(a): 第1種 n 次ベッセル関数$

つぎに、式 (2・13) を式 (2・7) に代入すると、 $\sum_{j=1}^{\infty} C_j \exp\left\{\frac{m_j^2}{2} \left(\frac{z}{R_0}\right)^2\right\} \left(\frac{m_j}{R_0}\right)^2 J_0\left(m_j \frac{r}{R_0}\right) e^{i\omega t} = \frac{\rho}{H} \frac{\partial^2 H}{\partial t^2}$ ため、ここで、H-H-H-T HNT でたり

となり、ここで、 $H = H_0 + \eta, H_0 \gg \eta$ であり、 $\eta = \eta_0(\mathbf{r}) e^{i\omega t}$ (2.14)

とすると,

$$\sum_{j=1}^{\infty} C_j \exp\left\{\frac{m_j^2}{2} \left(\frac{H_0}{R_0}\right)^2\right\} \left(\frac{m_j}{R_0}\right)^2 J_0\left(m_j\frac{r}{R_0}\right) \left\{1 + m_j^2 \left(\frac{H_0}{R_0}\right)^2 \frac{\eta_0}{H_0}\right\} = \rho \frac{\omega^2}{H_0} \eta_0$$

となる.いま,流体の自由表面の圧力条件として,

3) $z = H_0$; $p(r, H_0: t) = \rho g(\eta + z_0 e^{i\omega t})$ (2・15) と考えると,式 (2・13) より,

式 (2 16)を式 (2・15) に代入し,両辺に r/R_0 を掛けて, r/R_0 について [0,1]の領域を積分すれば,

$$C_{j} = \frac{\omega_{v} \sqrt{\rho(C_{0} - \rho g z_{0})} R_{0}^{2}}{m_{j}^{2} H_{0} J_{0}(m_{j})} \exp\left\{-\frac{m_{j}^{2} \left(\frac{H_{0}}{R_{0}}\right)^{2}}{2}\right\}, \quad (j = 1, 2, ...) \qquad \dots \dots \dots (2 \cdot 17)$$

となる.

つぎに,自由表面の波高の変動は,

4)
$$z = H_0; 2\pi \int_0^{R_0} \eta r dr = 0$$
(2.18)

$$\begin{array}{c} \downarrow \flat, \ C_{0} = 0 \ \ \geq t \& \ \Im, \ \ \cup t \& t \& \ \neg \ \neg \ \zeta, \\ C_{j} = i \ \frac{\rho H_{0} \omega_{1} \sqrt{g z_{0}}}{m_{j}^{2} f_{0} (m_{j})} \left(\frac{R_{0}}{H_{0}} \right)^{2} \exp \left\{ -\frac{m_{j}^{2}}{2} \left(\frac{H_{0}}{R_{0}} \right)^{2} \right\}, \quad (j = 1, \ 2, \ \cdots)$$

となり、式(2・13)は、次式のようになる.

式(2・20)は、右辺の第1項が流体の自由表面の波動によって生じる効果であり、第2項が 流体内部での動的流体内圧効果であり、第3項が静的流体圧効果であると解釈できる.また、 上下動下における動流体の挙動は、水平動における挙動のような共振現象を呈さないのがわか る.

(2) 数值計算

誘導された式 (2・20) の上下動による動流体圧効果を検討するために数値計算を行った.対象とした液高 $H_0=20$ m で、半径 $R_0/H_0=2$ とし、上下加振領域は **Fig. 1** に示す各ケースを とった、ここでは、ケース4 および5 について最大の動流体 圧分 布を **Fig. 2, 3** の図に示した.また、ケース5 においては、最大の動流体圧分布との 位相差が $\pi/2$, $\pi/4$ について **Fig. 4** に示した.

数値計算結果によりつぎのような事項がわかる.

- 1) 動流体圧効果は、加振加速度(震度)あるいは加振振動数によって大きく変動している.
- 2) 鉛直方向の最大の動流体圧分布は,静的な三角形分布に動流体内圧効果の放物線分布が 重なった分布をしている.
- 3) 水平方向の最大の動流体圧分布は、ほぼ等圧分布に近い分布をしている.
- 4) 流体の自由表面における波動による動流体圧効果は、自由表面高において変動する。しかし、動流体圧効果全体に比べるとその効果が少なく、浮屋根式タンク以外においても 無視してもよいと考えられる。

Fig. 1 Objective Ranges with respect to Excitations

3. 円形底板の動的応答

Fig. 5 のように座標系をとったときの円形底板のたわみ *w* に関する基礎微分方程式⁶⁾ は, 次式のように与えられる.

$$\begin{split} \Delta \Delta w &= \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}\right) \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}\right) w = \frac{q}{D} \qquad \dots \dots \dots (3. 1) \\ \mathcal{Z} \subset \mathcal{U}, \quad q = q_1 + q_2 + q_3, \\ q_1 &= -Kw \\ q_2 &= -\tilde{\rho}_0 \partial^2 w / \partial t^2 \\ q_3 &= p_4 + p_d e^{i\omega t} \\ &= \rho g H_0 + \left[i_\rho \omega^2 H_0 \left(\frac{R_0}{H_0}\right)^2 \sqrt{g z_0} \sum_{j=1}^{\infty} J_0 \left(m_j \frac{r}{R_0}\right) \frac{\exp\left\{-\frac{m_j^2}{2} \left(\frac{H_0}{R_0}\right)^2\right\}}{J_0(m_j) m_j^2} \\ &+ \frac{1}{2} H_0 \rho \omega^2 z_0 \right] e^{i\omega t} \\ D &= E h^3 / 12 (1 - \nu^2) \end{split}$$

なお、K は基礎地盤の地盤係数、 \tilde{p}_{0} は円形底板の密度 (= $p_{0}h$)、h は底板の肉厚、E は底 板の弾性定数、 ν は底板のポアソン比である.

式 (3・1)の解が

と仮定されると,

となる.

式 (3・4) の第1式を解くことを考える.まず,

とおくと、式 (3・4) は θ に無関係であるから、 $\left\{ \left(\frac{d^2}{dr^2} + \frac{1}{r} \frac{d}{dr} \right) \left(\frac{d^2}{dr^2} + \frac{1}{r} \frac{d}{dr} \right) + \frac{\mu_0^4}{R_0^4} \right\} w_s = \frac{p_s}{D} \qquad \dots \dots \dots \dots (3 \cdot 6)$

となる.式(3·6)の斉次方程式の解は, r=0 での有限性より,

 $\subset \subset \wr \subset, \ \tilde{\mu}_0 \!=\! e^{\frac{1}{4}\pi_i} \mu_0$

$$J_0(q) = \operatorname{ber}(q) - i \operatorname{bei}(q) \qquad (3.8)$$
$$J_0(q) = \operatorname{ber}(q) + i \operatorname{bei}(q)$$

となる. ここに, ber(q), bei(q) は Kelvin 関数⁷⁾ である. また *M*₁, *M*₂ は未定定数で, 境 界条件によって定められる.

つぎに、式 (2・6) の特解は、
$$w_{s2} = \rho g H_0 R_0^4 / D \mu_0^4$$
(3・9)

となる.

つぎに、式(3・4)の第2式を第1式と同様にして解く、まず、

とおくと、式(3・4)の第2式の斉次方程式の解は、

 $\zeta \subset \langle \zeta, \tilde{\mu} = e^{\frac{1}{4}\pi} \mu$

と求まる. 式 (3・4) の第2式の特解は,

$$w_{d2} = S_0 + \sum_{j=1}^{\infty} S_j J_0 \left(m_j \frac{r}{R_0} \right)$$
 (3.12)

とおいて、式(3・4)の第2式に代入して係数を比較すれば、

$$S_{0} = \frac{\rho \omega^{2} z_{0} H_{0} R_{0}^{4}}{2 \mu^{4} D}$$

$$S_{j} = i \frac{\rho \omega H_{0} R_{0}^{4}}{D} \left(\frac{R_{0}}{H_{0}} \right)^{2} \sqrt{g z_{0}} \exp \left\{ -\frac{m_{j}^{2} \left(\frac{H_{0}}{R_{0}} \right)^{2}}{2} \right\} / J_{0} (m_{j}) m_{j}^{2} (m_{j}^{4} + \mu^{4}) \right\}$$
......(3.13)

と求められる.

最後に円形底板に生じる曲げモーメントは次式のように求められる.

式(3·14)において、右辺の第1,第2項は静的な曲げモーメント効果,第3,第4,第5 項は動的な曲げモーメント効果を意味していることになる.

4. 円筒側板の動的応答

Fig. 6 に示すように座標軸をとり、動流体圧の効果のうち表面波によるものを他の効果に 比べて小さいとして無視し、円筒側板の挙動が θ に無関係とすると、円筒側板に関する基礎 微分方程式は⁶、次式のように与えられる.

$$\tilde{\rho}_{0}\frac{H_{0}}{h}\frac{\partial^{2}u}{\partial t^{2}} + \frac{C}{R_{0}^{2}}\left(\frac{\partial^{2}u}{\partial\xi^{2}} - \nu\frac{\partial w}{\partial\xi}\right) = -\tilde{\rho}_{0}\frac{H_{0}}{h}\frac{\partial^{2}z_{0}}{\partial t^{2}}$$

$$\tilde{\rho}_{0}\frac{\partial^{2}w}{\partial t^{2}} + \frac{C}{R_{0}^{2}}\left(\nu\frac{\partial u}{\partial\xi} - w - \sigma\frac{\partial^{4}w}{\partial\xi^{4}}\right) = p_{t}$$

$$(4.1)$$

ここに,

$$p_{\iota} = p_{s} + p_{d}e^{i\omega \iota}$$

$$p_{0} = \rho g H_{0} \left(1 - \frac{R_{0}\xi}{H_{0}}\xi\right) \qquad (4.2a)$$

- 85 --

$$p_{d} = \frac{1}{2} \rho g H_{0} \frac{\omega^{2} z_{0}}{g} \left\{ 1 - \left(\frac{R_{0}}{H_{0}}\right)^{2} \xi^{2} \right\}$$

$$\sigma = \frac{1}{12} \left(\frac{h}{R_{0}}\right)^{2}, \quad \xi = \frac{z}{R_{0}}, \quad C = \frac{Eh}{(1 - \nu^{2})}$$
 (4.2b)

なお、 $\tilde{\rho}_0$ は円筒側板の密度 $(h\rho_0)$, h は側板の肉厚, E は側板の弾性定数, ν は側板のポ アソン比である.

Fig. 6 Coordinates of the Cylindrical Shell System

上式の解は,

$$u_{s} = \frac{\nu \rho g R_{0}^{3}}{2(1-\nu^{2})C} \xi^{2} + B_{1} + B_{2}\xi + B_{3}e^{\beta(1+i)\xi} + B_{4}e^{\beta(1-i)\xi} + B_{5}e^{-\beta(1+i)\xi} + B_{6}e^{-\beta(1-i)\xi} + B$$

- 86 -

ここに,

$$\beta^4 = \frac{1-\nu^2}{4\sigma}$$

となる. ここで, $B_j(j=1\sim 6)$ は未定定数である. 式 (4・6)を式 (4・4) の第1式に代入して, w_s について解くと、

となる. ここに, E_1 は未定定数である.

動的状態では,

$$-\tilde{\rho}_{0}\frac{H_{0}}{h}\omega^{2}u_{d} + \frac{C}{R_{0}^{2}}\left(\frac{\partial^{2}u_{d}}{\partial\xi^{2}} - \nu\frac{\partial w_{d}}{\partial\xi}\right) = \tilde{\rho}_{0}\frac{H_{0}}{h}\omega^{2}z_{0}$$

$$-\tilde{\rho}_{0}\omega^{2}w_{d} + \frac{C}{R_{0}^{2}}\left(\nu\frac{\partial u_{d}}{\partial\xi} - w_{d} - \sigma\frac{\partial^{4}w_{d}}{\partial\xi^{4}}\right) = p_{d}$$

$$(4.8)$$

である.

式(4·8)の第2式を *€* で偏微分した式に第1式と第1式を *€* で4階偏微分した式とを代入し,

となる. 式 (4・9) の解は,

$$\gamma^{5} - \tilde{\rho}_{0} \frac{H_{0} R_{0}^{2} \omega^{2} \gamma^{4}}{h C} - \frac{1}{\sigma} \left\{ (1 - \nu^{2}) + \frac{\tilde{\rho}_{0} \omega^{2} R_{0}^{2}}{C} \right\} \gamma^{2} - \frac{1}{\sigma} \left(1 - \frac{\tilde{\rho}_{0} \omega^{2} R_{0}^{2}}{C} \right) \tilde{\rho}_{0} \frac{H_{0} R_{0}^{2}}{h C} \omega^{2} = 0$$

$$\dots \dots \dots \dots \dots (4 \cdot 10)$$

なる7の代数方程式の6根を用いれば,

$$u_d = -z_0 - \nu \frac{\rho h}{\tilde{\rho}_0} \left(\frac{R_0}{H_0}\right)^2 z_0 \xi \left| \left(1 + \frac{\tilde{\rho}_0 \omega^2 R_0^2}{C} \right) + \sum_{j=1}^6 F_j e^{\gamma_j \xi} \right| \qquad (4.11)$$

ここに, *F_j*(*j*=1~6) は未定定数 である.

式 (4·11) を式 (4·8) の第1式に代入して解くと, $(2\pi c_1^2 D^2) = 16 (H D^2) c_2^{*}$

$$w_{d} = \frac{1}{2} \rho R_{0}^{4} \omega^{2} z_{0} \xi^{2} / H_{0} C \left(1 + \frac{\bar{\rho}_{0} \omega^{2} R_{0}^{2}}{C} \right) + \frac{1}{\nu} \sum_{j=1}^{0} F_{j} \left(\gamma_{j}^{2} - \tilde{\rho}_{0} \frac{H_{0}}{h} \frac{R_{0}^{2}}{C} \omega^{2} \right) \frac{e^{\gamma_{j} \varepsilon}}{\gamma_{j}} + G_{1}$$

$$\dots \dots \dots \dots (4 \cdot 12)$$

となる. ここに, G_1 は未定定数である.

また側板の曲げモーメントは,

$$\begin{split} M_{r} &= -\frac{D}{R_{0}^{2}} \frac{\partial^{2} w}{\partial \xi^{2}} \\ &= -\frac{D}{R_{0}^{2}} \left[i \frac{2\beta^{3}}{\nu} \{ (1+i) e^{\beta(1+i)\xi} B_{3} - (1-i) e^{\beta(1-i)\xi} B_{4} \\ &- (1+i) e^{-\beta(1+i)\xi} B_{5} + (1-i) e^{-\beta(1-i)\xi} B_{6} \} \\ &+ \left\{ \rho R_{0}^{4} \omega^{2} z_{0} / H_{0} C \left(1 + \frac{\tilde{\rho}_{0} \omega_{2} R_{0}^{2}}{C} \right) + \frac{1}{\nu} \sum_{j=1}^{6} \gamma_{j} \left(\gamma_{j}^{2} - \tilde{\rho}_{0} \frac{H_{0}}{\hbar} \frac{R_{0}^{2}}{C} \omega^{2} \right) e^{\gamma_{j}\xi} F_{j} \right\} e^{i\omega t} \right] \\ &- \dots \dots \dots (4 \cdot 13) \end{split}$$

— 87 —

宮 脇 幸 治郎

と求められる.

5. 側板一底板連成系における動的応答

流体を貯蔵したタンクにおいて、側板と底板とが完全に連続的に接続しているとき、貯蔵流 体一側板一底板が相互的作用関係にある.ここでは簡単のため、貯蔵流体は側板および底板に 一方的に作用するものと仮定し、側板と底板とが連成系を成しているときの動的挙動について 考えることにする.なお、側板と底板との接続部の支持条件は、基礎地盤が軟弱なものを考え て、地盤の側方流動防止のため基礎が円筒状に設置されているものについて考える.

第3,第4節において取扱った底板および側板に対する解析は、未定定数 $M_1, M_2, N_1, N_2, B_j(j=1~6), E_1, F_j(j=1~6), G_1$ を含んでおり、これらは次のような境界条件のもとに求められる.

1)	$r=R_0$; $w_1 = 0$	
2)	$\boldsymbol{\xi}=0$	$: u_1 = 0$	the second second
3)	$\boldsymbol{\xi} = 0$; $w_2 = 0$	
4)	$\boldsymbol{\xi}=0$: $\partial u_2 / \partial \xi = 0$	
5)	$\xi = H_{ m o}/R_{ m o}$: $\partial^2 w_2 / \partial \zeta^2 = 0$	\$
6)	ξ = $H_{ m o}/R_{ m o}$	$: \partial^3 w_2 / \partial \xi^3 = 0$	
7)	$\xi = H_{\scriptscriptstyle 0}/R_{\scriptscriptstyle 0}$	$: w_2 - \nu \partial u_2 / \partial \xi = 0$	1
8)	$r=R_0, \xi=0$	$: \partial w_1 / \partial r \!=\! \partial w_2 / R_0 \partial \xi$	
9)	$r=R_0, \xi=0$: D_1 { $\partial^2 w_1$ / ∂r^2 + ($ u$ / r) ∂w_1 / ∂r } = (D_2/R_0^2) $\partial^2 w_2$ / $\partial \xi^2$)
		······	(5-1)

ここに、添字1、2はそれぞれ底板および側板に対する諸量を意味する.上式のように底板 と側板との接続条件としては、たわみ角および曲げモーメントの連続条件を用いている.

6. あとがき

本報告は,流体貯蔵用円筒形タンクに上下動が作用した場合,流体に発生する動流体圧,タンク底板および側板に生じる変形量および曲げモーメントについて解析を行ったものである.

解析の結果, 貯蔵流体に発生する動流体圧は, 静的流体圧のほかに動的流体内圧および表面 波による動的波動圧とからなる. なお数値計算の結果より最大の鉛直方向の動流体圧分布は, 三角形分布に放物線分布が重なった分布となり,水平方向の分布は,ほぼ等圧力分布を示し, 加振加速度(震度)によって大きくその振幅を変化させる. つぎに底板および側板の変形量お よび曲げモーメントは,静的成分と動的成分とに分離して解析でき,連成挙動は,底板と側板 との境界における連続条件により考慮できる.

なお、本報告での解析における問題点にはつぎのような事項が含まれている. (1)流体は 粘性を無視して取扱われている. (2)動流体圧の基礎方程式の誘導における近似の妥当性は、 実験などによる検討を必要とする. (3)底板および側板に作用する流体は一方的に作用して いるが、互いに相互作用をおよぼし合っている. (4)底板および側板の肉厚は一様としたが、 実際には変化している. (5)基礎地盤のばね特性は地盤反力係数を用いたが、実際の地盤は 非線形のばね特性である. (6)上下加振は定常な正弦波動として取扱ったが、実地震は不規 則波である.

上下動における液体貯蔵円筒形タンクの側板一底板の連成挙動について

しかし、本報告のような解析法は、上下動下のタンク挙動の基礎的な特性を検討するにはある程度意味があるものと思われる. なお、今後(1)不規則波入力に対する応答の評価、(2) タンク群に対する解析、(3) 模型実験による検討などを考えている.

参考文献

- Garcia, S.M.: Earthquake Response Analysis and Aseismic Design of Cylindrical Tanks, Proc., 4WCEE, Santiago, 1969, B-4, pp. 169-82.
- 2) Veletsos, A.S.: Seismic Effects in Flexibille Liquid Storage Tanks, Proc., 5WCEE, Rome, 1973, Session 2B, 70.
- 3) 清水信行:円筒タンクの耐震設計,配管技術,1974,7,8,9.
- 4) Sogabe, K. and H. Shibata: On the Response of Sloshing of Liquid in Cylindrical and Spherical Storages, Proc., 4th JEES, Japan, Nov. 1975, pp. 607-614.
- 5) 石原藤次郎·本間仁編: "応用水理学上(一般水理学)", 1957, 丸善, pp. 11~13.
- Timoshenko, S.P. and S. Woinsowsky-Krieger: "Theory of Plate and Shells", McGraw-Hill, 2nd, ed., pp. 82, 507-514.
- 7) 森口繁一・宇田川銈久・一松 信: *数学公式Ⅲ*, 岩波全書, 1971, pp. 174~176.