

学術情報リポジトリ

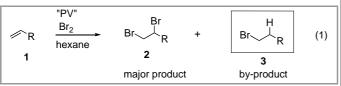
A Photo-Irradiative Phase-Vanishing Method : Efficient Generation of HBr from Alkanes and Molecular Bromine and its Use for Subsequent Radical Addition to Terminal Alkenes

メタデータ	言語: eng
	出版者:
	公開日: 2016-06-22
	キーワード (Ja):
	キーワード (En):
	作成者: Matsubara, Hiroshi, Tsukida, Masaaki, Ishihara,
	Daisuke, Kuniyoshi, Kenji, Ryu, Ilhyong
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10466/14993

A Photo-Irradiative Phase-Vanishing Method: Efficient Generation of HBr from Alkanes and Molecular Bromine and its Use for Subsequent Radical Addition to Terminal Alkenes

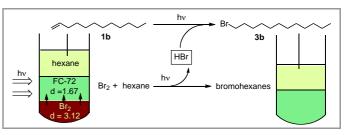
Hiroshi Matsubara,* Masaaki Tsukida, Daisuke Ishihara, Kenji Kuniyoshi, and Ilhyong Ryu*

Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan Fax: 81 72 254 9695

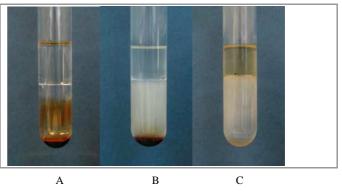

E-mail: matsu@c.s.osakafu-u.ac.jp, ryu@c.s.osakafu-u.ac.jp

Abstract: A triphasic phase-vanishing (PV) system comprised of an alkane, perfluorohexanes, and a bromine was successfully combined by photo-irradiation to efficiently generate hydrogen bromide, which underwent radical addition with 1-alkenes in the hydrocarbon layer to afford terminal bromides in high yields.

Key words: fluorous solvent, phase-vanishing, photo-irradiation, bromination, hydrogen bromide

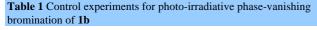

Reduction or elimination of the use of hazardous organic solvents is one of the major issues of the green chemistry, and in this regard fluorous solvents represent workable alternatives of the organic solvents.^{1,2} Fluorous solvents are generally immiscible with common organic solvents, while exhibit thermomorphic nature to give homogeneous solution upon heating. Thus far we developed recyclable organic/fluorous amphiphilic solvents, such as F-626³ and fluorous DMF.⁴ In our recent work, we also reported that fluorous chiral amines can be used repeatedly for enantioselective desymmetrization of ketones.⁵

In a different direction of utilizing fluorous media for organic synthesis, multi-phasic reactions appear promising. The Curran group and we have jointly developed phase-vanishing (PV) methods, which utilizes triphasic reactions based on the phenomenon that fluorous media act as liquid membranes to transport reagents to organic layers containing substrates.⁶ Since the first demonstration of the PV method,⁷ which is used for room temperature bromination of alkenes with molecular bromine to give vic-dibromoalkanes, a number of applications to various reagents other than bromine have been developed by us⁸ and the others.⁹ Recent advances in phasevanishing bromination include a quadraphasic PV bromination of ketones and aromatic compounds,8c in which an aqueous "scavenger" phase was added to the original triphasic PV method to remove HBr. In a related study using a related triphasic system, Iskra and co-workers reported benzylic bromination under irradiation conditions,9d and Dragojlovic and co-workers employed Teflon tape as the fluorous phase screen.^{9h, 9i} Weiss and co-workers carried out stereoselective bromination of alkenes using an ionic liquid as the phase screen of the PV method.98


Looking back to the original procedure of PV bromination of alkenes with bromine, shielding the test tube from sunlight with aluminium foil is important for the prevention of the formation of 1bromoalkane **3** as a by-product (eq 1).⁶ The formation of **3** was puzzling, however we hypothesized that hydrogen bromide would form in this system by sunlight-irradiative reaction of the hydrocarbon solvent with molecular bromine. This led us to examine the "photo-irradiative" phase vanishing reaction as a means for the generation of dry HBr. In this Letter, we report on the efficient in situ generation of HBr and the use for the synthesis of terminal alkyl bromides via anti-Markovnikov addition to terminal alkenes.

Template for SYNLETT and SYNTHESIS © Thieme Stuttgart · New York

Scheme 1 Photo-irradiative phase-vanishing bromination of 1-dodecene (1b) leading to 1-bromododecane (3b).


With 1-dodecene (1b) as the substrate and hexane as the solvent, PV bromination was carried out under a variety of conditions using a Xenon lamp as the light source (Table 1). When FC-72 (perfluorohexanes, 3 mL) was placed in a test tube (Pyrex, $\phi = 13$ mm) to which bromine (1.05 equiv) was slowly introduced, the heavier bromine sank to the bottom, forming two layers. A hexane (1.5 mL) solution containing 1-dodecene (2 mmol) was then added; this floated on top of the FC-72 layer, forming a triphasic system (Picture A). The test tube was then irradiated with a 500 W Xenon lamp. The FC-72 layer gradually turned milky and small bubbles of hydrogen bromide gas began to evolve (Picture B). As the bromine layer disappeared in 45 min, the evolution of small bubbles ceased gradually and after 1.5 h the FC-72 layer recovered transparency (Picture C). The hexane layer was then taken, washed with aqueous Na₂S₂O₃, and dried over Na₂SO₄. After aqueous work-up, purification by short column chromatography on silica gel with hexane gave a mixture of 1,2-dibromododecane (2b) and 1-bromododedecane (3b) in 68% and 32% yields, respectively (Table 1, entry 1).

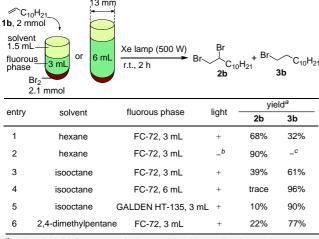
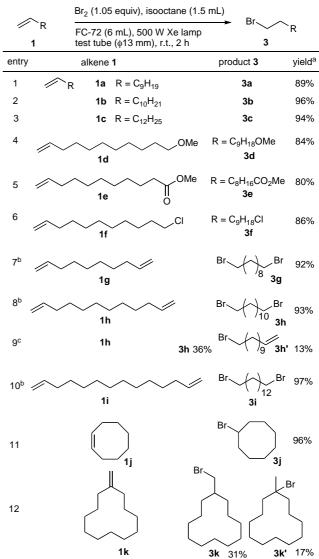


Fig. 1 Pictures of the photo-irradiative phase-vanishing bromination of 1-dodecene with bromine. A: Before irradiation. B: With irradiation, the FC-72 layer turned milky. C: After ca. 1.5 h, the bromine layer disappeared and the FC-72 layer recovered transparency.

The formation of 1-bromododedecane (3b) was the result of two consecutive radical reactions: (i) generation of HBr *via* a photo-

induced radical reaction of molecular bromine with the hydrocarbon solvent, hexane, and (ii) the photo-induced free-radical addition of the resulting HBr to 1b to give 3b (Scheme 1). Consistent with this proposed mechanism, bromohexanes were detected by GC-MS analysis of the crude reaction mixture. As we expected, the use of isooctane and 2,4-dimethylpentane, having tertiary C-H bonds, as the top solvent raised the yield to 61% and 77%, respectively (entries 3 and 6).¹⁰ The use of perfluorinated polyether Galden HT135 also works well to give a better yield of 3a (entry 5). Since HBr is supposed to be generated by the reaction of alkanes partially dissolved in the fluorous phase with diffusing bromine, we hypothesized that simply increasing the length of the fluorous phase would give the bromine a greater chance for reaction with isooctane. Indeed, the simple manipulation to double the fluorous phase (22 mm to 44 mm by length, 3 mL to 6 mL by volume) in volume, yielded 1-bromodecane 3b as the sole product (96%) (entry 4).


^{*a*}Isolated yield from organic layer after silica gel column chromatography. ^{*b*}With aluminium foil and gentle stirring. ^cNot detected.

Under these optimal conditions obtained for entry 4, we examined the generality of the hydrobromination of alkenes under irradiative PV-bromination conditions. As shown in Table 2, a variety of terminal alkenes 1a-f, some of which have a functional group, were converted to the corresponding 1-bromoalkanes 3a-f in high yields (entries 1-6). Dienes 1g-1i were also examined as substrates. The reaction of 1,9-decadiene (1g) with bromine (2.5 mol equiv) yielded 92% yield of 1,10-dibromoalkane (3g) (entry 7). Under similar conditions, 1,11-dodecadiene (1h) and 1,13-tetradecadiene (1i) yielded the corresponding dibromoalkanes 3h (93%) and 3i (97%), respectively. On the other hands, the reaction of these dienes with equimolar amounts of bromine gave a mixture of 1:1 and 1:2 products. For example, the reaction of 1h gave a mixture of 12-bromododec-1-ene (3h') (13%) and 3h (36%) together with a large amount of unreacted **1h** (41%) (entry 9). It is interesting to note that the major formation of dibromide may suggest that after the first HBr addition, a bromine radical forms in a reaction cage, which might undergo addition to another alkene terminus. The reactions were also tested for endo and exo-cyclic alkenes, 1j and 1k, (entries 11 and 12). While 1j gave mono-bromide 3j in good yield (entry 11), in the case of 1k, ionic HBr addition competed to give a mixture of an anti-Markovnikov product 3k and a Markovnikov product 3k' (entry 12).

Somewhat tedious indirect methods exist for the synthesis of 1bromoalkanes from terminal alkenes, which employ initial conversion of alkenes to organometallic species such as organoboron,¹¹ organosilicon¹² or organo-groups (IV)¹³ and (XIII)^{11i,14} compounds. Irradiative PV bromination involving in situ generation of HBr provided a simple method for preparation of 1-bromoalkanes from terminal alkenes using molecular bromine and appropriate hydrocarbons.¹⁵ It should also be noted that this methodology provided a spontaneous "molecular-level" flow reaction system in which two successive photo-radical reactions occurred in just one test tube: formation of hydrogen bromide from hydrocarbon solvent and molecular bromine, and addition of hydrogen bromide to olefins. Many useful synthetic methodologies, based on *in situ* generation of fresh HBr and its use for additional transformations, may therefore be possible.¹⁶

We thank JSPS and MEXT for financial support of this work.

Table 2 Photo-irradiative phase-vanishing reaction of terminal a	al-
kenes 1 leading to bromoalkanes 3	

^{*a*}Isolated yield from organic layer after silica gel column chromatography. ^{*b*}Br₂ (2.5 mol equiv). ^{*c*}Br₂ (1.05 mol equiv).

Typical Procedure for Photo-Irradiative *Phase-Vanishing* Hydrogen Bromide Addition to Alkenes (Table 2, entry 2:).

FC-72 (6 mL) was placed in a Pyrex test tube (13 mm ϕ x 105 mm) to which bromine (2.1 mmol, 340 mg) was added slowly using a glass pipette. Isooctane (1.5 mL) solution of 1-dodecene (2.0 mmol, 340 mg) was then added slowly, forming three layers. The test tube was irradiated with a 500W Xenon lamp for 2 h. The isooctane layer was taken up with a pipette. Then, additional hexane (4 mL x 4) was placed on the residual FC-72 layer, followed by decanting off. The combined organic layer was washed

with aqueous 10% $Na_2S_2O_3$ (30 mL) and saturated brine (30 mL), dried over Na_2SO_4 , and concentrated. Purification by a short column chromatography on silica gel with hexane gave 1-bromododecane (480 mg, 96%).

Notes and references

- For a general review on fluorous chemistry, see: *Handbook* of Fluorous Chemistry; Gladysz, J. A.; Curran, D. P.; Horváth, I. T., Eds.; Wiley-VCH: Weinheim, **2004**.
- (2) For reviews on fluorous solvents, see: (a) Ryu, I.; Matsubara, H.: Emnet, C.; Gladysz, J. A.; Takeuchi, S.; Nakamura, Y.; Curran, D. P. In *Green Reaction Media in Organic* Synthesis; Mikami, K., Ed.; Blackwell Publishing: Oxford, 2005, 59. (b) Matsubara H.; Ryu, I. In *Green Separation Processes: Fundamentals and Applications*; Afonso, C. A. M.; Crespo, J. G., Ed.; Wiley-VCH: Weinheim, 2005, 219.
- Matsubara, H.; Yasuda, S.; Sugiyama, H.; Ryu, I.; Fujii, Y.; Kita, K. *Tetrahedron* 2002, *58*, 4071.
- (4) Matsubara, H.; Maeda, L.; Ryu, I. Chem. Lett. 2005, 34, 1548.
- (5) Matsubara, H.; Maeda, L.; Sugiyama, H.; Ryu, I. Synthesis 2007, 2901.
- (6) For reviews on the "Phase-Vanishing" method, see: (a) Ryu, I.; Matsubara, H.; Nakamura, H.; Curran, D. P. *Chem. Rec.* 2008, *8*, 351. (b) Iskra, J. *Lett. Org. Chem.* 2006, *3*, 170.
- Ryu, I.; Matsubara, H.; Yasuda, S.; Nakamura, H.; Curran, D. P. J. Am. Chem. Soc. 2002, 124, 12946.
- (8) (a) Nakamura, H.; Usui, T.; Kuroda, H.; Ryu, I.; Matsubara, H.; Yasuda, S.; Curran, D. P. *Org. Lett.* 2003, *5*, 1167.
 (b) Matsubara, H.; Yasuda, S.; Ryu, I. *Synlett* 2003, 247.
 (c) Rahman, Md. T.; Kamata, N.; Matsubara, H.; Ryu, I. *Synlett* 2005, 2664. (d) Matsubara, H.; Tsukida, M.; Yasuda, S.; Ryu, I. *J. Fluorine Chem.* 2008, *129*, 951.
- (9) (a) Jana, N. K.; Verkade, J. G. Org. Lett. 2003, 5, 3787. (b) Iskra, J.; Stavber, S.; Zupan, M. Chem. Commun.. 2003, 2496. (c) Curran, D. P.; Werner, S. Org. Lett. 2004, 6, 1021. (d) Podgoršek, A.; Stavber, S.; Zupan M.; Iskra, J. Eur. J. Org. Chem. 2006, 483. (e) Windmon, N.; Dragojlovic, V. Tetrahedron Lett. 2008, 49, 6543. (f) Windmon, N.; Dragojlovic, V. Beilstein J. Org. Chem. 2008, 4, 29. (g) Ma, K. F.; Li, S.; Weiss, R. G. Org. Lett. 2008, 10, 4155. (h) van Zee, N. J.; Dragojlovic, V. Org. Lett. 2009, 11, 3190. (i) Pels, K.; Dragojlovic, V. Beilstein J. Org. Chem. 2009, 5, 75.
- (10) ¹H-NMR of the concentrated reaction mixture in entry 6 of shows peaks assigned to 2-bromo-2,4,4-trimethylpentane as the product, suggesting that hydrogen abstraction from isooctane would occur selectively at the tertiary position of isooctane.
- (11) (a) Lane, C.; Brown, H. C. J. Am. Chem. Soc. 1970, 92, 7212. (b) Brown, H. C.; Lane, C. Tetrahedron 1988, 44, 2763. (c) Falorni, M.; Lardicci, L.; Giacomelli, G. J. Org. Chem. 1986, 51, 5291. (d) Brown, H. C.; Lane, C. J. Am. Chem. Soc. 1970, 92, 6660. (e) Brown, H. C.; Lane, C. J. Chem. Soc. D: Chem. Commun. 1971, 521. (f) Lane, C. F.; Brown, H. C. J. Organomet. Chem. 1971, 26, C51. (g) Tufariello, J. J.; Hovey, M. M. J. Chem. Soc. D: Chem. Commun. 1970, 372. (h) Kabalka, G. W.; Sastry, K. A. R.; Hsu, H. C.; Hylarides, M. D. J. Org. Chem. 1981, 46, 3113. (i) Maruoka, K.; Sano, H.; Shinoda, K.; Nakai S.; Yamamoto, H. J. Am. Chem. Soc. 1986, 108, 6036. (j) Tufariello, J. J.; Hovey, M. M. J. Chem. Soc. 1970, 92, 3221.
- (12) (a) Tamao, K.; Yoshida, J.; Takahashi, M.; Yamamoto, H.; Kakui, T.; Matsumoto, H.; Kurita, A. Kumada, M. J. Am. Chem. Soc. **1978**, 100, 290. (b) Tamao, K.; Yoshida, J.; Yamamoto, H.; Kakui, T.; Matsumoto, H.; Takahashi, M.;

Kurita, A.; Murata, M.; Kumada, M. Organometallics 1982, 1, 355.

- (13) (a) Hart, D. W.; Schwartz, J. J. Am. Chem. Soc. 1974, 96, 8115. (b) Tolstikov, G. A.; Miftakhov, M. S.; Valeev, F. A. *Izv. Akad. Nauk SSSR, Ser. Khim.* 1979, 2576.
- (14) (a) Isagaga,K.; Tatsumi, K.; Otsuji, Y. Chem. Lett. 1970, 1117. (b) Sato, F.; Sato, S.; Kodama, H.; Sato, M. J. Organomet. Chem. 1977, 142, 71. (c) Lee, H.-S.; Kim, C.-E. J. Korean Chem. Soc. 2003, 47, 297. (d) Lee, H. -S.; Lee, G. -Y. J. Korean Chem. Soc. 2005, 49, 321. (e) Gavrilenko, V. V.; Kolesov V. S.; Zakharkin, L. I. Izv. Akad. Nauk SSSR, Ser. Khim. 1985, 681.
- (15) The reaction without fluorous phase gave an inferior result. For example, irradiation of a mixture of bromine (1.16 mmol) and isooctane (6 mL) with a 500 W Xe lamp for 30 min, followed by addition of 1-dodecene (1 mmol) at rt, gave 1-bromododecane in 79% yield together with unreacted 1-dodecene (11%). Probably some HBr generated would outgas during the reaction.
- (16) For an example to use HBr during sequential reactions, see:
 W. Zhang, Y. Hua, S. J. Geib, G. Hoge, P. Dowd, *Tetrahedron* 1994, *50*, 12579.