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The Navier-Stokes equation is linearized for the steady flow in the laminar inlet of a pipe
with annular space. This solution shows the family of velocity profiles defined by the modified
Bessel functions. By applications of this family to the momentum equation and the energy equa-
tion respectively, the inlet length and the pressure drop are presented. Some examples of com-
putation are given for the ratio of the inner and outer radii of annular space, m=1.2~5. The
results of computation prove that the relation between the dimensionless distance from pipe
entrance ¢g=2x/(R,—R,)Re and the pressure drop (p,—p)/(ou,2/2) is almost unaffected by m, and
that the inlet length ¢y is also unaffected. Practically, g; may be evaluated to be 0.02.

Some experimental results for the pressure drop, which have been made by the use of water
and air, are compared with the present analysis. The measured values have a good agreement
with the analytical values near the entrance, but are lower than the analytical values for down-
stream by about 109,. Experimentally the inlet length g7 may be observed to be 0.05~0.06.

1. Introduction

At the industrial plants, many heat exchangers for heating or cooling are used. The method
of the heat transfer by circular pipe, parallel plates or annular pipes is a particularly important
and basic problem. The most generalized method for analysis of this problem is that which
calculates the temperature distribution, the heat transfer coefficient, etc. of the thermal inlet by
using the velocity profiles of the velocity inlet of fluid.

For circular pipe, some solutions are presented by Kayst) and Sibahayasi-Sugino®. Solu-
tions for parallel plates are given by Cess-Shaffer®, Han¥, and Siegel-Sparrow®. Murakawa(®
obtained a solution for annular pipes. This method is based on his solution” for the velocity
inlet, but his results do not appear to be useful. Roy® has presented a solution for the laminar
velocity inlet of annular pipes. However, Langhaar’s method® for the velocity inlet of circular
pipe seems to be more effective in obtaining the solution of the velocity inlet which is fundamental
for the heat transfer problem. Han(9 has applied Langhaar’s method to obtain the velocity
profile for the parallel plates. Kayst") utilized also Langhaar’s solution in the heat transfer problem
for the circular pipe. Then, Langhaar’s method is applied on the present investigation for the
annular pipes. This method linearizes the Navier-Stokes equation and presents the velocity
profiles which are defined by the modified Bessel functions. Applications of this profiles to the
momentum equation and the energy equation give the inlet length and the pressure drop. Some
examples of numerical calculations are shown for the three values of radius ratio, m==1.2, 2 and 5.

Moreover, the experiment by water and air when m==1.0967 and 1.2699 is made in order to
compare with the analytical results of pressure drop.

2. Nomenclature

The nomenclatures in this investigation are as follows.

g, : component of gravitational acceleration in axial direction
1, : modified Bessel function of the first kind of the n th order
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K, : modified Bessel function of the second kind of the n th order
m=R,/R,: ratio of inner and outer radii of annular space

m=R|R,

p : static pressure of fluid in arbitrary cross section
po : static pressure of fluid at pipe entrance

r : radius from pipe center

R, : inner radius of annular space

R, : outer radius of annular space
R=(R,+R,)/2: average radius of annular space
Re=(R,—R))uy/lv: Reynolds number

t=rf: parameter of modified Bessel function

tL=R8

u : velocity component in axial direction

1, : mean velocity

%@ : valueofuatr=R

v : velocity component in radial direction

x : distance from pipe entrance in axial direction
a, f: functions of x only

A=ulu,

A=ufn,

7 coefficient of viscosity of fluid

v : kinematic coefficient of viscosity of fluid

p mass density of fluid

og=x/(R,—R,)Re: dimensionless distance from pipe entrance

oy @ dimensioneless inlet length

3. Velocity Distribution

The Navier-Stokes equation for the steady flow, which flows in axial direction through an
annular space without rotating motion, is

ou ou_ 1 ap (020 1 0u, 0%)
6 +v8r &x— + 6r2+ - r+5'x"’ (1)
Neglecting 9%:/912 and assuming p as a function of x only,
au Ou 1 dp (6211 1 6u)
8’4+ ”ar 8x— + 5t 1 ar (2)
Boundary conditions are as follows.
1) u=0 for r =R, (3)
i) u=20 for r=R, (4)
i) =y, for x=20 (5)
From the equation of continuity,
SR 2zrudr = n(Rz2—R,H)u, (6)
1

According to the Langhaar’s method, the following substitution is made by @ and B, which
are functions of x only.

Ou, Ou __
ua—x+v3—' = yfu (7)

_ladp_
8x P —va (8)

1
0
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This substitution may be permitted for the following reasons:

i) At all points on the pipe wall surface, since u=2=0, Eq. (7) is satisfied for every value

of 8.

ii) In the fully developed flow region beyond the inlet length, #=0 results and Eq. (7) is
satisfied.

iii) Since it may be considered that » and 9u/9r do not exist and u is a function of x only
in the core flow, Eq. (7) becomes effective in the form Ju/dx=y 2.

iv) Since it may be considered that the boundary layer does not exist at the pipe entrance
x==0 and that du/0r=0, Eq. (7) is also satisfied in the form Au/gx=ypA? at all points of the
cross section of the pipe entrance.

Namely, Eq. (7) is justified except for the points in the boundary layer near the pipe wall. Then,
substituting Egs. (7) and (8) for Eq. (2)

%, 1 Ju_ o
gt g Fu=a (9)
Putting =174,
0w, 1 ou_ __ a
w Te T g (10)
The solution of Eaq. (10) is
u= AL,(t)+B K(t)—a/p* (11)

The integral constants 4, B and @/#% can be determined by the boundary conditions (3), (4)
and the equation of continuity, and the dimensionless velocity profile is as follows:

_ # _ m=D{g () +¢,Ko(t) + g5}
A== ) 12
where

go = Ko(t;) — Ko(mt,) (13)
g1 = Lo(mt) —14(t,) (14)
g2 = Lo(t) Ko(mt,) — 1o (mi)) Ko(2,) (15)
h(ty) = qo{l,(8) —m2,(mt;)} + g, {K,(t,) —m2K y(mt )} (16)

Ry———

I et “LF‘ SN

Ry

r*l.O—) pY

Fig. 1. Velocity profiles (m=2)

Fig. 1 shows the velocity profiles for m=2, and proves that the velocity profile approaches to that
of the fully developed flow, in accordance with smaller value of ¢, or with the increasing of distance
from entrance. The maximum velocity point deviates inward and this deviation becomes larger
as the value of m grows larger.

When t,=0 (§=0), it means the end of inlet. In this case, Eq. (12) results in

im 3 — 2((=1) log (te,)—{(t/t,)?—1} log m]
fim 2 et 1) logm— (mi—1) {1n

—_ 3 —
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This result coincides perfectly with the theoretical velocity distributionV in the fully developed
flow.
4. Distance from Entrance
By the integrating of Eq. (2) over an arbitrary cross section, the momentum equation results

in

2152:“27*5# = (é’x ; dﬁ)(Rz R‘ZHZ”S ( gr‘:+g")dr e

Since the core flow is almost unaffected by viscosity, the following equation may be approximately

justified at the center of annular space r=R(? from Eq. (2).

1dp_ 700
T iz (19)
Substituting this equation for Eq. (18),
2 (o (G Gair g, (s 2y = 0 (20)
{
From Eq. (12),
d 2 2) rd) :i[_LSmtl 72__992 ]
de @2 = ol M T 2y
d 12 2
&% — 2vugty (m2—1) (mg,— gs)
2v S ( 7 o ) AN (22)
where
gy = qolo(mi;) +q, Ko(mt,) + g, (23)
4 = qoly(mt)) —q, K (mt,) (24)
¢ = qol,(t) — @ K, {ty) (25)
Sbustituting Eqs. (21) and (22) for Eq. (20) and arranging,
—1/g(ty) = df (t;)/da (26)
where
2 2__
flt) = {'”H {2q2h(t1)—"‘ 5 ! 32— m? 24—452} 27)
k@)
t) = 28
¢(t) 2(m? )tl (gs— mq4) 28)
From Eq. (12),
tlz_r)x; A=1 (29)

When the boundary condition (5) is substantiated, it should be as follows:

limg(t) =0 (30)
[ 2R dd
Consequently, from Eq. (26),
2=t f=e
o= —[ ey = " gunara) 31)
1=eo f=t1

Moreover, from Eqgs. (27) and (28),
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. 11
tllli?of(tl) = ?+mT (32)
lim g(¢,) =0 (33)
tyve0
. _ m+1 i oy 2
S 0) = G g ey 3+ Dlogm)
—%(m— 1)2(m+-3)*(log m)2— 3(m*— 1) log m+2(m2— 1)2{1 — (log m)?2}
+ (m+1)(m—1)2(m+3) log m-log m] (34)
. _ (m®41) logm— (m2—1)
,l)lz)l gty = 8(m2—1) logm (35)
Accordingly, Eq. (31) becomes
1/2+1/(m—1)
= (ren stdre) (36)

If the value of m is given, g(t,) and f(t,) can be evaluated for various values of ¢, from Egs. (27)
and (28). By the selection of ¢, with proper intervals and by the numerical integration of Eq.
(36), the values of ¢ which correspond with each value of ¢, are obtained. And the inlet length
is as follows.

. 1/2-4+1/¢m—1)
or = limo(t) = {7 Vet ar2,) (87)
>0 :l:?of(t‘)
30
15
X L
201
al /
E - .
10 —%]
\\
S
1.0
0 0.01 0.02
g

Fig. 2. t, and 1 (m=2)

For example, the calculated resuits of ¢ and 1 for m=1.2, m=2 and m=>5 are indicated in
Fig. 2 and Tables 1 to 3. And the inlet length is almost unaffected by the value of m, as shown in
Table 4. Practically, g; may be evaluated to be 0.02.

5. Pressure Drop

The pressure drop in a horizontal annular space is due to the fluid friction and the change of
the kinetic energy. Therefore, the energy equation per unit time is

R 2 R
(R2—R 2 uy(p—p) = 21 S:a’x SRZ (g—?) rdr+p SRZ (u*—up®)rdr (38)
1 1

Integrating the first term of the right side in the above by the substitution of Eq. (12), and trans-

forming this into the dimensionless,

2
(m2—1)1,2

L O

mey
_ _ 39
bt S’I (P—1)tdt (39)

_5_
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where

0(t) = 2m+ 1)(m— {5 {mae—art— gt} | (40)

Since @(t,) oo for g—0(¢,—> o), the first term of the right side of Eq. (39) can not be integrated.
However, the following approximate expression is effective for a sufficiently larger value of ¢,.

4 _ 2mA1)(m—1)?_ (m2—1)(9mi+12m* —490m?+ 12m+9)
So Dlt)do = 1 32m?t,2

(41)

Now, ¢,==2500 is selected for m=1.2, t,=50000 for m=2, and ¢,=2500000 for m=5. Then,

next results are given.

) m=1.2:
S"q)(tl)dg — 0.000 071 4+S" _O(t)do (42)
0 0.99%X10

i) m=2
S“qb(tl)dg — 0.000 120 o+S” L, Ot)ds (43)
) 0.10X10

i) m=>5:
S"q)(tl)da — 0.000 076 8+S“ L O(t)ds (44)
0 0.25X10

Each second term of the right side in Eqs. (42) to (44) can be estimated by the numerical method.
The second term of the right side in Eq. (39) can be computed by Simpson’s rule with the sub=
stitution of Eq. (12). Thus, the pressure drop for 6<<g; is obtained. Some examples of the
calculated results are shown in Table 1 to 3 and Fig. 3. It may be considered that the pressure

[ -
-1
Murakawa (m=1.5714)~ = =
10 = .-
= n=z_
e / m=1.2
20 /‘
e
7
0.5 -
e
/ g
7
A -
7
7
Ve
7
0.00% ¢.01 0015 0.02

g

Fig. 3. Calculated results of pressure drop

drop is almost unaffected by m, as shown in Fig. 3. The calculated results by Murakawa( are
appended to this figure for comparison, and his results appear to be too small near the pipe entrance.
When g is larger than the inlet length o, from Eq. (40),

o . 16(m—1)2log m
1 tydo = —
I, P = e Y logm— (me—T)° %2 *2)
This coincides perfectly with the theoretical value of the fully developed flow(). This result

leads to the following form of the pressure drop for ¢ >0 .

g;;/g = Co+C, (46)

._.6__
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Table 1. m=1.2
t ¢ 1 %‘:;—/;—
oo 0 1.000 0 0
2 500 0.000 000 99 1.004 0 0.004 769
750 0.000 011 51 1.013 5 0.021 09
250 0.000 113 8 1.041 7 0.068 73
200 0.000 183 9 1.052 6 0.085 68
100 0.000 863 9 1.111 0 0.189 4
70 0.001 955 1.164 5 0.287 2
50 0.004 006 1.233 1 0.422 2
40 0.005 997 1.284 2 0.532 0
30 0.009 068 1.347 7 0.680 8
25 0.011 06 1.382 6 0.772 6
20 0.013 28 1.417 5 0.867 2
15 0.015 56 1.449 8 0.963 3
10 0.017 62 1.476 4 1.049 6
5 0.019 08 1.494 0 1.106 6
2 0.019 53 1.499 2 1.124 4
0 0.019 62 1.500 2 1.132 1
Table 2. m=2
“ ’ ! ool
oo 0 1.000 0 0
250 0.000 004 11 1.008 1 0.015 56
100 0.000 028 0 1.020 4 0.034 57
60 0.000 076 8 1.034 5 0.059 15
50 0.000 113 4 1.041 7 0.070 74
40 0.000 181 4 | 1.052 6 0.088 74
30 0.000 345 6 1.071 4 0.121 0
25 0.000 519 1 1.086 9 0.150 9
20 ; 0.000 862 1 1.111 0 0.192 1
15 | 0.001 669 1.152 5 0.267 1
10 0.003 999 1.233 1 0.427 2
8 0.006 001 1.284 4 0.534 9
5 0.011 08 1.383 3 0.775 8
4 0.013 32 1.418 6 0.873 8
3 0.015 62 1451 4 0.971 7
2 0.017 70 1478 5 1.058 5
0 0.019 71 1.502 8 1.142 0
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Table 3. m=5

t ¢ b KI;Zoz//;
oo 0 1.000 0 0
75 0.000 002 84 1.006 7 0.011 48
25 0.000 026 72 1.020 4 0.033 96
10 0.000 184 4 1.052 6 0.090 11
5 0.000 867 9 1.110 9 0.192 8
4 0.001 443 1.141 9 0.248 4
3 0.002 744 1.193 8 0.352 3
2 0.006 004 1.284 7 0.538 0
1.5 0.009 116 1.349 6 0.690 0
1 0.013 43 1422 5 0.888 3
0.6 0.017 14 1.475 2 1.051 8
0.4 0.018 64 1494 9 1.119 5
0 0.020 01 1.512 0 1.180 0

where
_ 16(m—1)%log m
v (mi+1) log m— (m2—1)

(47)

The value of C, can be determined from the pressure drop which corresponds to g=¢;. Table 4
gives the values of C; and C.

Table 4.
m 1.2 2 5
Ct 23.986 7 23.812 5 23.088 1
C, 0.661 6 0.672 2 0.718 0
or 0.019 62 0.019 71 0.020 01

Roy® has presented his calculation result that the value of C, for m=3.33, 2 and 1.43 are
respectively 0.74, 0.72 and 0.71. These values are larger than that of the present analysis.

6. Experimental Apparatus

A sketch of experimental apparatus for measurement of the pressure drop is shown in Fig. 4.
Water and air was used as working fluid for the present test runs. This apparatus was common
to each fluid.

Water System:

Water is supplied from a feed pump to the overflow tank where constant water level is kept,
and then enters in the lower tank. Annular pipes for test runs are connected with this tank and
water runs upwards through annular space to the upper tank. Water level in the upper tank
with level gauge is so adjusted by valves (I) and (2) that constant level is kept. The flow rate of
water from the upper tank is measured by the weight method. Annular pipes including test
section consist of two drawn brass tubes. The entrance of these tubes was so rounded that the
uniform velocity profile at the entrance (x=0) could be obtained. The assembly of the entrance
is shown in Fig. 5. The inner diameter of outer tube is 34.8240.03 millimeters, and the outer
diameters of two inner tubes which are interchangeable are 31.75-+0.03 millimeters and 27.42 4
0.04 millimeters, therefore the radius ratios were m=1.0967-+0.0020 and 1.2699-40.0030,

_8_
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Upper tank —| Water level gauge

to Blower +— ot . -
(@) valve @
Test section —|] 2} to M Pressure tap
N
<11 Lower tank 1 ) =0
Lo57™
L b——pq==from Pump | s
Valve (D (water)
4 I T
Fig. 4. Experimental apparatus Fig. 5. Assembly of entrance

Su

Fig. 6. Inspected result of tube surface

respectively. Fig. 6 shows a result obtained from the inspection of the outer surface of inner tube
by the use of Kosaka’s surface tester with tracer. It was proved that the roughness of surface in
axial direction was so smooth that maximum roughness was about 5 microns. The pressure
drop was measured by water manometer which was connected to seven pressure taps including
the entrance (x=0). The pressure taps were located at x=0, 14.6, 29.6, 49.6, 70.0, 90.3 and
110.8 millimeters from the entrance. Since the pressure difference was very small, the measure-
ment was made by means of cathetometer. The range of Reynolds number was limited to be
lower than 1000 in order to maintain the condition of laminar flow.

Air System:

For test runs of air, the upper tank was connected with suction side of a centrifugal blower
through a flow meter. This flow meter was calibrated by the volume method. The pressure drop
was measured by the use of Betz-type manometer which was connected with the foregoing pressure
taps. In this case, Reynolds number was also usually lower than 1000.

7. Experimental Results

Fig. 7 and 8 show the experimental results which were obtained on test runs for water and
air, respectively. Each result shows that the measured values have a good agreement with the
present analysis near the entrance, but are lower than the analytical values by about 109, for
downstream. Murakawa’s solution is appended to these figures for comparison, and his result

_9_
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Fig. 7. Experimental results of pressure drop (water)
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Fig. 8. Experimental results of pressure drop (air)
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Fig. 9. Experimental results of pressure drop (m=1.0967)
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appears to be too small near the entrance and to be large near the end of the inlet length, It
may be considered that the experimental results of pressure drop are also unaffected by the radius
ratio, though clear judgment can not be made because the radius ratios of test runs (m=1.0967
and 1.2699) have not a large difference and there are some discrepancy.

Fig. 9 shows an example of data of pressure drop for g >>¢;. There exists a little difference of
radius ratio between m=1.2 for the calculated value and m=1.0967 for the measured value, but
a good agreement is observed, except the region where the calculated value has a discontinuous
point, i.e. near the end of the inlet length. However, the measured value of C, in Eq. (46) is a
little lower than that of analytical value, and considered to be about 0.62. And as shown in

this figure, it may be presumed that the inlet length g7 is 0.05~0.06 experimentally, while
about 0.02 analytically.

8. Conclusion

The velocity distribution for the steady flow in the laminar inlet of a pipe with annular space
are given by Eq. (12), and the distance from the pipe entrance, which corresponds to the given
velocity distribution, can be estimated from Eq. (36). The pressure drop can be obtained from
Eq. (39) in the inlet, and from Eq. (46) for ¢>>0;. As shown in the calculated examples, the
inlet length and the pressure drop are almost unaffected by the radius ratio m. Therefore, of
may be evaluated practically to be 0.02.

Near the entrance, experimental results of pressure drop have a good agreement with cal-
culated values. For downstream, experimental values are a little lower than analytical values,
and near ¢=0.02 this deviation is about 10% which is largest. Experimentally, C, in Eq. (46)
may be evaluated to be 0.62, which is lower than calculated value by about 6%,. And the inlet
length ¢, may be observed experimentally to be 0.05~0.06, which is very longer than the cal-
culated value.
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