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 The evolution of cascading systems consisting of an arbitrary number of energy levels was
investigated analytically. Solving a system of differential equations under a given initial condi-

tion, the expressions for the population of each level were derived, which include the transition

probability between' excited states. Applying these results to hydrogen plasmas, radiative' col-

lapse in which excited atoms emit radiation and cascade to the ground state was disc'ussed. In

particular, effects of the number of energy levels on radiative power were studied.

1. Introduction

  When the electron density varies rapidly in partially

ionized gases, the population distribution of excited

atoms evolves accordingly, which is seriously depend-

ent on the characteristic time of electron density

variation as well as the electron density itself."3)

When the electron density is large, the processes of ex-

citation and de-ex'citation by electron cdllisions are

imPortant. On the contrary, when the eleqtron density

'becomes small, the radiative proce$ses become domi-

nant.

  In this paper, we will consider a Iimiting case in

which the blectron density vanishes abruptly and,

        .tafter that, the collisional processes are negligible and

only the radiative decay processes are important. At

first, we will dea} with the evolution of cascading sys-

tems, in which on!y the transition from upper excited

states to lower excited states are allowed. I,t will be

sh6wn that for these systems an analytical solution

will be obtainable under arbitrary initial conditions.

Then we will apply these results to radiative collapse

of hydrogen plasmas and effects of the number of ex-

cited levels will be discussed.

Each state is numbered from 1 to n in the increasing

order of energy. The transition probability from state

p to state q is Ap,g. We will assume that the transi-

tion always takes place from upper states to lower

states and the inverse processes, i.e., excitation, never

occur. Thus, A,,,=O for p<q. The life-time of state p

is given by llA(p), where A(p) is the decay constant

of the excited state p and is expressed as

A(p) = £Ap,q
g<p

It should be noted that A(1)=O sinee the state

responds to the ground state, i.e.. the state

lowest energy, and is stable. The evolution

population Nb of excited state p is described

following system of differential equations:

dN} =£
dt g>p

Aq. pNla -A(P)IVI･

1

of

of

by

(1)

cor-

the

the

the

(2)

  In this paper we will ,solve this system of differen-

tial equations under arbitrary initial conditions: M=

IVb(O) at t==O. For convenience, we will use the coeffi-

cients cb.,.defined by

2. Time Evolution

 We will consider.

different states' of

of Cascading Systems

 a cascading system consisting of

energy, the number of which is n.

Systems Engineeripg, College of

Cp. g = Aq, p

q. , = A(p)

where A(p) is.

wrltten as

defined

(p4q)

by Eq.(1). Then Eqs.(2) are re-

* Department

 Engineering.

of Energy



Lt

   .

       ddlVt l' =,;,cb, giVG-cA pN5 ' (3)

                         '
                             '
It should be noted that since c.,=O for p>q, Eqs.(3)

can be solved analyticaliy. When the initial population

Alb(O) of state p is assigned, the result is given as fol-

lows:

                                          '
           n
       Nb=£Bptq eXP(-Q,qt) (4)          q)p

where the coefficients Bis, are given by

 '
      '       B,. ,.,,E Cn iB･g , (s)
                Cb, p- C2i, q           i=p+1

for p<q,

                  n
       Bp, p= Ali (O)-£Buq (6)                 q>p

for p=q and

       Bb, q=:O (7)
for p>q. The coefficients Bi,, can be calculated from

Eqs.(5)-(7) in the descending order of subscripts p

and q. At first B.,. is deterMined from Eq.(6), i.e.,

&n==Nl,(O). Then B,--i.. is obtained from Eq.(5), and

B,,-i, .-i' is obtained from Eq.(6) in terms of All,-t(O),

Bn-i,h'and･',S,, ,,, 'and so oh.

  It should be noted that ci,i=O since the ground

state is stable, and thus the asymptotic population of

the ground 'state is Ni(co)=Bi. i by virtue of Eq.(4).

                          NThis asymptbtic population is readily obtainable from

physical consideration as

                                             '                     '
 '
               n
       N,(oo)- £lv},(e)
              ptl

Thus, the following relation is obtained:

                  '
               '

             n
       B,, , =: £ Nb(O)
            p`=1

  In the next section, we wM apply these results to a
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radiative collapse of hydrogen plasmas.

                             '

    3. Radiative Cellapse of Hydrogen PIasmas

  If a partially-ionized plasma is in thermal equilib-

rium at temperature T, the number density of the ex-

cited atoms IVbE at state p is given by the Saha

equ4tlon

       NY=M2/4(" (8)
where AIL is the electron density and FU(T) is the ther-

mal equilibrium constant defined by

     4(7i)== Zgl (2"h",iefeT)3!2e.p (- leETk) (g)

In the above relation, g and & are respectively the

statistical weight of the ion and the excited atom of

state p, and Eb is the ionization energy of the excited

atom of state p. The other nomenclature is the stand-

ard one.

  When the electron density becomes abruptly so

small that atomic processes induced by electron im-

pact may be neglected compared to radiative transi-

tion, then excited atoms cascade to the ground state

by spontaneous emission of radiation. If ,the

reabsorption of radiation is neglected, the equations

describing the evolution of the number density Nb of

excited atoms at state p are given by Eqs.(2), where,

in this case,,A,,, is the probability of radiative transi-

tion from state p to, state q. We will introduce non-

dimensional quantities tb=IVb/AiLE. Then the governing

     .equatlons are , '
   '   '

        dXP =£cti ,ak,-c,. ,x, (10)

        dt' q>p '
   '
In this case,

               ,}1,
       cb,,=A., (p -e q)
           . .a
          '

       cb, ,= £A,, ,iA(p)
           q<p

It should be noted that if the plasma is in thermal

equilibrium at t=O, the initial condition is tb(O) =1
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for p=1, ..., n, where n is the uppermost Ievel of ex-

cited states considered. The solution of Eqs.(10) is ex-

pressed as follows:

           n       Xp =,?,Bp,q eXP(HCg,q t) (11)

                        '
Here the coefficients Bb,, are given by Eqs.(5)-(7) in

which M(O) ･-should be replaced wit･h x,(O)= 1.

            4. Results and Discussion

  In this section we wiil investigate the evolution of

the population of excited atoms utilizing Eq.(11). At

first, we will calculate the transition probabilities

Av,g by making use of Johnson's formula.`)
In particular, the decay constant A(p) of excited state

p is given approximately by

                                     '                                          '
       A(p) C: 1.59×10iOp-4･52 [s-i]

which is readily obtained for p=2N40 by the least
square method. This result agrees ' quite well with the

formula given by Griem.i)

  A typical example of numerical calculation by mak-

ing use of Eq.(11) is shown in Fig.1 for the evolution

of the population of excited atoms for n=40 and T
' =10000 K, It is seen from this figure that the popu'ia-

tion of an excited state p, for example, evolves in

three stages. In th'e first stage, the poPulation de-

                   1
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 Fig. 1. Evolution of

creases exponentially with time, the decay constant of

which is equal to c,.,=:A(p), i.e.,

       xb == exp( nt cb, ,t) (12)

The higher the excited state, the longer the life-time.

Thus, after the first stage, the population decreases

according to a ･power law rather than exponentially.

,This･is .due to･the atoms of higher excited level de-

caying into this level. The transition from the first

'stage to the second occurs earlier as the temperature

increases. This is shown in Fig.2, in which the evolu-

tion of the population of excited level p=2 is plotted

for n±40 and T :10000--100000 K. From Figs.1 and 2

the population evo}ution is approximate}y expressed as

       X,(t) oc t-a

In this equation the exponent a depends not only on

the considered state itself but also on the initial tem-

perature T and the number of excited states n. In the

case of n=:40, a'rO.4 for lower excited states (see

Figs.1-3). In the last stage, the population decreases

exponentially again. In this stage, however, the- decay

constant is equal to that of the uppermost excited

state c,, ..

  The duration of the second stage is seriously depend-

ent on the uppermost level. As the number of the con-･

sidered levels n increases, the duration of the second

stage becomes longer. This is shown in Fig.3, in which

                                         '    tt                      tt
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3. Influen.ce of the number of excited States on the evolution of
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the population of level p=2 is plotted for T==5ooOO K

and'n=10, 20, 40 and 60.

 The asymptotic popuiation of the ground state

N,(oo) is

                       n
       N,(oo) :N,EB,, ,= £ Al?3S
                      p'!

This means that all the excited atoms decay into the

                            '          '                     '

ground state. Thus the asymptotic population Ni (oo)

depends on the temperature as well as the numbor of

considered levels. This is shown in Fig.4 where xi(co) =

Ni(co)ZNiE is plotted as a function of temperature Tl

  The evolution of radiative power is shown in Fig]5

for the temperature T=50000K. It is seen from this
figure that in order to obtain the appiopriate result,

the number of energy Ievels should be made to in-
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                            radiative

crease with time. For t<10rm6s, it is sufficient to con-

sider 10 energy levels. We must take, however, at

least 20 energy levels for tCrlO-5s and 40 energy levels

for tC 10-3s. The same result is obtained for other

temperatures. This result is predicted from the fact

that the life-time of the upperrnost energy level n,

given by 1/A(n), increases with n. In fact, the life-

time of the level n=10, 20, and 40 is approximately

    10N7 10-S 10-S
            Time, t [s]

of the number of excited states on the

power for T==50ooQK.

equal

tively.

n == 20,

10-5s.

The

10-i

dvolution of

to 1.9×lo-es,

 This implies

 for example,

evo}ution

･4.7×10"Ss and 1.2×10-3s, respec-

that the excited atoms at level

 decay and emit radiation att':

   5. Conclusions

of cascading systems was dealt with



theoretically, and analytical expressions for the evolu-

tion of the,population of each state were derived,

which include the transition probability between ex-

cited states. Applying these results to hydrogen plas-

mas, radiative collapse was investigated. Assuming

that the population distribution of excited atoms was

initially in therma! equilibrium at a temperature, we

calculated the evelution of the population of..excited

atoms. It was found that the evolution can be divided

into three stages. In the first stage, the population of

an excited state decreases exponentially with the de-

cay constant of the state. Then it decreases following

a power law with time. After this second stage, it de-

creases again exponentially in the third stage with the

decay constant of the uppermost excited state. We

found that the number of excited states is an impor-

tant parameter. As this number increases, the transi-

NuMANo

tion from the second stage to the third is delayed and

the duration of the second stage becomes long.' It was

shown that when the initial equilibrium temperature

is high, the transition from the first stage to the sec-

ond occurs earlier. The evolution of radiative power

was also investigated and it was found that, in order

to obtain the appropriate result, the number of energy

levels should be made to increase correspondingly to

the time considered.
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