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 Regarding finite automata (FAs) as discrete time dynamical systems, state space models
of FAs are obtained from vectorization of states and symbols over B ( = {O, 1}) and parameteri-

zation of'system characteristics (state transition function etc.). '

 In this paper, we define the similarity relations between FAs expressed by state space
models under Which input-output responses of FAs are invariant. Based on the similarity re-

lations, we first derive the subset construction and then provide an algorithm to minimize a
given arbitrary deterministic finite autornaton (FA).

                1. Introduetion

  Finite Automata (FAs) are discrete time dynamical

systems to alter the internal states by input symbols.

For such dynamical systems over the real field R, the

expression and analysis on,the state space models are

established in the field of dynamical systems and con-

trolsi). As against it, in the theory of FAs, FAs are

only treated by diagrams, tables, and functions which

define state transitions. But state space models of

FAsas dynamical systems and analysis of FAs based

on state space mode}s,are not found in the theory of

FAs.

  By vectorization of the states and symbols and par-

ameterization of the state transitions and output

function over B==({O, i}), FAs can be formulated as

bilinear discrete time systems, and are represented by

state space models' over the boolean semiring(B,+,.).

  As a result, the concepts such as reachability, ob-

servability can be defined for the state space models

of FAs as well as linear dynamical systems over
R2,3) .

                                          '
  Based on the state space model representation, we

introduce in this paper a state transformation and

its applications which conserve input-output responses.

  In chapter 2, we shali show the way to construct

state space models of FAs over B. Next we define

the similarity relations between FAs which are'derived

by a state transformation`). We- then ' perform by the

similaritY relations the subset construction5) which is

the method to transform a given nondeterministic

FA (NFA) to an equivalent deterministic FA (DFA).

 Minimization aigorithms for DFAs are well known

in the theory of FAs5'6), but a novel minimization

algorithm over the state space models is found using

canonical decomposition and distinguishabi!ity').

 In chapter 3, we shal} propose a method to minimize

a given DFA by the similarity relations instead of.

the canonical decomposition.
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    2. State Space Models of Finite Automata

2.1 State space inodels

  We first introduce an algebraic system called the

booiean semiring (B,+,.) (where B== {O, 1})to derive

state space models of FAs. Table 1 shows the addi-

tion and multiplication of boolean semiring. These are

ordinary qddition and multip}ication in integers except

1+1= 1.

            Table 1 Boolean semiring

addition multiplication

o+o=o
O+1=1
1+O=1
1+1=:1

o.o=o
O.1=O
1.0=O
1.1=1

  A FA is formally represented by 5-tuple,

             M=(Q, X, 6, qo, ID (1)

                                              'where Q is the set of states, 2 is the set of input

symbols, 6 is the state transition function, qo is the,

initial state, and F is the set of accepting states. The

number of states denoted by IQI is n and that of

symbols lXl is rn. ･ '
                      tt
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                          '
  States and symbols are expressed as vectors over

B and the parameterization of system characteristics

(6 and ,F) are performed as follows.

  !. The state qiEEQ(i=O, ''', n-1) is vectorized

     to a n-dimensional unit vector e- (only i-th com-

     ponent is 1). The initial state qo is represented

     by xo(=ee), and the zero vector, if necessary,

     represents the dead state. ･
  2. The state transition function 6(', ah) for ah

     (G X) is parameterized as a square matrix Aa,

     of order n which is called a state transition

     matrix and abbreviated as Ak.

     The (i, j) element aSk' of Ak is determined as,

                 as･p-I5[g:,Eg'11,:l .(2)

     where

                      '
       ([?L･`" ==6(g･, ak) (i, J'=O, ･･･, n-1) . (3)

  3. The set F of accepting states is expressed by

     n-dimensional vector c with the element

     Q-(6[g:Ei3 (i-o,･･･,n-i). (4)

  4. The input symbol ak is encoded to uk (t) such

     that

     u, (t)= I8 if ak iS oetnhteerrwedis2t tifne t . (s)

           '                                     '
  According to these parameterizations, the state

space model of a FA M, which is regarded as a bilinear

dynamical system over B, is obtained as follows,

                           '                   m-1           x(t+1) =: 2u,(t) A,x(t)          ( y(t)..;'l'1`k(t) (6)

where x(O)==xo, and e means the transposed vector

of c.

  If the state vector x(t) over B includes unit vectors

representing accepting states, y(t) becomes 1, which

means the acceptance of a input string. The parameter

representations of M is denoted by ({Ak}, c, xe)

corresponding to (1) and Ak's, c and xo are called

system matrices or system parameters. .
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Example 1:

To clarify the above-mentioned, we give an example

 construct the state space model of FA Mi given

 state trAnsition diaffram of Fig. 1.

               oo

1.

qo

1

o

I

ql

2.

3.

4.

q3

q4

  O,l

1

         10
           Fig. 1 DFA Mi

Since Mi is 5 states, each state is vectorized

to 5-dimensional unit vector.

         10 O
         OI O
   qoO O ,qie O ,...,q4e O

         oo o
         OO 1
 State transitions shown in the diagram(Fig. 1)

are parameterized as follows:

          O O I O O
           1 0 0 0 0

     A,=OOO1O
           o o o o o
          O I O O I

           ooooo
           OQOOO
     A,=111OO
          O O O I O
          O O O O I

  where Ao is a transition matrix for input

symbol O and A! is for 1.

  If,there is a transition from q･ to qi by the

input O, the (i, 1') element of Ao is 1, and

otherwise O. ･
                                   '

The accepting state of M is the state q2, then

c is as follows:

          d- (O O 1 O O).

The input symbol ao(=O) is encoded as follows:
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              ( 2"-2 for NFA

The column A(w)xo of R is denoted by the column

label Lv. The i-th row of R corresponds to the state

qi. Namely, the (i, w) element of R is 1 if there

are transitions from the initial state qo to 'the state

qi by the input string w. When the i-th row is a zero

row vector, qi is called the unreachable state since

there is'no inpu't string to, cause transitions from qo

to qi. ' The system parameters ({Ak},xo) is called

completeiy reachable if there is no zero row vector

in R.
  similarly the observa6ility matrix o is defined as

                     deA,

                                         .(9)              o==
                      i

                   dA (w)

                   '
where wEi X', Iwl f{ n'. ･
  The row dA(w) of O is denoted by the row
labe} w. The i-th column corresponds to the state qi.

The (w, i) element of O is 1 if there are transitions

from -the state qi to the accepting stat.es by the input

     u,(t) -( 6 if O iS g:zr,e.d,,2` time t.

                                        '                                       '                              '                                '
     The input symbol ai(=1) is encoded similarly.

                                         '
  In this w'ay, the state space model of Mi is obtai-

ned.

2.2 Reachability and observability

  Let an input string w=ah,., ''' ak, -(E iX') be added

to a FA from right side symbol, then the corre-

sponding transition matrix A(w) for w is written as

           ･A(w)=Ah,., ''' Ah, ･ (7)

      '                        '
where ala (E X) is a'input symbol at time t and

Ak, (E{Ai, ''', A.}) is the.transition matrix for ah,.

  We now define the reachelbility matrix R as follo'ws:

                '                                        '
        -R=[xo, Aoxe, ''', A(w)xo] (8)

where wEX', Iwl S{n' and

 '                        '
     '       '                n-1 for DFA
           '          n= .

                           '

string w. When the i-th column is a zero vector, qi

is called the unobservable state and there is no input

string to cause transitions fTom qi to accepting states.

  The states which have an. identical vector in the

corresponding columns of O are equivalent and called

                  .indistinguishable. ({Ah},c) is called cornpletely

observable if there is no zero column in O.

                                             '2.3 Characteristic responses

  The general solntion of (6) for a input string w

of (7) is written as follows:

        x(t) =A(w) xo, y(t) " dA(w) xo (10)

        '
                                 '
where A(E)=Il,(a;the unit matrix of order n) and

E is the empty string.

 Let

               h(w)=eA(iv)xo, '' (ll)

the output sequence :

                                          '
       {h(E), ･･･, h(tv),,････}(V tvE!X') (12)

                  t tt       '
is called the characteristic responses for the state

spacemodel (6). ･ . .
 We next ,define the Hankel matrix H as follows:

                 H-OR. ., (13)
                                     '
It is clear from definition of R, O that H consists

of the characteristic responses h(w).

  FAs which have identical characteristic responses

(or Hankel matrix) are called equivalent FAs.

2.4 Similarity relations -
 In the linear system theorYD, the similarity transfor-

mations of system matrices,under which input-output

responses of systems are invariant, are well known

method for canonical decomposition.

  We now introduce a somewhat generalized version

of similarity transformations to state space models

of FAs. ･
 Let Ma=({Ah("'}, c`al , xo(al.) and Mb==-({Ak`b' }, dol,

xo(b' ) where ML and Mb have n,, and nb ,states respecti-

vely, and let T be an nbXn. matrix over B.

 We then define similarity relations between ML and

Mb by a transformation matrix T as follows:

        7-:A,(a) ==A,(b)T (14)
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                              '
       Thc (al =:x(O ''(15)
                                         '                               '                   tt
       c(al t=c(b)'M (16)
                          '
        '
 'Thus, T'shows the state transformation between

Mh and lUh such that, '

       T= [to, ti, '", tra.] (17)
              '

where ti is the state vector of Mb which corresponds

to the state qi of Mh. ,
  If T is a square and nonsingular matrix such as a

permutation matrix, similarity relations (14)N(16)

are rewrltten as

       z-:A,(a) 7"'i=A,(b) (18)

       7x(") =x(b) , (19)
         '
       c(al tT'=c(b't (20)

which are the similarity transformation and Mb can

be obtained from Mh by a similarity matrix T.

'2.5 Subset construc'tion by similarity relations

  The subset construction is a well known method to

transform a given NFA to an equivalent PFA.

  As an application of similarity relations, we shall

show the way to perform the subset construction by

similarity relations.

  For a given NFA M=({Ak}, c, xo) of n states, let

DFA D(M)=({Ak},a, £o) be the transformed DFA
by the subset cbnstruction.

  Then an algorithm to derive D(M) equivalent to a

NFAMis as follows. -
                               ' 1.' From the reachability matrix RM of M, constru-

   ct'R'nf by taking out different columns from RM

   except zero' columns.

                   '

       R'M==[rd,, ra,, "･, rtti-,] (21)
                                      '                        '                                        '
 2.    By regarding R'M as a transformation matrix T,

   system parameters ({Ak},e, SD of D(M) is ob-

   tained from ({Ak},.c, xo) of M by use of simila-

   rity relations (14)'hv(16) in which Mh and Mb are

   replaced by D(M) and M respectively. '
                --                          '

IKAI and Kunio 'FuKuNAGA

         3. Minimization of Finite Automata

   There are innumerable DFAs which have identical

 input-output responses(namely Hankel matrix) for a

 given DFA. It therefore becomes necessary to construct

 a minimal or reduced DFA which has the fewest states.

 Some algorithms of minimization are well known in

 the theory of FAs2'`'fi''). In'this chapter, we propose

 an algorithm to minimize a given DFA M of n states

 using similarity relations.

 3.1 Construction of the completely reachable determi-

     nistic finite automata

   The completely reachable DFA can be constructed

 by elimination of unreachable states of M.

   Let DFA Mk of nR states be the completely reachable

  subsystem of M. The reachability matrix RH of Mk

  is obtained by removing zero rows from the reachabi-

  lity matrix R of M.

   Construct an nRXn matrix 7}i satisfying the follow-

  mg equatlon

              TkR=R.. (22)

  Then Tk is a transformation matrix from M to Mk

  such that,

          71i=[tRo, tRs, ''', tR. i] ' (23)

           q if the state qi of -M is reachable

     tR,= and transformed to the state g･.of Mk.

           O otherwise

                                        '
  Since distinct states of M except unreachable states

  are tranSformed to different states of Mh, there is

  no identical column in 7-k except the zero vector. '.

   Theobservability matrix OR of Mk is obtained by

  meansof 71i as follows:

         O.=OCT14. (24)
  Thus the columns of O corresponding to unreachable

  states of M are removed to produce OR.

   The reachability matrix RR and the observability

  matrix OR of Mk were obtained in the way described

  above.

  3.2 Censtruction of' the minimal deterministic finite

      automata
   A 'minimal DFA M of fi states can be constru6ted
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by eliminating unobservable states and merging indisti-

nguishable states of Mh. St' ates corresponding to the

zero columns of OR are unobservable, and states which

                             'have an identical vector in the corresponding column

            'of OR alLe indlLttinguishable, so that the observability

matrix O of M is obtained by removing zero columns

from OR and merging identical columns of OR.

  Construct an nXnR rnatrix 7b satisfying the follow-

lng equatlon

          -07b == O.. (25)

Then 7b is a transformation matrix from Mk to ,M

such that,

           7b= [to,, to,, ''', tth,,-t] (26)

        q if the state qi of Mk is observable '･

  ta= and transformed to the state en of M.'

        'O otherwise

Since indistinguishable states are transformed to a

same state of AI. there are some identical columns

in 7"h. That is, if the states qi and g･ of MR are ind-i-

stinguishable, then, ta and ta are iaentiea}. ,'

                        --  The reachability matrix R of M is obtained as

follows:

                        '                              ttt                             '            IR=ThRR. '' (or)
             '

Let T==7;)71i, then an 7fXn matrix T satisfies next

equatlons.

            R= 7ZR (28)

            -O - OTt (29)

T is a transformation matrix from M to M such

that,

         T'= [to, tl, ''', tn-l･]

 whe're ti is a state vector of M' corresponding to the

 state qi of M. If the state qi i's unreachable or un-

 observable, t･ is zefo vector and if the states qi and

 g･ of M are indistinguishable, t･hen t,==C.

  System parameters ({Ak}, c, xo) of M is obtained

 from ({Ak}, c, xe) of M using similarity relations

and Minimization   of Finite Autornata 43
(14)N (16) for T of (30), in which Mh and Mb are

replaced by M and M respectively.

  To prove that the above algorithm provides an

equivalent DFA for a given DFA, we show in Appendix

that the Hankel matrix is invariant under minirnization

procedure.

  Example 2 :

  We perf6rm the minirnization of FA Mi shown in

Fig. 1.

  To simplify the computhtion of matrices,we use R'

(O') which is constructed by taking out different'

columns (rows) from R(O).

  Then we have R',O' as follows:

             l o e o
            O I O O

       R'= OO1O (31)
            ooeo
            O O O- 1

            O O I O O

             OOOIO '
             11100
       o'= oee'o o (32)
             I O I I O
             O O I I O
             11110

By removing zero rows from R', R'R is obtained as

follows:

              1 0 0 0
                    oo              Ol
                       '. (33)       R'.=
                     10･              oo
              O O O I

Then Tk is solved-by use of Eqs. (22), (31) and (33)

as

              1 0 0 0 0
                     ooo ･'              Ol
       'Tk == . (33)                 OIOO        .o
              O O O O I

 Next O'n is obtained on referring to Eq. (24).
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            O O I O
            o o. oo
            1110
       O'.=O OOO (35)
            iO1･O
            OOIO
            1110

We have-･O' from O'R.

            001
            ooo
             111

       O'== OOO (36)
             iOl
             OOI
             111

Tb from Eq. (25) and T=7bTli are obtained as foliows:

             1O O-O

       7b- O1OO (37)
            O O 1 O

             1 0 0 0 0

       T- O1OOO. (38)
            O O I O O

System parameters ({7I), -c, SE) of Mi is then obtained

by similarity relations for T as

            OOI OOO
       A,: 1 O O ,A,=: O O O .(38)

            OOO 111
              d- (O O 1)

                   1

              xo == O .

                   o

  Figure 2 is the transition diagram of Mi.

                     e

     i

.Fig. 2

qo

e

ql

1

ql

 i

Minimat DFA Mi
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                  4. Conelusion

                              '
   By introducing state space models for FAs regardi-

 ng as bilinear sys'tems,FAs can be treated algebraically

 based on linear algebra over the boolean semiring.

   As a- resuit,the similarity relations can be defined

 to FAs. As ,its applications, we showed the methods

 of subset construction and minimization of FAs on

 state space models.

                    Appendix

   We prove that Hankei matrices of M and MA
 correspond to each other.

   Let Hh be the Hankel matrix of Mk. Then the

 following equation is obtained .from Eqs(22) and (24).

        Hh=O.R. =OIIIi Z},R (42)

  Tk71i is a square matrix of order n and the (i, j)

 element of Tl67}{ is tk･t&･ such that

       tf`LtN=( 6 i=j ao2hdertwR'1:･'EseO'

 Let R=[ro, ri, ..., n-i]`, then ･

                    thotRor6

                    tiiitRilil

          Tk7"kR- (43),                       l

                   ttR. ItRn il'i-1

 where ttib･tRi, is O iff the state qi of M is unreachable.

 Then, clearly n･=O, so the next equation is obtained.

          ･ T]4 T},R ==R (44)

 Thus, we obtain the next equatipns,'

               Hh =: O.R. (45)

                 -= 071a Z},R (46)

                                             '                  -OR (47)
                      '
                                     /t                               '
                 .=:H, (48)

 and Hk consists with H.
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M
i
s

Though we

and H are

almost the

should prove that Hankel matrix of

consistent, it is omitted since the proof

same as the above-mentioned.
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