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Regarding finite automata (FAs) as discrete time dynamical systems, state spaée models
of FAs are obtained from vectorization of states and symbols over B (={0, 1}) and parameteri-
zation of system characteristics (state transition function etc.).

In this paper, we define the similarity relations between FAs expressed by state space
models under which input-output responses of FAs are invariant. Based on the similarity re-
lations, we first derive the subset construction and then provide an algorithm to minimize a
given arbitrary deterministic finite automaton (FA).

1. Introduction

Finite Automata (FAs) are discrete time dynamical
systems to alter the internal states by input symbols.
For such dynamical systems over the real field R, the
expression and analysis on the state space models are
established in the field of dynamical systems and con-
trols®. As against it, in the theory of FAs, FAs are
only treated by diagrams, tables, and functions which
define state transitions. DBut state space models of
FAs as dynamical systems and analysis of FAs based
on state space models are not found in the theory of
FAs.

By vectorization of the states and symbols and par-
ameterization of the state transitions and output
function over B=({0, 1}), FAs can be formulated as
bilinear discrete time systems, and are represented by
state space models over the boolean semiring(B,+,*).

As a result, the concepts such as reachability, ob-
servability can be defined for the state space models
of FAs as well as linear dynamical systems over
R* .

Based on the state space model representation, we
introduce in this paper a state transformation and
its applications which conserve input-output responses.
- In chapter 2, we shall show the way to construct
state space models of FAs over B. Next we define
the similarity relations between FAs which are derived
by a state transformation”. We. then perform by the

similarity relations the subset construction® which is
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the method to transform a given nondeterministic
FA (NFA) to an equivalent deterministic FA (DFA).

Minimization algorithms for DFAs are well known
in the theory of FAs*®,
algorithm over the state space models is found using

but a novel minimization

canonical decomposition and distinguishability”.
In chapter 3, we shall propose a method to minimize
a given DFA by the similarity relations instead of

the canonical decomposition.

2. State Space Models of Finite Automata

2.1 State space models

We first introduce an algebraic system called the
boolean semiring (B,+,*) (where B={0, 1))to derive
state space models of FAs. Table 1 shows the addi-
tion and multiplication of boolean semiring. These are
ordinary addition and multiplication in integers except
1+1=1.

Table 1 Boolean semiring

addition maultiplication
0+0=0 0+0=0
0+1=1 01=0
1+0=1 1+0=0
1+1=1 1-1=1

A FA is formally represented by 5-tuple,
M=@@, Z, &, qu, F) M

where @ is the set of states, X is the set of input'
symbols, § is the state transition function, g is the
initial state, and F is the set of accepting states. The
number of states denoted by || is n and that of
symbols [Z| is m.
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States and symbols are expressed as vectors over
B and the parameterization of system characteristics
(6 and F) are performed as follows.

1. The state g=Q (i=0,

to a n-dimensional unit vector e (only i-th com-

<+, n—1) is vectorized

ponent is 1). The initial state go is represented
by x¢(=e:), and the zero vector, if necessary,
represents the dead state.

2. The state transition function 6 (¢, a.) for a.
(€ %) is parameterized as a square matrix Ag,
of order n which is called a state transition
matrix and abbreviated as A.

(k)

The (i, j) element a® of A is determined as,

1 (q.-EQ,"")
® = 2
{ 0 (@ZQ") @
where
Q¥ =6(g, a) (i j=0, =, n=1). (@

3. The set F of accepting states is expressed by
n-dimensional vector ¢ with the element
1 (q.EF)
= (i=0, -, n—1). 4
{ 0 (g&PF)

4. The input symbol a is encoded to u (t) such
that

1 if ax is entéred at time ¢
u ()= { " .®

0 otherwise

According to these parameterizations, the state
space model of a FA M, which is regarded as a bilinear
dynamical system over B, is obtained as follows,

{ x(¢+1) =:§2¢h(t) Ax(®) ©

y(t) =ex(t)

where x(0)=x,, and ¢ means the transposed vector
of ¢

If the state vector x(¢) over B includes unit vectors
representing accepting states, y(t) becomes 1, which
means the acceptance of a input string. The parameter
representations of M is denoted by ({4, ¢ x0)
corresponding to (1) and A.’s, ¢ and x, are called

system matrices or system parameters.

Example 1:

To clarify the above-mentioned, we give an exémple
to construct the state space model of FA M, given
as state transition diagram of Fig. 1.

Fig. 1 DFA M,

1. Since M, is 5 states, each state is vectorized

to 5-dimensional unit vector.

1 0 0
0 1 0
g {0, 0 },....,q.=| 0
0 0 0
0 0 1

2. State transitions shown in the diagram(Fig. 1)

are parameterized as follows:

Ao

I
I A N
- o o o ©
o0 O O -
oo - o o
- o o o o

D

I
OO = O O
OO = O O
OO = O O
O = O O O
—-_ O O O O

where A, is a transition matrix for input
symbol 0 and A, is for 1.

If there is a transition from ¢ to g by the
input 0, the (i, j) element of A, is 1, and
otherwise 0.

3. The accepting state of M; is the state g:, then
¢ is as follows:

¢=0 0 1 0 0.

4. The input symbol a,(=0) is encoded as follows:
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1 if 0 is entered at time ¢
uo(t) = .

0 otherwise
The input symbol a;(=1) is encoded similarly.

In this wéy, the state space model of M; is obtai-
ned.
2.2 Reachability and observability
ar, {E Z*) be added
to a FA from right side symbol, then the corre-

Let an input string w=ag.,
sponding transition matrix A(w) for w is written as
Aw)=An., = Ak M

where ap, (€ X) is a input symbol at time t and
Ar (E{A,, -, A.}) is the transition matrix for a.
We now define the reachability matrix R as follows:

R={[xo, Aoxo, -+, A(w)x,] ®
where wE %, lwl <n’ and

L { n—1 for DFA
" 99 for NFA'

The column A(w)x, of R is denoted by the column
label w. The i-th row of R corresponds to the state
g.. Namely, the (i, w) element of R is 1 if there
are transitions from the initial state go to the state
g: by the input string w. When the i-th row is a zero
row vector, ¢: is called the unreachable state since
there is no input string to cause transitions from g,
to q. - The system parameters ({A.},xo) is called
completely reachable if there is no zero row vector
in R. ,

Similarly the observability matrix O is defined as
follows:

¢
cAy

c¢A (w)

where wE X*, |lw|<n'.

The row ¢A(w) of O is denoted by the row
label w. The i-th column corresponds to the state g.
The (w, i) element of O is 1 if there are transitions

from the state ¢: to the accepting states by the input

string w. When the i-th column is a zero vector, ¢
is called the unobservable state and there is no input
string to cause transitions from ¢; to accepting states.
The states which have an identical vector in the
corresponding columns of O are equivalent and called
indistinguishable. ( {As},e) is called completely
observable if there is no zero column in O.
2.3 Characteristic responses
The general solution of (6) for a input string w
of (7) is written as follows:

x(O =AW xo, y(&)=¢ Aw)x, 10)

where A(e)=E,(E.:the unit matrix of order n) and
€ 1is the empty string.
Let

hw) =cA(w) x,, : an
the output sequence :
{hCe), -+, hw), - - }(VweEZ") 12)

is called the characteristic responses for the state
space model (6). ,
We next define the Hankel matrix H as follows:

H=0R. as)

It is clear from definition of R, O that H consists
of the characteristic responses A{w).

FAs which have identical characteristic responses
(or Hankel matrix) are called equivalent FAs.

2.4 Similarity relations

In the linear system theory®, the similarity transfor-
mations of system matrices,under which input-output
responses of systems are invariant, are well known
method for canonical decomposition.

We now introduce a somewhat generalized version
of similarity transformations to state space models
of FAs.

Let M.=({AL}, ¢®, x®) and M,=({A®}, ¥,
x®) where M, and M, have n, and n, states respecti-
vely, and let 7" be an n,Xn, matrix over B.

We then define similarity relations between M, and

M, by a transformation matrix T as follows:

TAh(u) =Ak(b) T (14)
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Tx@ =x® (15)
¢ (a) t=p o T. (16)

"Thus, T shows the state transformation between
M, and M, such that, )

T= [to, £y, -, tn.q] an

where & is the state vector of M, which corresponds
to the state ¢. of M..

If T is a square and nonsingular matrix such as a
permutation matrix, similarity relations (14)~ (16)

are rewritten as

TA;,(“) T '= Ak(b) (18)
Tx®@ =x® (19
c(a) :T—l.:c(b)z (20)

which are the similarity transformation and M, can

be obtained from M, by a similarity matrix 7.

2.5 Subset construction by similarity relations

The subset construction is a well known method to
transform a given NFA to an equivalent DFA.

As an application of similarity relations, we shall
show the way to perform the subset construction by
similarity relations.

For a given NFA M= ({A), ¢, xo) of n states, let
DFA DM)=({4.}, ¢, %) be the transformed DFA
by the subset construction.

Then an algorithm to derive D(M) equivalent to a
NFA M is as follows. /

1.” From the reachability matrix R of M, constru-
ct' R’w by taking out different columns from Ry
except zero columns.

Ry= [raq, Fa,, 7, ra,‘.] 1

2. By regarding R’y as a transformation matrix 7T,
system parameters ({A.}, &, %) of D(M) is ob-
tained from ({44, .¢, xo) of M by use of simila-
rity relations (14)~(16) in which M, and M, are
replaced by D(I\_l_) and M respectively.

3. Minimization of Finite Automata

There are innumerable DFAs which have identical
input-output responses(namely Hankel matrix) for a
given DFA. It therefore becomes necessary to construct
a minimal or reduced DFA which has the fewest states.
Some algorithms of minimization are well known in
the theory of FAs***”, In this chapter, we propose
an algorithm to minimize a given DFA M of n states
using similarity relations.

3.1 Construction of the completely reachable determi-
nistic finite automata

The completely reachable DFA can be constructed
by elimination of unreachable states of M.

Let DFA Mz of ns states be the completely reachable
subsystem of M. The reachability matrix Rsz of Mz
is obtained by removing zero rows from the reachabi-
lity matrix R of M.

Construct an ngXn matrix Tk satisfying the follow-
ing equation

TRR=RR- (22)

Then Tk is a transformation matrix from M to M=
such that,

Te=[tr,, tr,, =, tr. ] ' (23)
e if the state g of M is reachable

tn= and transformed to the state g; of Mx.
0 otherwise

Since distinct states of M except unreachable states
are transformed to different states of Mgz, there is
no identical column in Tr except the zero vector.

Theé observability matrix Os of Mz is obtained by
means of Tr as follows:

Or=OT%. (24)

Thus the columns of O corresponding to unreachable
states of M are removed to produce Org.

The reachability matrix Rz and the observability
matrix Os of Mz were obtained in the way described
above.

3.2 Construction of the minimal deterministic finite
automata

A minimal DFA M of 7 states can be constructed
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by eliminating unobservable states and merging indisti-
nguishable states of Mr. States corresponding to the
zero columns of Ok are unobservable, and states which
have an identical vector in the cofresponding column
of Or are indiStinguishable, so that the observability
matrix O of M is obtained by removing zero columns
from Os and merging identical columns of Oks.

Construct an X ns matrix To satisfying the follow-
ing equation

OTo= Os. (25)

Then T» is a transformation matrix from Mg to M
such that, ‘

To= [tOoy to, ", tom-1 ] (26)
¢ if the state ¢ of Mz is observable

to= and transformed to the state g; of M.
0 otherwise

Since indistinguishable states are transformed to a
same state of M, there are some identical columns
in To. That is, if the states g and ¢ of M are indi-
stinguishable, then, fn and fo, are identical.

The reachability matrix B of M is obtained as

follows:
R="ToRn. R (@n

Let T=T,Tx, then an 7 Xn matrix T satisfies next
equations.

R=TR (28)
O=0T" 29

T is a transformation matrix from M to M such

that,
T=1[t, t1, =, tw1]

where t; is a state vector of M corresponding to the

state ¢ of M.
observable, & is zero vector and if the states g and

If the state g is unreachable or un-

q; of M are indistinguishable, then t=¢,.
System parameters ({4, ¢, x;) of M is obtained
from ({A.J, ¢ x0) of M using similarity relations

(14)~ (16) for T of (80), in which M, and M, are
replaced by M and M respectively.

To prove that the above algorithm provides an
equivalent DFA for a given DFA, we show in Appendix
that the Hankel matrix is invariant under minimization
procedure.

Example 2 :

We perform the minimization of FA M, shown in
Fig. 1. /

To simplify the computation of matrices,we use R’
(O’') which is constructed by taking out different
columns (rows) from R(O).

Then we have R',O as follows:

1 0 0 O
0 1 0 0
R={0 0 1 0 3D
0 0 0 0
0 0 0 1
6 0 1 0 O
0 0 0 1 0
1 11 0 0
o= 0 0 0 0 0 32
1 01 1 0
6 0 1 1 O
1 1 1 1 ©

By removing zero rows from R’, R’z is obtained as
follows:

(33)

OO O
QO = O
(= B = =]
L O VO o

Then Tk is solved. by use of Egs. (22), (31) and (33)
as

Tx (33)

Qoo O =
O O e O
[T = =)
o o o ©
- o O O

Next O'r is obtained on referring to Eq. (24).
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0 0 1 0
0 0 0 0
1 1 1 0

Or=l0 0 0 0 (35)
1 0 1 0
0 0 1 0
1 1 1 0

We have-O' from O’x.
O (36)

o

I
—_ O ks O = OO
.—-ooo»—oo’
e e e T = T

To from Eq. (25) and T=ToTx are obtained as follows:

1 0 0 0

To=| 0 1 0 0 €]
0 0 1 0
1 0 0 0 0

T=|10 1 0 0. (38)
0 0 1 0 0

System parameters ({AJ, ¢, xo) of M, is then obtained
by similarity relations for T as

0 0 1 0 0 0
Ac={1 0 0),A={0 0 0]. (38
0 0 0 1 1 1

Fig. 2 Minimal DFA M,

4. Conclusion

By introducing state space models for FAs regardi-
ng as bilinear systems,FFAs can be treated algebraically
based on linear algebra over the boolean semiring.

As a result,the similarity relations can be defined
to FAs. As its applications, we showed the methods
of subset construction and minimization of FAs on
state space models.

Appendix

We prove that Hankel matrices of M and M
correspond to each other.

Let Hr be the Hankel matrix of Mz. Then the
following equation is obtained .from Eqs(22) and (24).

Hr=0OrRy=0TEtTRR (42)

TiTw is a square matrix of order n and the (i, j)
element of TiTk is tuts such that

1 i=jand tg# 0
thitr= { J f

0 otherwise
Let R=[ry, ri, ..., F-1]%, then
t‘R()tRU'JO
tritr1
TeTeR=[ (43)
ttRn .tR. .'f--l

where thitr, i1s 0 iff the state g: of M is unreachable.
Then, clearly r.=0, so the next equation is obtained.

TiTeR=R (49

Thus, we obtain the next equations,

Hy=OrEr (45)
=0T:T=R (46)
=0OR “n
=H, o 48

and Hz consists with H.
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Though we should prove that Hankel matrix of
M and H are consistent, it is omitted since the proof

is almost the same as the above-mentioned.
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