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The stability of thin shells at large deformation states, especially of shells in the medium to deep
curvature ranges, are subjected to multiple parametric influences due to the different disturbing
factors present in the natural environment where they have to function as structural components.
Any attempt for an accurate determination of shell stability requires elaborate theoretical and
computational effort, and a detailed formulation of the shell governing equations becomes the most
important task before considering any further on shell stability.

The general governing equations for thin shells are derived here in the monoclinically convected
coordinates over the middle surface through tensor based formulations of continuum mechanics.
Utmost care is given to the details of these derivations into their findl form, where the contributions
from some evidently small factors to equilibrium effects are also retained. Then, an analytical
equation for the stability of the shell at different equilibrium states are derived using the method of
small vibrations. Further, an analytical method is developed to determine the dynamic stability
of shells by considering the disturbed small motions about the equilibrium states during large
deformations.

Detailed numerical calculations were performed for the singly and doubly curved partial circular
shells of shallow to deep curvature ranges. Presented here are some results on the stability charac-
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teristics and the resulting classifications for singly and doubly curved shells.

1. Introduction

Shells are used as structural components in many of
the land-based and marine constructions, since they
offer some specific architectural shapes, added stability
and strength due to their form. The present state of
knowledge of the theory of shells contains a broad
spectrum of diverse approaches leading to different
levels of theoretical formulations and their
approximations'~®, and numerous studies are being
conducted on its advanced aspects.

This paper deals with the finite deformations and
stability of shells subjected to follower loads. The
governing equations for thin shells defined in a system
of monoclinically convected coordinate axes derived in
some of the earlier studies®® are being used here,
without going into the details of their derivations. All
the analytic equations were derived with proper consid-
eration of the shell geometry after deformation, which
makes the results to be more exact than formulations
based on the pre-deformation metric values. The
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systematic presentation of tensor derivations from
first principles, and its physical and numerical interpre-
tations have also been previously verified.

The results of a series of theoretical and numerical
studies conducted on the subject of shell stability,
especially on the stability under disturbed equilibrium
conditions at the deformed states™®, are being summar-
ized in this paper. Since the background material in
the form of some numerical examples are being avoid-
ed in the presentation of this paper, the final results
could be viewed as devoid of some supportive details.
However, the essence of this paper being the qualita-
tive summarization of the most important of the
results, the self-affirmative style of presentation is
assumed to be unavoidable.

Partial cylindrical and spherical shells with curva-
tures ranging from very shallow to very deep were
considered and their stability characteristics were
numerically investigated during the finite deformation
process using an analytical equation developed using
the method of small vibrations. The natural fre-
quencies of vibration of the shell were monitored
through the finite deformation process, which brought
out the different types of instability mechanisms for
each shell.



78 Thomas Ggorce*, Nobuyoshi Fukucur** and Hiroo Oxkapa

Also, numerical analyses were conducted for the
dynamic stability of the shell at selected stages of its
finite deformation process using another analytical
equation developed by considering the disturbed small
motions about the equilibrium states. This analysis
has shown that there were some parametric combina-
tions for a shell at which the dynamic instabilities
occur even with the slightest amount of external distur-
bance.

The simply supported conditions were assumed at
the shell boundaries and the Galerkin method was
employed for numerical formulations. Attempts for
generalizations were therefore restricted to the partial
cylindrical and spherical shells with conditions as
stated above. Generally, the present analytical
methods and the qualitative aspects of numerical
results might be extended safely to other shell types,
loading and boundary conditions, some of which are
under consideration presently.

2. Theoretical Formulations

The general governing equations for a thin shell are
formulated here in the monoclinically convected coordi-
nate axes (0!, 6% 6% traced over the shell middle
surface, where the #° direction is adopted normal to
that surface, as shown in Fig. 1.

The Kirchhoff-Love assumptions are assumed true
throughout the finite deformation process of a thin
shell. The Range Convention adopted here for indices
is such that all Latin indices (7, j, &,":*) take values 1,
2, 3 and Greek indices (a, 8, y, ) have the range 1, 2.
Various other notations and symbols used in this paper

R
The partial
cylindrical shell

The partial
spherical shell

Thickness of the shell : t/a = 0.01
Poisson's ratio ;Y =03

middle surface
lower surface

Fig.l  The definition of monoclinically convected coordinate
axes and the geometry of two particular shell types

will be explained when and where they appear first.
2.1 The Disturbed State of Equilibrium

The equilibrium of a shell undergoing finite deforma-
tions is prone to exhibit some unstable behavior depen-
ding on the various disturbances that accompany the
state change or loading by virtue of either internal or
external excitations those are present in any physical
situation. The geometrical relationship between the
undisturbed and disturbed states of equilibrium can be
represented by the incremental variation in the posi-
tion vector of any middle surface point, as shown in
Fig. 2 and expressed by Eq. (1).

R+6R=r+(u+ou) (4h)

Here, r and R are the position vectors of an undis-
turbed equilibrium state and u (=47 is the deforma-
tion vector, where @' is the base vector of the middle
surface before deformation.

This incremental property can be incorporated into
the derivations of the fundamental values of a shell
from the first principles of continuum mechanics. As
a result, all those quantities which undergo an in-
cremental variation may be represented both in their
undisturbed and disturbed states. In the following
text, a kat (), a tilde () and an asterisk (*) signs are
used over different quantities to represent the undis-
turbed, disturbed and the incremental change respec-
tively.

2.2 General Governing Equations

The general surface strain of the shell is expressed
using the 2-dimensional form of the Green-Lagrange
strain tensor, and the Cauchy stress tensor for isotropic
materials is used in its 2-dimensional form to express
the stress-strain relationship on the general surface.

Deflected Equilibrium
{Undisturbed, Static)
Middle Surface

. ==

Initial Equilibrium
(Undisturbed)
Middle Surface r

Fig.2  Position vectors and deformation vectors on the
disturbed equilibrium middle surface
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The membrane force tensor (V*f) and the moment
tensor (M<f) may be derived through the direct integra-
tion of stress components across the shell thickness ¢,
which is assumed to be uniform. After proper substi-
tutions and reductions, the membrance force and the
moment tensors can be expressed completely in terms
of the middle surface quantities. Subsequently, the
transverse shear force can be eliminated by substitu-
tions from the equilibrium equations for the thin shell
whereby, the following governing equations can be
formulated for the finite deformations, which include
the effects of disturbed small motions about an equilib-

rium state.
N“ﬁ:”)ay*"M”V(“ng:—5ﬂ—maE§_ptﬁ*ﬂ (2)
a a
ﬁaﬂgaﬂ—ﬂa/w)aﬂ:_53_’_”,!,,(”)“_/)”{.*3 3)

Here, the quantity m< is the sum of the surface
tractions and body forces contributed moment load, p*
and p?® are respectively the tangential and normal
components of applied follower load, which is uniform-
ly distributed over the surface. B% and Bas denote the
curvature tensors of the middle surface after deforma-
tion. The symbol |’ denotes 2-dimensional (surface)
covariant differentiation with respect to the subscript
that follows. Also, the symbol (2) below the covariant
sign denotes differentiations performed on quantities
after deformation.

The presence of inertia forces due to the distur-
bances are given on the righthand sides, where the
double dots above the disturbance components of the
deflection terms denote double differentiation with
respect to the time variable z. The resultant mass
density of the shell material per unit surface area is
given by p.

2.2.1 Representation of Stress Resultants

As stated previously, all the quantities with a tilde
over them can be represented as the sum of their
undisturbed equilibrium and disturbance components,

whereby the quantities Nes and Me# may be expressed
as follows:
Nt = [eb L N*ab
=Da"* &, +Ka™* (b3676%0} @)
- B850}~ b}t 0

Mes= b+ M*<b
()

=Ka#? iy +Ka** (0405 —b2)én
Eaps 5 and x,s are respectively the strain, the initial
curvature and the change of curvature tensors of the
middle surface. Also, 6% is the Kronecker delta. D
and K are respectively the extensional stiffness and the
bending stiffness parameters, and ¢ is the elasticity

tensor of the middle surface before deformation, as
defined in the following equations.

Bt
D=d"9
R
K=1209 ®)

™’ = (L;—y) [a“"a‘"’%— a""a”’] + va¥a?”

Here, E is the Young’s Modulus of Elasticity, v is the
Poisson’s ratio and a* is the metric tensor of the
middle surface before deformation.
2.2.2 Representation of Strain and Curvature

The strain tensor e, the curvature tensor after
deformation B,; and the change of curvature tensor
.5 can be expressed through the following equations,
in terms of the initial curvature tensor b, and the

disturbed deflection components @, (k=1, 2, 3).
‘éaﬂ = %aﬂ + Ejﬁ
=iy~ 2b e+ T )
5 Hap™ Upa «pU3 ap¥a
+ BAba ) o T @
+ b?} [(béﬁp + %,ﬁ)ﬁa + (Fﬁﬂﬁp - ﬁl,ﬂ)ﬂ.&]
+ b}(ﬁx ﬁS,a_ ﬁl,aﬁS)}
B y=b,t 7oy ®)
Rapg=Hopt x:ﬁ
= 05— bi bﬂl #— I‘iﬂﬁ.’i,l
F(bhit o+ botly )il ©)

5 L6028 — B R ) b

The disturbance components &, of the strain tensor
and x:ﬂ of the change of curvature tensor can be
calculated directly using the method of disturbed small
motions on the deflection components. The resulting
expressions for these quantities can be deduced after

an order evaluation into the following forms.
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S:ﬂ: - baﬂu’.i* - bﬁbw@(ﬁe"‘%@)

1
+7{ ﬂ&,au;ﬂ+ u;aﬂ’d,ﬂ-'_ u’;au‘;ﬁ} (10)
K= Uirep = babpr 183 —Topttsy 11

2.2.3 Representation of Deflection Components

The disturbed deflection components #, (=1, 2, 3)
can be considered here in the form of an algebraic
summation series, and follows:

m [N
ﬁk=21 El(Uk@ A+ Usi ) $i(6', 6% (12)
=1 j=
Further, the disturbed small motions alone may be
considered as an exponential time dependant summa-
tion series of the deflection components.

up = 2,2, Uk $(6', 6% exp™* 13)

Here, U, represent the deflection coefficient and
$:(8', 6%) may be considered as a double trigonometric
function, where #' and #? are the angular coordinates
of the middle surface in the principal directions.

2.3 Stability of Equilibrium with Small Vibrations

The stability equations for a disturbed equilibrium
state can be formulated by equating the incremental
variations in the governing equations to the inertia
term on the righthand sides of Eq.(2) and Eq.(3).

N*|,+ M|, B+ M**| ,B*
(@) (a) (a)
+meB*f=—pti*# (14)

NBy+N**Boy— M* ) y=—ptit* (15)

These equations can also be expressed in their partial
differential forms by substituting for all the terms and
making appropriate order evaluations, in the following
forms. '

Da {15 =ty T~ (tt 5+ 03 )72 — (130,

+ B 5+ U g+ (@ U b, 85),,} = —pti*? (16)

Da?{ [uys— u*b, o+ &, u’ + Bu*3b,,0%]
(baﬂ+ ﬁ?aﬁ_ ﬂgbﬁpbﬁ_ 1231 mﬂ)
[0 byt 5 (B, s+ (@Pb155)
(u‘;?;— u*abﬁpbfv_ u;s Pﬁp)}

— Ka™uts = — ptit*? (17)

The disturbance components of the deflection terms

given by Eq.(13) can be substituted into the above
equations, which can then be expressed as an eigen
value problem for the disturbed small vibrations on
known values of the deflection components, as given
below.

KX=AX (18)

where, X denotes the modal matrix and A are the eigen
values of the associated stability problem correspond-
ing to a given state of disturbed equilibrium.
2.4 Stability of Equilibrium in the Normal Direction
The equation of dynamic stability for the shell can
be formulated from the disturbed equilibrium equa-
tions Eq.(2) and Eq.(3). In this paper, only the stability
in the normal direction is considered for the analysis,
for which Eq.(3) forms the basis. Using the method of
disturbed small motions, the left hand side of Eq.(3)
gives the sensitivity of an equilibrium to small motions
in the normal direction. The symbol S is to be used
here to denote this sensitivity, as given below.

S(#u*)=N"B%+N**B,,

+N*"ﬂB:ﬁ—M*“ﬂ(E)ap 19

This equation along with the corresponding inertia
term given in Eq.(3), gives the equation for the dynamic
stability of disturbed equilibrium states. The expand-
ed form of the sensitivity function in terms of the
metric tensor a*, the strain and curvature tensors and
the change of curvature tensor can be expressed as
follows.

S(a*, u**)=D{(a")*[2.xt +¢ Tlﬁu]
+(a?)[2pxtt e ;21§22]
+at'a®?[v(Biixds+ Eponch

+e ;‘1E22+ Egzﬁu)

+ (_1;_1/) ((312 +§21)(KT2 +K;1)

+(ette ;1)(512 + ﬁm))] }
+R{(@[xt (Buy+ ) (B3— BY)
—xhnu—e Tl,ubg]
+ (@) et (Boa+ x) (B — )
— K322 €322 b{]
- a”dzz[v(lffl,zz +
+etianbli+ el bl)

+ ( 1; V) (2(3"1'2.12 + K;:,lz)

+(5 f2,12+€§1.12)(b11+b§))]} (20)
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Now, the sensitivity function along with the inertia
term can be combined with the parametric influences
due to damping and excitation forces, giving the fol-
lowing final form of the parametric stability equation.

i**+ S (73, u*®)+ Du**=—AsinQr (21)

The notation S (#°, «*®) denotes the modified unit mass
basis of the sensitivity function S(#®, #*®) defined in Eq.
(20). Here, D is the damping coefficient and A is the
maximum amplitude of the excitation force. The
single dot above the disturbance component of the
deflection term denotes differentiation with respect to
the time variable 7.

Damping is arbitrarily assumed as a linear velocity
function, and the excitation force is considered here as
a sinusoidal function for the numerical calculations
that follow. The amplitude A of the excitation force
is interpreted here for the numerical calculations as a
fraction of the static loading rate ,53, using the follow-
ing equation:

A=P. p* (22)

By virtue of this equation, the factor P is to be
known as the excitation amplitude factor, and the plane
formed by it with the excitation frequencies Q2 defines
the excitation force field, which forms the plane on
which the numerical assessment of dynamic stability

characteristics is to be made in this paper.

3. Numerical Results

The shell as a structural element requires to main-
tain its initial continuity and strength upto a sufficient-
ly minimum level even at the maximum expected
performance level of the total structure. The inci-
dence of any unexpected factor, such as an external
disturbance or a random excitation force, should not
endanger the integrity of any element, within the
normal performance ranges. Dynamic aspects, rather
than statically determinable problems, may induce
some instability due to the many number of unknown
factors involved.

The problem of shell stability is analyzed here
through different methods, first using the method of
small vibrations and then by a dynamic analysis using
the method of disturbed small motions. The respec-
tive analytical equations were already given in sec. 2. 3
and sec. 2. 4. Here we consider the partial cylindrical
shell and the partial spherical shell as the representa-

tive types of singly curved (zero Gaussian Curvature)
and doubly curved (positive Gaussian Curvature) shells.
All examples given here are for shells of projected
square bases of unit area and simply supported with all
inplane deflections at the boundaries arrested. A
uniform pressure load acting on the entire shell middle
surface in the anti-radial direction is adopted. The
shell thickness ¢ is taken to be of a sufficiently small
order in comparison with the radius R and the princi-
pal chord lengths [a=/4=14, #/a=0.01], to represent
the fundamental assumptions properly. Curvature
ranges of shells are selected from the plate (R/a=o0)
to the subtended angle of = radians at the center
(R/a=0.5) for the deep shell. As a result, about 25
different curvature values each for the partial cylindri-
cal and spherical shells are numerically analyzed here.

The differential geometry of a toroidal shell defini-
tion is used to express the basic values of the shell
middle surface. The corresponding values for metric
tensors, curvature tensors and other quantities can be
Since the

present investigation stresses on the lower modes of

formulated from the first principles®.

instability, the representation of deflection components
given in Eq. (12) is truncated at the 9 th principal term
(m =3, n=3). Generally, numerical results are non-
dimensionalized appropriately for convenient graphi-
cal representation, as indicated thereby.

The numerical value of E=1.96x10"* N/m? for the
Young’s modulus and the Poisson’s ratio of v=0.3 are
used for numerical calculations. Also, the material
density is assumed to be p=7.85x10°kg/m?® and the
acceleration due to gravity is taken as g=9.81 m/s%
Galerkin’s method and numerical integrations using
the Gaussian quardrature are used for solutions of the
governing equations. The QR method and the Runge-
Kutta-Gill method are used for the analyses of the
stability equations.

3.1 Analyses using the Method of Small Vibrations

The analytical method presented in sec. 2. 3 is used
here to calculate the natural frequencies of vibration of
the shell at consecutive deformed states of equilibrium.
The characteristic points of different instability mech-
anisms are traced by studying the variation in the
natural frequencies of the different modes of vibration
in unison with the normal deflection curves at different
points on the shell. Fig. 3 and Fig. 4 give these results
in a condensed form, where the types and ranges of

instability at each curvature are shown. Since the
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figures are mostly self explanatory, the method of each
evaluation and its justifications are not presented here
for the sake of brevity.

Fig. 3 shows the case of partial spherical shells,
which by virtue of the double curvatures have a compli-
cated division of stability ranges and instability char-
acteristics. Fig. 4 shows the case of partial cylindrical
shells, which are rendered less complicated by the
absence of one principal curvature, in spite of the fact
that the actual evaluation of individual characteristics
is eventually made more difficult for the same reason,
than a doubly curved shell.

The most notable feature of these figures are the
lower bounds of dynamic instability, considerably
below the critical instability curves. The region of
transient dynamic instability between these curves are
prone to introduce instabilities of different kinds,
mainly of the mode shift type”, at several points of the
loading history, depending on the type and amount of
disturbances or other excitations.

Also, it can be noted that shells of large curvatures

Conditionally unstable region | Stable region
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Fig.3  Stability characteristics for partial spherical shells

which are considerably ‘membrane rigid’ due to their
deeper forms, are subject to dynamic flutters or local
reverse bucklings (LRB), leading to instabilities.
However, shallow shells may overcome some of the
initial instabilities using their ‘membrane flexibility’
and are more likely to continue carrying further loads
in some assumed new equilibrium state, mostly like an
elastic cable. Evidently, the region of extremely shal-
low shells can be found to be almost completely stable,
except for some transient initial instabilities which
would be overcome in most cases, to continue deform-
ing until an elastic failure occurs.
3.2 Analyses using the Method of Disturbed Small
Motions

The concept of dynamic stability of a shell is quite
arbitrary in the sense that the determination of an
unstable behaviour depends on the allowed upper limit
of dynamic state change that may be considered ‘sta-
ble’ at the particular load-deformation stage. The
numerical analysis of the stability of thin shells under
disturbed states of equilibrium are done here through

Conditionally unstable region ) Stable region

Flutter/ Local k, Cable effect
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20 1 \ 8 B : Bifurcation
F O F : Flutter
® D : Divergence
10
] F X U : Ultimate loading
—_ 71 A : Mode shift
W s Ay e
S~ 4 4 I
o \
«Q 3 \
= B
2
D \J
N
QD
T 14¢ REcioN oF -
[EGION OF
© } TRANS IENT,
o 0.H \ J——L
| E \ DYNAMIC D D
0. \
> \| INSTABILITY |DW D
0.4 y — C
\
0.3} \\ D
N c
0.2 \ c
Lower; bound
of dynamic| \
instabilitly -\
0.1 A C
] AN
0.0 N cd
N\
0.05]
A
0.044 N
0.031 \ c
N \
0.02 N
A
N\
N\
0.01 o N
0.5 1 2 3 45 7 10 20 30 40 50
Radius (R/a)

Fig.4  Stability characteristics for partial cylindrical shells
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the analytic method given in sec. 2.4 using Eq. (21),
where the shell is assumed to be in a virtual state of
static equilibrium under a given stage of the follower
load. By virtue of Eq. (21), the parametric influences
of damping and excitation forces are considered here,
though the damping coefficient D was arbitrarily
assumed to be unity.

About 20 to 50 loading stages each of the 8 partial
cylindrical shells and 12 partial spherical shells are
analyzed here. The mean curvatures b5, which is
defined as the sum of the two principal curvatures, of
these shells ranged between 0.05 to 3.46, since it is
intended to analyze the characteristics of as wide a
range of curvatures as possible.

The arbitrary assumption was made here that the
U*sq, values start from rest at =0.0, and their initial
values are set at (U*g(l,,,/lAJa(,_,))ZIO‘“ to give a sensi-
tivity of very high precision. The critical stability time
period for all the selected points for stability calcula-
tioms are truncated arbitrarily at 1.0 sec, provided a
very conclusive stability behaviour was shown before
this time period. If the amplitude of motion of mode
disturbance U*y,;, for all the modes remained below a
specified common absolute maximum value at the end
of the ‘critical stability time period’, then that point on
the excitation force field was judged ‘stable’. On the
other hand, if the amplitudes diverge out and exceed
the specified maximum value before the time period,
then that point on the excitation force field was
marked ‘unstable’.

The specification for the common absolute maxi-
mum value for the amplitude of mode disturbance is
fixed as the absolute maximum (73(,,,) among the modes
under consideration at each of the selected points for
stability calculations. This value for the critical
amplitude of mode disturbance was considered as the
maximum allowable amount of mode disturbance
within the scope of the method of disturbed small
motions used for this formulation.

To provide some typical examples for the results of
these analyses, the partial spherical shell of R/a=2.0is
selected here. Fig. 5 gives the load-deflection curves
at four different points on a quarter shell along with
the average deflection curve. Marked on the figure
are the selected points for stability calculations, as P,
Py, Pes, Prs, Psr, Por and Pys on the vertical axis, all of
which fall within the region of transient dynamic insta-
bilities. The numerical digits following each P denote

c - Pog
X/ Average ——————>
B Pg3_ " Pgs
— P
| 87
/| P8
Pg9
A
62 ot
0.005 0.010

Deflection (4,/a)
Fig.5  Deflection curves and the selected points for stability
calculations (Partial spherical shell, R/a=2.0)
the corresponding loading stages of the equilibrium
positions, approximately as a truncated percentage of
the critical load Pe(=p3critican)-

The load-deflection history of this shell is found to
have both ‘forward’ and ‘reverse’ patterns for different
points of the middle surface. Throughout this analy-
sis the centre point of a quarter shell (point D) was
selected as the monitoring point for amplitude
response characteristics, for the reason that in most
cases it would represent the average deflection curve
most closely, and it can give both the symmetric and
the unsymmetric mode histories during the stability
analysis.

Fig. 6, Fig. 7 and Fig. 8 give the excitation force field,
as defined in sec. 2.4, for the points P,,, Py, and Py
respectively. The lowest points of the excitation
amplitude factor P can be seen to fall to very minute
values at Pg. This is as a result of the impending
dynamic failures at this loading stage, where even the
smallest of disturbances could prove fatal to stability.

The lower bounds of such critical instability values
for all the loading stages for this shell are plotted in
Fig. 9. Based on the numerical evidence obtained, it
can be read from this figure that the loading stage Pg,
may be treated as the stability threshold point for this
shell, beyond which the loading stages become prone to
dynamic instabilities even with the slightest distur-
bance.

In Fig. 10 the stability threshold curves for different
partial spherical shells are given. From the figure, the
vertical fall of the lower bounds of critical distur-
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bances can be seen to be a characteristic of dynamic
stability threshold for each shell.
The characteristics of dynamic stability threshold
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for partial spherical shells are given in Fig. 11. Shal-
low shells can be considered as dynamically stable for
all practical purposes and their design criteria for
stability can be easily affixed to the static criteria
alone. However, for deeper shells, especially for the
medium range fo curvatures, the dynamic stability
criteria has to be evaluated thoroughly and the design
criteria should be based on that evaluation. A range
of post-critical stability is also visible for some shells,
particularly the deep shells.

Numerical results for partial cylindrical shells are
not given here for the sake of brevity. An accompany-
ing paper to this provides further explanations to
possible reasons for the intricate behavior of medium
deep shells through an analysis of the resisting mecha-
nisms and strength characteristics.
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Fig.11 The Dynamic stability threshold characteristic
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4. Conclusions

The theoretical formulations presented here for the
stability of thin shells were verified for their applicabil-
ity through several numerical calculations. The sta-
bility of a shell equilibrium under disturbances could be
viewed as a critical aspect depending on the loading
stage. The shallow and deep ranges of curvatures
were found to be mostly free from instabilities, where-
as the medium range of curvatures were very prone to
dynamic failures at very earlier stages of their defor-

mation history.

Some of the disagreements found between the theory
of shells and their experimental verifications might be
attributed to the dynamic instabilities investigated
here. Although the present numerical results were
limited to some particular shell types with specific
boundary and loading conditions, the qualitative
aspects derived from these results would be generally
applicable to other situations also.
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