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Unsteady Forced Conveetion around a Sphere Itﬁtﬁérs'éd in a Porous
Medium at Large Peclet Number

Takao Sano* and Kazuya Maxkizono**

(Received November 30, 1995)

The unsteady forced convection around a sphere immersed in a fluid-saturated porous medium is
investigated at large Peclet number. It is assumed that the sphere is suddenly heated and, subse-
quently, maintains a constant temperature over the surface and that the fluid in a porous medium

flows according to Darcy’s law.

1. Introduction

Convection heat transfer around a body embedded in
a fluid-saturated porous medium is a very important
subject area because of the wide applications in geo-
physics and engineering’®, The present paper is con-
cerned with forced convection around a sphere immer-
sed in a porous medium. Previous studies on forced
convection around a sphere in a porous medium have
been made by Sano*¥ and Cheng®. In references [3]
and [5], the steady-state convection around an isother-
mal sphere is considered and asymptotic solutions for
small® and large® Peclet numbers are obtained, assum-
ing a Darcy flow for the velocity field. In reference
[4], on the other hand, asymptotic solution for small
Peclet number is obtained for unsteady forced convec-
tion around a sphere which is suddenly heated and,
subsequently, maintains a constant temperature over
the surface. No solutions for large Peclet number
have been obtained for unsteady forced convection
around a sphere.

The purpose of the present paper is to give
asymptotic solution for large Peclet number for the
unsteasy forced convection problem around a sphere
immersed in a Darcy flow. As in reference [4], the
sphere is assumed to be suddenly heated and, subse-
quently, to maintain a constant temperature over the
surface.
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2. Governing Equations

We assume that the superficial velocity of the flow
far upstream is uniform (= U.) and that initially, the
surface of the sphere and the surroundings are at the
same temperature 7, whereupon at time 7z’=0 the
surface temperature is suddenly changed to a constant
value 7,,. The energy equation governing the temper-
ature field around the sphere can be written in
non-dimensional form as

ot v ot

ot — 2
Pe(ar +u 3 +r 80)_v ¢, (1)
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where non-dimensional quantities are defined as
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In the above equations, ¢’ is the locally averaged tem-
perature, 7' the time, (7’, 6, @) spherical coordinate
with »’=0 at the center of the sphere and =0 in the
direction of uniform flow, #’ and ¢’ the superficial
velocity in 7’- and @- directions, respectively, 7 the
radius of the sphere, pr and ¢, the density and specific
heat of the fluid, p., ¢; and A, the density, specific heat
and effective thermal conductivity of the saturated
porous medium.

The non-dimensional initial and boundary conditions
are
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7<0 t=0,

t=1at r=1

>0
— t—0 as r—oo,

3. Asymptotic Solution for Large Peclet Number

We shall now proceed to obtain asymptotic solution
of the energy equation (1) for large Peclet number. By
introducing the following variable

Y =Pe'? (r—1), (6)

we can write Eq. (1) as

——+(3 Y+O(Pe 2)) cos€

ot
o8 aY2

aY
L O(Pe _) (7)

— (1+O(Pe —)) sing—-

In the limit Pe—oo, Eq. (7) becomes

3 at _ 9%

a—+3Y cosé a_Y_7 sing —— 3Y2' {8)
with

t=1at Y=0

(9)

t—0 as Y—oo,
We now assume that

t=t () {10
and

__Y
77—6\(0’ T)’ (1])

where ¢ is an unknown function of 8 and = and may be
considered to be proportional to the thickness of the
thermal boundary layer. Interms of Egs. (10) and (11),
Eq. (9) may be written as
d?t dt i

3
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In order that ¢ is a function only of », we have to
require that

1 8% 2 3 ;
2 a7 —38%cosf— vy sing —a g =8 (constant). (19

This equation determines the unknown function
J (6, 7).
ary condition

t=1at =0 ‘
t—0 as y—o0

The solution of Eq. (12) satisfying the bound-

is

t= eﬁc(@ﬂ). {15

Equation (13) can be solved using the method of
characteristics. It is equivalent to a system of total

differential equations as
dr__ do do*?

2 7 —3sinf B+30% cosb 19
From this equation, we can easily obtain
—-_2 A
T=—"73 In (tan ARG an
and
62—-—@;& =y (3cosf—cos® 6+C,), {19
where C, and C, are integral constants. From Egs.

(17) and (18), we have the following general solution of
Eq. (13).

0= 49 sui 5 {3cosf—cos*d
3 (7]
+¢»(71+1n (tanf))} , (19

where ¢ denotes an arbitrary function. The require-
ment that 62=0 when =0 gives,

¢ (In (tan %))=cos‘*6-3cosﬁ. 20

Using the relation

1—exp{2 In tan (6/2)}
1+exp{2 In tan (8/2)} ’

we can determine the function ¢ (x) from Eq. (20) as

@D

cosf=

1—exp (2x) (« 1—exp (2x)
1+exp (2x)  1+exp (2x)

Thus, ¢ has been determined completely and we have
3Pe'?(r—1) sin?4

é (x)= Y -3} . @

t=erfc

2{3cos€—cos36+¢(-g— z+In (tan —g—))} ‘
o)

It is seen that an arbitrary constant 8 disappears in Eq.
(23). For z—o0, Eq. (23) becomes
3Pe*? (r—1) sin®@

2
t=erfe 2V 2{3cosf~—cos*0+2} ’ o

which agrees with the soluton given by Cheng® for the
steady state.

4. Discussion

Figure 1 shows the isothermal lines for Pe=1000
calculated from the solutions obtained in the preceding
section. The isotherms are drawn for ¢t=0.8, 0.5, 0.3
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Fig. 1 Isothermal lines for Pe=1000; (a)r=0.1, (b)z=0.6, (c)7=1.4, (d)r=1.8, (e)z— 0
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Fig. 3 Timewise variation in the mean Nusselt number

and 0.1. For z=0.1, isothermals are nearly concen-
tric, suggesting that the heat transfer process is

dominated mainly by conduction. As 7 increases,

0 ( 97T/ 2 ) Y isothermals begins to grow in the downstream direc-
T tion owing to the effect of convection.
Fig. 2 Distribution of the local Nusselt number The local Nusselt number defined by Nu=hr/A,,
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where h=—(A./(T,— T )BT’/ 37’)r=y, is the heat
transfer coeficient, may be calculated from Eq. (23) as

Pe'’? sin%g

Nu= )
\/27[{3cosﬁ—c0530+ qs(%r+ln (tan %)}
For z—o0 Eq. (25) becomes
Pe'? gin%@
Nu (26)

B V27{3 cosf—cos*9+2}

which agrees with the steady-state result by Cheng®.

Figure 2 shows the distribution of Nu/Pe'? for sev-
eral value of z. It is seen that steady-state distribu-
tion is almost achieved at r=1, especially at the front
side of the sphere.

Figure 3 shows the relation between Nu,, and =,
where Nu,, is the mean Nusselt number averaged over
the surface and is calculated numerically from the
relation

Nua,,:—zl—— fo " Nu sinéds. @

For comparison, the conduction sclution is also shown
in the figure. It is seen that Nu,, decreases monoto-
nously to its steady value as z increases: no oscillatory
behavior can be found in the transient process.
Furthermore, it is seen that, for = < 0.2, the present
result almost agrees with the conduction solution and,
as 7 increases, the difference between them becomes
larger. This result is consistant with that obtained
previously from Fig. 1.
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