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 The unsteady forced convection around a sphere immersed in a fluid-saturated porous medium is
investigated at large Peclet number. It is assumed that the sphere is suddenly heated and, subse-

quently, maintains a constant temperature over the surface and that the fluid in a porous rnedium

flows according to Darcy's law.

               1. Introduction

  Convection heat transfer around a body embedded in

a fluid-saturated porous medium is a very important

subject area because of the wide applications in geo-

physics and engineeringi･2). The present paper is con-

cerned with forced convection around a sphere immer-

sed in a porous medium. Previous studies on forced

convection around a sphere in a porous medium have

been made by Sano3'`) and Cheng5). In references [3]

and [5], the steady-state convection around an isother-

mal sphere is considered and asymptotic solutions for

smal13) and large5) Peclet numbers are obtained, assum-

ing a Darcy flow for the velocity field. In reference

[4], on the other hand, asymptotic solution for small

Peclet number is obtained for unsteady forced convec-

tion around a sphere which is suddenly heated and,

subsequently, maintains a constant temperature over

the surface. No solutions for large Peclet number

have been obtained for unsteady forced convection

around a sphere.

  The purpose of the present paper is to give

asymptotic solution for large Peclet number for the

unsteasy forced convection problem around a sphere

immersed in a Darcy flow. As in reference [4], the

sphere is assumed to be suddenly heated and, subse-

quently, to maintain a constant temperature over the

surface.
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            2. GoverningEquations

  We assume that the superficial velocity of the flow

far upstream is uniform (== [h.) and that initially, the

surface of the sphere and the surroundings are at the

same temperature 7;,, whereupon at time T'==O the

surface temperature is suddenly changed to a constant

valUe 7}v. The energy equation governing the temper-

ature field around the sphere can be written in

non-dimensional form as

  fe(,O.` +u ,a,` +-;l- g,` )=v2t, (i)

  u=a-r-3) cose, v==--ll- (2+r-3) sine, (2)

  v2=÷, aa. (r2-ilaF-.)+.2,ii.o aae (sineaae), (3)

where non-dimensional quantities are defined as

      r' u' v' (%opfCf,
   r=%, u=u ca,V== ec.,T= 7bpcccT
                                           (4)
          t" 7;o kc                            - U:o?b
       t= 7},- 1}, ' cr = pLfcf' "Ple- a '

In the above equations, t' is the locally averaged tem-

perature, T' the time, (r', e, q) spherical coordinate

with r'=O at the center of the sphere and e==O in the

direction of uniform flow, u' and v' the superficial

velocity in r'- and e- directions, respectively, 7h the

radius of the sphere, pf and qf the density and specific

heat of the fluid, pc, cc and Ac the density, specific heat

and effective thermal conductivity of the saturated

porous medium.

  The non-dimensional initial and boundary conditions

are
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       T<O t=O,
                                           (5)
              t=1 at r=1
       T>O
              t-,bO as r.oo.

3. Asymptotic Solution for Large Peclet Number

 We shall now proceed to obtain asymptotic solution

of the energy equation (1) for large Peclet number. By

introducing the following variable

                                           (6)

Takao SANo and Kazuya MAKizoNo

     Y-Re"2 (r-1),

we can write Eq. (1) as

      aa.t +(3y+o(fe-'S')) 6ose oayt

--
;- (i+o(fe-6) sine ,aet = 8y2`,+o(fe-b.

In the limit Re.oo, Eq. (7) becomes

      aa.t +3ycose oOyt -gsine aaet = 8y2t,,

with

                    )     t=1 at Y=O

     t.O as Y.oo.

We now assume that

     t=t (op)

and

           Y
     "-6(e, T)'

considered to be proportional to the thickness

thermal boundary layer.

Eq. (9) may be written as

  ddop2t,+n ddopt (t ao6.2-362cose--2- sine ao6e2

In order that t is a function only of n, we

require that

 -ll- {2i(ST2 -3(s2cose--i- sine aa(eS2 =iB (constant).

This equation determines the unknown
6 (e, T).

ary condition

                    ,     l:8ktZ.=.% )

i
s

(7)

(8)

(9)

ao)

aD

where 6 is an unknown function of e and T and may be

                                       of the

                     In terms of Eqs. (10) and (11),

                                       )= o. a2)

                                      have to

                                           (13)

                                      function

        The solution of Eq. (12) satisfying the bound-

                                           ae

     t- e2 fz (/V[lltop). as)

  Equation (13) can be solved using the method of

characteristics. It is equivalent to a system of total

differential equations as

   dT de do2   -2- == -3sine -p+362 cose ' a6)

From this equation, we can easily obtain

   T=-g ln (tang)+c, a7)
and

   62="4 sinl,e (3cose-cos3 e+G), as)

where Ci and q are integral constants. From Eqs.

(17) and (18), we have the following general solution of

Eq. (13).

   62=-f41S!- sinl,e {3cose-cos3e

   +di (gr+ln (tang))}, ag)

where di denotes an arbitrary function. The require-

ment that 62=O when T=O gives,

   di an (tan g)) =cos3e-3cose. tzo)

Using the relation

         1-exp{2 ln tan (e/2)}
                             , (2D   cose=         1+exp{2 ln tan (e/2)}

we can determine the function ¢ (x) from Eq. (20) as

          1-exp (2x)                       1-exp (2x)
          1+exp (2x) {(1+exp (2.) )2-3}･ (22)   di (x)=

Thus, " has been determined completely and we have

                  3Re't2(r-1) sin2e
  t :e,fo
        2 2{3cose-cos3e+g6(-;- T+ln (tan -S-))}'

                                           (23)

It is seen that an arbitrary constant 6 disappears in Eq.

(23). For T.oo, Eq. (23) becomes

            3Re"2 (r-1) sin2e
                             , (24   t= e2 t2
          2V-2T{liE6gb=E6g5bZir3cosecoso+}

which agrees with the soluton given by Cheng5) for the

steady state.

                4. Discussion

  Figure 1 shows the isothermal lines for Pe=1000

calculated from the solutions obtained in the preceding

section. The isotherms are drawn for t=O.8, O.5, Q.3
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(d)
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Fig. 1

                         (e)

Isothermal lines for Pe=1000; (a)T=O.1, (b)T =O.6, (c)T==1.4, (d)T=1.8, (e)T.oo
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  Fig. 3 Timewise variation in the mean Nusselt number

and O.1. For T==O.1, isothermals are nearly concen-

tric, suggesting that the heat transfer process is

dominated mainly by conduction. As T increases,

isothermals begins to grow in the downstream direc-

tion owing to the effect of convection.

  The local Nusselt number defined by Nu =h4/lc,
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where h=-(X,1(Tt,- T;.))(aT'/ar')r･-fo is the heat

transfer coeficient, may be calculated from Eq. (23) as

                    lleii2 sin2e
  de
         2z{3cose-cos3e+di(gT+ln (tan -Ii-)} ' os)

For T.oo Eq. (25) becomes

              P?it2 sin2e
    Aliz=vi2;Tli-Esgii=ttgsism.{3,.,e,,,e+2}, e6)

which agrees with the steady-state result by Cheng5).

  Figure 2 shows the distribution of Altz1fe'i2 for sev-

eral value of T. It is seen that steady-state distribu-

tion is almost achieved at T =1, especially at the front

side of the sphere.

  Figure 3 shows the relation between IVizav and T,

where IVbeav is the mean Nusselt number averaged over

the surface and is calculated numerically from the

relation

    iviz..= -lir 1]rAibe sinede. on)

For comparison, the conduction solution is also shown

in the figure. It is seen that ATizav decreases monoto-

nously to its steady value as T increases: no oscillatory

behavior can be found in the transient process.

Furthermore, it is seen that, for TSO.2, the present

result almost agrees with the conduction solution and,

as T increases, the difference between them becomes

larger. This result is consistant with that obtained.

previously from Fig. 1.
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