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  This paper presents the studies aimed to improve the convergence characteristics of blind equaliza-

tion. The blind equalizer which uses gradient algorithm to minimize nonlinear cost function nor-

mally has much slower convergence than the conventional adaptive equalizer which is based on MSE

criterion. Moreover, it may converge to undesirable equilibrium unless its parameters are appropri-

ately initialized. To cope with ill-conditioned channel situation which is the main reason for slow

convergence in gradient algorithm, we apply orthogonalization to the channel and then use the
mechanism of blind equalization to update the tap coefficients of the orthogonal signals. Further-
more we derived the condition for solving the lattice tap gain, using higher order cumulant. This
result leads ' to an approximate solution of the blind equalizer and is used to setup the initial

parameters. The significapt improvement of convergence properties is demonstrated by computer

simulation.

                1. Introduetion

  The adaptive equalization techniques based on

minimizing mean square errors have been well under-

stood and widely applied to digital communication

systems. Normally the system that uses this kind of

algorithms requires an initial training sequence during

the setup period. After the equalizer achieves con-

verge, the training sequence is replaced by the received

data under the assumption that incorrect decisions are

negligible. However there are some applications

where the mechanism of establishing equalization

without training data, or the so called blind equaliza-

tion, is expected2).

  The pioneering research on blind equalization was

carried out by Sato who proposed the first equalizer

for PAM data transmission'). Sato's work was late

generalized in [2] [3] [4] for QAM comrnunication

systems. recently, many studies emphasize on analyz-

ing the convergence properties of blind equalization9･iO).

  The blind equalizers we mentioned here share the

common feature that some modified cost functions

related to higher (or lower) order statistics of channel

output are employed, because the second order statis-

tics of the channel output does not carry complete

phase information if the input is not accessible.

Because of the nature of nonlinear optimization, these
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algorithms are essentially associated with two prob-

lems. One is the possibility of being trapped into local

minima, and another is the much lower convergence

speed than conventional equalizers. There have been

some studies on exploring the conditions of undesirable

equilibria, but much less has been done on the issue of

accelerating the convergence speed, which is very

crucial in practice because the blind equalization algor-

ithms might be too slow to be applied. Another cate-

gory of blind equalization makes use of the technique

of higher order statistics (or cumulants) which has

received extensive attention in recent years in the

fields of system identification, spectrum analysis and

channel equalization. Unlike correlation function,

higher order cumulants do carry both amplitude and

phase information when the system is driven by in-

dependent, identical, distributed (IID) non-Gaussian

input. Two excellent reviews in this subject can be

found in [5] [6]. Cumulants based equalization was

investigated in [7] [8] [11], however the increased

amount of computation is quite considerable.

  In this paper we present an approach aimed to

improve the convergence properties of blind equalizers,

using signal orthogonalization and higher order statis-

tics. The channel amplitude is equalized by orth-

ogonal conversion, and then the phase characteristics

is equalized under the same criterion as normal blind

algorithms. To avoid local minima and to accelerate

the convergence further, cross-cumulant is used to
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initialize the

              2. Blind Equalization

  In our studies we use the system model depicted in

Fig, 1, where x(t) represents the transmitted data,

H(w) indicated the channel transfer function to be

equalized, N(t) is received signal from the channel and

z(t) expresses the output of the equalizer. Thus, the

problem of blind equalization is described as to build

the inverse channel transfer function G(w) up to a

linear phase shift, or equivalently to recover the the

transmitted data with a fixed delay, where the knowl-

edge of input data x (t) should not be required except

to make sure that x(t) is non-Gaussian. (There is no

solution to the problem if x(t) is Gaussian, unless H(w)

is a minimum phase system.) The sufficient condition

for constructing the blind equalizer G(w) is proved in

[3], i.e. the equalizer's output 2(t) will recover a

delayed version of x(t) if the distribution of z(t) is

made consistent with that of x(t). Therefore the cost

function of equalization can be defined as

  1(G)=E{th[2(4 G)}= f th(z)P(z, G)de (1)

where P(2, G) is is distribution density of 2(t). It is

expected that the cost function J(G) achieve the global

minima when 2(t) admits the distribution of x(t).

Gradient algorittms are commonly used to minimize

the cost function. When the FIR filter is employed as

the equalizer, i.e. z(t)= GTY, where 7=(y(t), N(t-

1),･･････, y(t-N+1)', and G= (gb, g,･･････, gN-i)T, the

equalizer's coefficients are updated according to

    ,ab.i --E(th' a,Zh'))==E[ey] (2)

    G(n+1)=G(n)-pteY (3)
where e(t G)= th' is also referred as to pseudo-error

signal with respect to that in MSE algorithm. The

first blind equalization for PAM systems was studied

by Sato who defined the cost function as
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coefficients of blind equalizers.

                                         J(G)=E{-llz2(t)-a

       .

x(t)
H(w)

                     l z(t) l } a- Eiiill .X(S`)) II2]

This cost function only needs the first and second order

statistics of 2(t) and leads to very simple algorithm:

  G(n+1)=G(n)-#{z(t)-a sign[2(t)]}7 (4)

It has been proved that Sato cost function has the only

global minima at G(w)=H-'(w) when x(t) is
sub-Gaussian3).

3. Blind Equalization Based on Signal Orthogonal-

   ization

  The convergence speed of blind equalizers is mainly

･dominated by correlation rnatrices of channels. The

equalization algorithm converges very slowly when the

correlation matrix is ill-conditioned, i.e. the largest

eigenvalue is much greater than the smallest one.

This may happen if the channel is modeled as a

lowpass filter.

  To cope with the channel conditions, we apply the

principle of blind equalization to a set of orthogonal

signals instead of the channel output, as shown in Fig.

2. In the figure, the channel output y(t) is converted

into a set of base components V=(vi(t), v2(t),･･････,

vN-i(t))T by signal orthogonalization. The base sig-

nal V is of the property that its elements are orth-

ogonal between each other, or

       E[ VV']=all (5)
while I is unit matrix and o:.=E[lx(t)I2]. The

orthogonalization can be implemented by lattice filter

with well-known Levinson-Durbin algorithmi2}

  In this scheme of blind equalizers, the orthogonaliza-

tion essentially equalizes the amplitude characteristics

of the channel. This procedure only required the

y(t)
G(w)

Z(t)

E[¢(･)]

Fig. 1 Blind equalization

.T(t)

H(w)

y(t)
Orthogonalization

VOVI･･･VN-1
WOWI･･･WN-1
+--- +

z(t

Fig. 2 Channel equalization using signal

      orthogonalization
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second order statistics of y(t) and its convergence is

independent on the the channel situation. The overall

phase characterizers is equalized by adjusting the tap

gain M, using nonlinear optimization techniques.

  Since the orthogonalization is a linear conversion,

the condition for recovering x(t), as we mentioned

before, remains valid. The cost functionJ( PV) can be

adopted. Thus the algorithm of updating is given by

      1( rv) == E{ th [2(t M)]} =E[th' V] (6)

    rv(n+1)= M(n)-pt th' V (7)
For Sato cost function we have

      1( or)=E{-l}-22(t)-a l z(tX } (s)

             '
    M(n+1)== PV(n)+pt{2(t)-a sign[z(t)] V (9)

For constant modulus (CM) criterion, the algorithm is

expressed as

      J( M) == tE{[I 2(t) l2-P]2} (lo)

    M(n+1) = PV(n)+"y(t)[ l z(t) 12-P] V (11)

where P =E I x(t) 1`/E I x(t) l2.

4. Initializing the Blind Equalizer Using Cross-

   Cumulant
  The blind equalization that minimizes a nonlinear

cost function always faces the problem of local min-

ima. The analysis on the existence of undesirable

equilibria is presented in [9]. To avoid the local

optimization, the equa!izer must be set initially close to

                                          .the true solution. Now we will derive an approximate

solution for the blind equalizer's coefficients M based

on the higher order statistics. The equalizer is first

initialized by the approximate result, then switches to

the gradient algorithm to obtain more precise solution.

  For communication systems the transmitted data

are reasonably regarded as symmetric IID sequence.

Thus 4th-order cumulant of y(t) is appropriately cho-

sen for blind identification and blind equalization,

which is defined as

  CS`) (Ti,Tla,Tb) = MS`) (Ti,Tle,Tb)- 21y(Ti)i3,(Q- Th)

               - 73,(th)ily(Ti - th)- 71y(Tla)T5,(Ti - th)

                                            (12)

where mS`)(ri,T!i,Tla)=E[y(t)y(t+Ti)y(t+zi)Y(t+Th)] iS

the 4th-order rnoment and r(r) is the correlation func-

 tion. For the details of the properties of 4th-order

 cumulant and its application, see [5] [6].
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  Similarly, in our studies we define the 4th-order

cross-cumulant of orthogonal signal vi(t) as

  si,J=E[vg･(t)qi(t)]-3E[tti(t)tL,(t)]E[v2(t)] (13)

Under the assumptions that x(t) is IID non-Gaussian,

V is the orthogonal signal vector established from

x(t), and the system is free from additive noise (Theo-

retically Gaussian additive noise does not affect the

estimates obtained from higher order cumulants5) the

relation between the equalizer's coefficients and

4th-order cross-cumulant, which is given by

     So,o So,o "' So,N-1 Wo
     Sb,1 So,1 "' Sl,N-1 Wl

    SN-1 SN-1,O .･･ SN-1,N-1 WN-1

  == 7Cx wf (14)
        W£-1

The proof of the equation is given in Appendix. Since

solving this nonlinear equation system is a quite deli-

cate task, we will only explore the approximate solu-

tion of M.

  Let us examine (14). If there is an element in JV,

for example wh, which is dominant over others, i.e.

 1 wk l > 1 ztts1 for all 1'= fe, then this dominant coeffi-

cient will be greatly enhanced in M3=(zvg, w?,････t･, w3

N-i)T. In the other words, it is likely quite possible

that 1w2l>lwi-l in W3. Thus M3 would be
almost determined only by w2, and an approximate

solution to (14) could be obtained by setting all w,･ zero

except wk==1, i.e. JV3 U(O,･･･,1,･･･,O)T. Therefore the

coefficients M is calculated approximately from a

linear equation system. This approximate result will

be used to initialize the coefficients of blind equalizers.

                 5. Sirnulation

  Computer simulation of the proposed blind equaliza-

tion algoritkms with Sato cost function is carried out

for two channels Hl(bl) and M(w). The equivalent

models of channels are specified by lowpass and ban-

dpass filters depicted in Fig. 3 respectively. Both

channels are non-minimum systems, and eye patterns

are completely closed. Hl(w) is ill-conditioned in the

sense of eigenvalue ratio, or Zmax/Amin=13.4, when
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Channel characteristics of lHl(w)l and
l ra(w) l･

1

Ar=5. For H>(Q)) the ratio is Amax/Zmin=4.2. The

transmitted data x(t) is 8-level PAM sequence. The

signal to noise ratio of channel output is set to SIVR ==

20clB. The intersymbol interference of overall system

o(t) including channel and equalizer is measured

according to

    lsl=lo ･ log ( 2",M, 2(i) ) ok=mf x{o(i)}

  The convergence curves of equalization algorithms

are shown in Fig. 4. To achieve the convergence level

of ISI =-20dB for channel Hl(w), the standard Sato

algorithm expressed by (4) takes as many as 30,OOO

symbols, while the orthogonal algorithm reduces the

number to 8,OOO. The approximate solution from 4th-

order cumulant has more rapid convergence, but it is

unable to suppress ISI to lower than -15dB. How-

ever if we use the cumulant solution obtained during

o
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solution; d) Orthogonal algorithm initialized by

cumulant solution
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            Symbols
              (b)

Mean square error in dB for orthogonal algorith-
ms. a) without initialization; b) with initialization

by higher order statistics
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the first 500 samples to initialize orthogonal algorithm,

the convergence can be achieved within 3,OOO symbols.

Similar results are obtained for channel ca(o), except

S.ato algorithm works better than previous case

because the channel condition of Hl(bl) is much worse.

Fig. 5 depicts the MSE of equalizer output for orth-

ogonal algorithms with and without initialization by

higher order statistic method. The convergence looks

faster if it is judged according to MSE rather than ISI.

Orthogonalization and Higher

                 6. Conclusion

  We have investigated in this paper an approach of

blind equalization. Training sequence is not required

in the method. Special efforts were made to improve

the the convergence properties of the equalizers by

using the techniques of signal orthogonalization and

higher order cumulants. Sato cost function was used

to demonstrate the improved convergence. The

computational complexity of the algorithn is consider-

able less than that in [11], in which the equalizer is

built fully based on 4th-order cumulant. Generally,

the estimation based on higher order statistics is of

larger deviation, This is also observed in the simula-

tion. Therefore the cumulant solution might be par-

ticular suitable for initializing the equalizer rather

than solving it. It is not always necessary that the

channel be equalized completely by blind a!gorithms.

When the eye patterns become partially opening, the

conventional adaptive algorithms are often able to

converge faster. In our simulation cases, we can also

switch the equalizer directly to MSE algorithm after

its parameters are initialized by the higher order statis-

tics method.

                   Appendix

  Since the orthogonal conversion is linear, the

impulse response for each orthogonal signal vi(t) can

be written as

          co
    vi(t)= 2 qi(n)x(t-n) (15)
         n=-co

The output of equalizer is the combination of vi(t), i.e.

        N-1
    z(t)=2wivi(t) (16)
         i--o

The mean square error of the equalizer is expressed as
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  MSE =E[1z(t)-x(t-d) I2] =

       E[ :t:,iwivi(t)-x(t-d) 2] a7)

where d is a fixed, arbitrary delay. Although MSE is

not measurable due to unknown x(t) in blind equaliza-

tion, it must be actually minimized by the equalizer.

It is easy to find that minimizing (17) leads to the

solution of

   N-1
    2 wiE [vi(t) zLi(t)] -E [x(t- d) qi(t)],

    i--o

         1'=O,･･･,N-1 (18)
Using (5) and (15), we can obtain

    wJ=qi(d), 7'=O,･･･,IV-1 (lg)

Furthermore, if perfect equalization is achieved, the

impulse response of overall system will admit a

6-function Thatmeans

   N-1
    2wiqi(t)= 6(t- d) (20)
    i--o

  The 4th-order cross-cumulant of the orthogonal in

the studies is defined in (13). It is not difficult to

deduce that

           oo
    si,i-- o,be 2 q3i(t)q(t) (21)
         n=-co

where ybe=E[x`(t)]. Multiply (21) by wj and take

summary with respect to index i, we have

   N-1 co N-1    2si,jzqi= vbc 2 ql･(t)2wiqi(t) (22)
    i=o n=-co i=O
Substituting (19) and (20) into (22), this relation can be

rewritten as

    N-1 oo    2 si,itqi= ybe 2 q?<t)6(t-d)= ),beq?(d) = x.w?･ (23)

    i=O n=-co ･
Rewrite (23) in matrix form, we obtain the equation

(14).
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