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      Image guides are widely used in industry today. Especially pure-silica-core
    image guides are becoming increasingly popular in nuclear environments, where
    its superior radiation resistivity allows remote visual inspection. Therefore, we
    have been studying to increase the radiation resistivity of pure-silica-core image
    guides. The radiation resistivity is mainly determined by the core material, and
    generally, OH-doped cores are considered to be the best. However, our experi-
    ments revealed that F-doped, OH-free cores had better radiation resistivity than
    OH-doped cores. We performed the intermittent 60Co-gamma-ray irradiation test
    in which irradiation recovery phases were repeated three times. The results
    were compared with results from the continuous irradiation test. Four kinds of
    pure-silica-core image guide samples, using F, F+OH, OH and CI+OH doped
    cores, were tested under four different dose rates. The results clearly revealed
    that the F-doped core was the most superior. At any dose rate and total dose,
    the superiority of core dopant was in the order F>F+OH>OH>CI+OH.

                               1. Introduction ･

  There are a number of reports on how the dopant of a core affects the radiation

resistivity of optical silica fibers.i)'2) According to these reports, OH-doped, Cl-free

core fibers have excellent resistivity.3)'`) In contrast to these reports, our study on

ways to improve radiation resistivity revealed that the resistivity of image guides

using F-doped, OH-free cores were much better.S) We have discovered that F yields

better radiation resistivity than OH which has been known for its ability to suppress

radiation deterioration. We have already reported the effects that F, Cl and OH have

on the radiation resistivity of irnage guides during 50 hours of continuous irradia-

tion.6) Therefore, using the sam samples F, OH, Cl+OH and F+OH as before, we per-

formed three intermittent irradiations, and then compared the results with that of a

continuous irradiation.
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                             2. Experiments

2.1 Samples
  The pure-silica-core image guide is composed of multiple glass fibers each having a

three-layer preform structure, as shown in Fig.1 (a). Each fiber is arranged precisely

in a silica tube then bundled and drawn into fused image guides. This forms what is

called the multiple fiber image guide, in which the glass fibers (pixels) are united

with each other. The pixels in our image guides are beautifully arranged as shown in

Fig.1(b). The core of image guides has the greatest influence on the radiation resis-

tivity. The five samples, A, B, C, D and E listed in Table 1 were selected on the

basis of our previous experimental results. All of the samples have a support layer

which consists of a synthetic silica material. The image guides each contain 3,OOO

pixels.
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     Fig. 1 (a): Preform structure and (b): magnified cross-section of image guide.

                Table 1 Image guide samples for irradiation tests

Corematerial

Sample CIcontent
(ppm)

OHcontent
(ppm)

Fcontent
(ppm)

Preform

structure

Numberof.

plcture
elements

A Free Free
3
5
0
0
'

B Free Free
4
5
0
0
'

C Free 750 Free
Three

-layer
3,OOO

D 1,700 30 Free

E Free '100 1,500
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2.2 Irradiation test

  The irradiation test was performed as shown in Fig.2, using a 60Co radiation source.

The white light source was connected to one end and the Iight output power from the

other end was measured between the wavelength of 400m700nm by a spectroscope.
Radiation induced losses were calculated from the difference of light output power be-

fore and after the irradiation.

  Table 2 shows the irradiation test conditions for pure-silica-core image guides. At a

constant dose rate, irradiation was repeated three times with intervals in between.

  The length of the intervals was made long enough for the samples to recover before

next irradiation.

   Personal computer

lmageguide

DatacontrollerWavelengthPhoto-detectorSpectroscope
controller

lmageguide

Co6o

          Light source (VVhite)

                               Wall

 Fig. 2 Irradiation test diagram.

Table 2 Irradiation test conditions

Dose
rate

(Clng･h)

Consecutive
irradiated
timeinthe
firsttest

(hrs)

Intermission
betweenthe
firsttestand
thesecondtest

(hrs)

Consecutive
irradiated
timeinthe
seconttest

(hrs)

Intermission
betweenthe
secondtestand
thethirdtest

(hrs)

Consecutive
irradiated
timeinthe
thirdtest

(hrs)

5.16

2×lo4
R!h

50 1,300
50

(total100) 650 74
(total174)

5.16×10
2×lo5
Rlh

50
1
3
0
0
'

50
(total100) 650 74

(total174)

1.29×lo2
2×105
Rlh

26 1,250
50

(total76) 650
74

(total150)

2.58×lo2
2×106
Rlh

26 1,250 50
(total76) 650 74

(total150)
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                            '
                                3. Results

3. 1 Core material dependence of radiation-indueed losses

  Using the samples shown ih Table 1, the irradiation tests were performed under four

different dose rates. The induced loss vs. wavelength characteristics showed similar

movements in all of the image guides, regardless of the dose rates. Therefore, in this

report, we focus only on the 5.16×10C/(kg.h) dose rate, and discuss the induced loss
vs. wavelength characteristics. Figs.3(a)-3(b), Figs.4(a)-4(c), and Figs.5(a)-5(c)

show the changes made during the three repeated irradiations and the recovery
periods. The order of radiation resistivity superiority during repeated irradiation is A,

B, E, C and D. From this order, it is obvious that both samples A and B which are

only doped with F, are superior to the rest. Next in order is sample E, and it is

also obvious that the sample has the characteristics of both F and OH. Between the

400-500 nm range, sample D suffers an extremely high radiation-induced loss com-

pared to sample C, thus indicating that sample C is superior to sample D in the

whole visible wavelengths. Samples C and E which have OH-doped cores, have absorp-

tion peaks at about 480 nm and 600 nm wavelengths. These results demonstrate the

importance of core materials in pure silica image guides on resisting radiation. From

Figs. 3-5, we can compare the movement of the induced loss during irradiation and
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during the recovery period affer irradiation. During all three repeated irradiations,

the radiation resistivity of sample D image guide, which uses a Cl-doped core, is much

weaker than the samples with F-doped cores. However, sample D shows rapid recov-

ery after irradiation, the induced loss being almost the same as samples A and B

which uses F-doped cores. Nevertheless, affer the first recovery period, rapid deteriora-

tion was observed at the beginning of the second irradiation, reaching the induced loss

value observed at the end of the first irradiation in a short time. Apart from sam-

ple D which is Cl-rich, other samples showed a small recovery after irradiation.

3. 2 Evaluation by average visual radiation-induced loss at visible wavelength

  Image guides are used for remote visual observation, and are intended to be used,

either directly or indirectly, by human eyes. With this in mind, we considered more

praetical methods to evaluate the radiation resistivity especially for image guides,

rather than methods used for optical fibers which only evaluate the induced loss vs.

wavelength relations.

  Therefore, we introduce a calculation combining the spectral luminous efficiency,

shown in Fig.6, and the prevailing induced loss vs. wavelength characteristic. This

method, which uses L (average visual radiation-induced loss) of visible wavelengths

perceived by the human eye, enables a practical evaluation of degradation in picture

quality caused by irradiation.') The output power vs. wavelength characteristic is cali-

brated in terms of the spectral luminous efficiency using a basic induced loss vs. wave-

length characteristic, in the case of sample A of Fig.3(a), This is shown in Fig.7

along with the condition before irradiation (initial). The average visual radiation-in-

duced loss L in the whole range of visible wavelengths with respect to spectral lumi-

nous efficiency is calculated by,

>o=o
--o-.
---..

o
m=o
.E
E
e
re
.L
oogco

Ae
v>

'l .O

o

     400 500 700
           Wavelength (nm)

Fig. 6 Spectral luminous efficiency curve.
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shown in Figs.8, 9, 10 and

  The results are

  1) The superiority for

5.16 Cl(kg.h) (2×10`R!h)

materials A>B>E>D>C.
OH>OH.
  2) At the dose rates of

lh) the superiority order

Therefore, the superiority

  3) As indicated in 1)

pending on the dose rate.

Cldoped cores tend to

  4) Image guides with

Dose rate : 5A6×10 CAicg･t){2×105Rlh}
lbtal dose :(!)lnitial

             @2.58×103C/kg oo7R)
trradiated length :sm

Output power ratio

considering spectral

luminous

efficiency e54.1%

(D lnitial

     /

@2.58×lo3c/kg
    (107R)

         400 500 600 700
                   Wavelength (nm)

       power transferred by spectral luminous efficiency.

                                              '
        length of the image guide (m). The smaller the value of

     deterioration in the image guide. On the other hand, as L be-

deterioration also becomes greater. Under the conditions of Table2,

    test was repeated three times. We plotted the data from this

      dicates the total irradiation time on the x-axis, and the aver-

       obtained from formula (1) on the y-axis. The results are

        11 according to dose rates.

summarized below.

      the radiation resistivity of image guides at the dose rates of

        and 5.16×10C/(kg.h) (2×105R/h) is in the order of core
        Therefore, the order of the core dopant is F>F+OH>CI+

                                                          '
       1.29×102Cl(kg･h)(5×105R/h) and 2.58×102Cl(kg.h) (1×106R
        of core materials in image guides is, A>B>E>C>D.
       order of the core dopant is F>F+OH>OH>CI+OH.
     and 2), radiation resistivity of samples C ahd D differs de-

        This is accounted for by the fact that image guides with

    recover rapidly after irradiation.

      F-doped cores have far superior radiation resistivity at any
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dose rate. Moreover, at dose rates above 5.16×102Cl(Kg'h)(2×105R/h), or as the
dose rate becomes higher, the superiority of the radiation resistivity of F-doped cores

becomes more pronounced.

  5) Sample D which uses a CI-doped core, shows much more deterioration than those

using F-doped cores, but as noted in 3), the sample shows rapid recovery after irradi-

ation at any dose rate. On the other hand, image guide samples C and E which use

OH-doped cores, show a small recovery after irradiation.

  6) Judging solely from the average induced loss, repeatedly irradiated samples quick-

ly reach the final deterioration level of the preceding irradiation. In other words, if

the total irradiation time is the same, the radiation resistivity for repeated irradia-

tion tests with time for recovery and that for continuous irradiation tests are about

the same.

  We conclude that the relation between L(dB/m) and T(hrs), as shown in Figs.8-

11,is not affected by irradiation methods, continuous or repeated irradiation. There-

fore, the relation can be described by a formula }ogL==a'logT+b. The constants a

and b for each dose rate of core A are obtained by applying the least squares method.

The results are as follows.

    dose rate 5.16C/(kg'h) :logL=O.2211ogT-1.402 (2)

    dose rate 5.16×10C/(kg.h) :logL=O.1621ogT-O.623 (3)

    dose rate l.29×102 Cl(Kg'h) : logL=O.1951ogT-O.558 (4)

    dose rate 2.58×102Cl(kg.h) :logL=O.2011ogT-O.436 (5)
                                                                         '
     tFrom the above equations, the value of L, during longer irradiation time can be pre-

dicted by extrapolation.

3.3 Radiation-induced defects in silica glass

  Using samples A, B, C, D and E, we performed ESR spectroscopy to identify de-

fects in the silica glass before and afer irradiation (2.58×10Cl(kg'h)×50h), The resu-
lts are shown in Table 3.8' For E' (ESi") and NBOHC (i!iiSi-Oe), we measured the spin

density per unit weight, but the PORC (EESi-O-O") generation was so small that we

have only indicated whether it was present or not. Before irradiation, neither NBOHC

nor PORC could be detected in any of the core materials. Table 3 shows that of the
defects caused by irradiation; E' is the largest in value. The spin density of E' is the

largest in core material D, and then C. This shows good agreement with the radia-

tion resistivity characteristics we have already determined. Table 3 also shows that

the generation of NBOHC has relations with the presence of OH. It is believed that

NBOHC is produced by the following reaction:

    iiEisi-o-H - (si-oe)+He.
Additionally, it has been reported that the absorption at wavelengths between 600-

630nm is caused by NBOHC.9)
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                Table 3 Results of ESR measurement

Initial
Aftertheirradiationtest

[2.58×102Clkg.h(1×10SR/h)×50h]Core

Material
Spindensity
ofE'(Si')

(spinslg)

Spindensity
ofE'(Si')

(spins/g)

Spindensity
ofNBOHC(Si-O')

(spinslg)

Presenceof
PORC(Si-O-O')

A 4.3×loi3 5.1×loi5 6.1×lon no

B 4.4×loi3 7.0×lois 2.4×loi3 no

C × 1.3×lois 4.4×loi4 yes

D 5.9×loi3 9.7×loi6 7.7×10i3 no

E 3.1×lois 7.9×loi3 yes

                                × Below the limit of inspection (<1.8×10")

 However, considering the movements of the irradiation induced loss shown in Figs. 3

(a)-5(c), it can be assumed that the absorption around 480nm, which is closely rela-

ted to the presence of OH, may also be attributed to the presence of NBOHC.

  It is obvious that the radiation resistivity is closely related to radiation defects E

and NBOHC in the glass.

                              4. Conclusion

  The results of intermittent irradiation tests were identical to the continuous irradi-

ation tests, in that the image guides with F-doped core showed most superior resisti-

vity at all the four dose rates. The same results were obtained from the induced loss

characteristics and also from the average visual radiation-induced loss at visible wave-

lengths.

  The induced loss quickly reached the final deterioration Ievel of the preceding irradi-

ation. Therefore, we can assume that for the same dose rate, the deterioration caused

by irradiation is basically affected by the total irradiation time and that the recovety

process does not affect it. However, even though image guides using Cl-doped cores

deteriorate far more than F-doped core materials, they tend to recover quickly after

irradiation at any dose rate. This is the reason why image guides using Cl-doped

cores showed only slightly more deterioration under continuous irradiation compared

to intermittent irradiation.

 From the relation between the defects produced in silica glass by irradiation and the

induced loss, it is clear that E' and NBOHC have a large influence on the radiation

resistivity. F-doped cores which have far more superior radiation resistivity, have a

much smaller spin density value of E' and NBOHC celused by irradiation than OH-dop-

ed and Cl-doped cores.
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