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Electron and photon reflection ratios (in number and energy) for ab-
sorbers bombarded by electrons have been computed with the ITS Monte
Carlo system version 3, and results are given in the form of tables. Elec-
trons of energies from 0.1 to 100 MeV have been assumed normally inci-
dent on an effectively semi-infinite absorber. The absorbers considered are
elemental solids of atomic numbers from 4 to 92 (Be, C, Al, Cu, Ag, Au
and U). An empirical equation for the electron number-reflection ratio
has been formulated, by least-squares fit to experimental data collected
from literature. Values of parameters derived from the Monte Carlo data
on photon number- and energy-reflection ratios are graphically presented.

1. Introduction

When fast electrons impinge on a solid absorber, some of them leave it from
the incident surface. Some of bremsstrahlung photons generated in the absorber
also emerge from the surface. We call these phenomena “reflection” of electrons
and photons. Knowledge on reflection is important in the use and measurement
of electron beams, especially in dose evaluation in electron-beam processing. An
example is given by the semiempirical algorithm developed by Tabata and Ito'?
to calculate the depth-dose distribution of electrons in multilayer absorbers.
This algorithm gives good estimates of doses, comparable to Monte Carlo calcu-
lation®, on the assumption that the effect on the dose of the presence of a dif-
ferent material-layer is mainly caused by the difference in electron reflection
through boundaries between media.

For a quantitative description of reflection, the following parameters are used:
(1) The electron number-reflection ratio %~ defined as the number of reflected

electrons per incident electron.

(2) The electron energy-reflection ratio 7.z defined as the ratio of the sum to-
tal of the energy of reflected electrons to the sum total of incident-electron
energy.

(3) The phonton number-reflection ratio 7.x defined as the number of reflected
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photons per incident electron.

(4) The photon energy-reflection ratio %.g defined as the ratio of the sum total
of the energy of reflected photons to the sum total of incident-electron ener-
gy.

The ratio 7en is commonly called the backscattering coefficient of electrons, and

has been studied extensively up to the incident-electron energy of 22 MeV. How-

ever, data on the other three reflection ratios have been quite scarce.

We have computed the four reflection ratios for electrons with initial energies
from 0.1 to 100 MeV incident on elemental solid absorbers. A brief account of
results was given in a previous paper”. In the present paper, numerical data are
presented for completeness. An empirical equation for 7.~ and parameters de-
rived from 7,n and 7. are also given.

2. Method

The computation of the reflection ratios has been made with the Integrated
TIGER Series (ITS) Monte-Carlo system version 3 (Halbleib et al.®). Plane-paral-
lel electron beams have been assumed to be normally incident on an effectively
semi-infinite absorber. The absorber materials considered are Be, C, Al, Cu, Ag,
Au and U. The number of primary-electron histories simulated has been 10°.
The transport of all generations of electrons has been followed down to a cut-
off energy, which is the minimum of 5% of the initial energy and 0.5 MeV.
Photon transport has been simulated down to 10 keV (for more details, see
Andreo et al.®).

The formulation of the empirical equation for 7.v has been made by least-
squares fit to a total of 1093 experimental data points collected in the energy
region from 1 keV to 22 MeV. The functional form of the equation used is a
modification of the empirical equation of Tabata et al.”

3. Results and Discussion

Values of the reflection ratios 7e.~, %es, 7pn and 7pe obtained from the out-
put of the Monte Carlo calculation are given in Table 1.

In Fig. 1 values of 7. obtained with ITS are shown along with experimental
data. The experimental data have been taken from the references cited by
Tabata et al.” and from additional papers by Bishop”, Bronshtein and Denisov®,
Drescher et al.*®, Hunger and Kiichler'® and Neubert and Rogaschewski®. Curves
represent the empirical equation obtained.

The empirical equation is yet tentative; it is given by
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Fig.1 Electron number-reflection ratio 7eN, (a) absorbers of atomic number
Z=4-13. (b) Z=29-92.
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nen=a1/{ zo2[1+(as/ 7o)] [14+( 7o/ as)% 2]}, (1)
where
a1 =b1+bz expl —(bs/Z)?] (2)
az=bs/[1+(Z/ be)?7] (3)
as=bg/[ 1+ (be/Z)"10] 4)
as=bn (5)
as=b127b13 (6)
as=bi+bis/ L1+ (b1e/ Z)P17] (7)

7y 1s the incident electron energy in units of the rest energy of the electron, Z
is the atomic number of absorber material, and the symbols & (i=1, 2, ...17) de-
note adjustable coefficients. Values of b; determined by the least-squares fit
mentioned in the previous section are given in Table 2. Equation (1) has two
factors, 1/z¢?and 1/[1+(as/z9)%], that were not included in the previous equa-
tion”. These factors express the behavior of 7.y at lower energies for lower
and higher Z absorbers. Thus the lower limit to the applicable energy-region has
been extended from about 50 keV of the previous equation to about 1 keV. The
root-mean-square deviation of the experimental data from the equation is 5.6%.

Table. 2 Values of adjustable coefficients &; (i=1, 2, -+, 17) in
the empirical equation for the electron number-reflec-

tion ratio.
Coefficient Value

b 9.41%x1073
by 1.132

b3 57.1

by 0.579

bs 3.47

be 0.163

br 0.833

bs 7.30x10°¢
b 58.5

b1 5.14

bu 0.574

b1z 1.43

bis 0. 447

b 1.108

bis 0.417

bis 13.0

b1 1.76x10%
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In addition to 7y~ and 7pe, the following parameters are of interest in rela-

tion to photon reflection:

(1) The average energy T, of reflected photons.

(2) The sum total X7} of the photon energy reflected per incident electron.

(3) The reflected photon-energy R, per sum total of the energy given to photons.
The parameter T, is given by ( %ge/%en)To, where Ty is the incident electron en-
ergy; XT, is given by 7n.eTo; and R, is given by %.e/Y, where Y is the radia-
tion yeild, i.e., the fraction of the initial energy of an electron that is converted
to bremsstrahlung energy as the electron slows down to rest.

In Figs. 2—-4, the above three parameters are plotted as a function of the inci-
dent-electron energy. The values of the radiation yield used have been taken
from ICRU Report 37 (Ref. 13). In Fig. 3 the Monte Carlo results of Lockwood
et al' and the empirical equation reported in our previous paper” are also plot-
ted. The results of Lockwood et al. were obtained with a previous version of
the TIGER code.

Figure 2 indicates that 7, increases with increasing incident-electron energy,
and reaches an almost constant value, which ranges from 0.08 keV to 1.5 MeV
depending on Z. The parameter T, also increases with increasing incident-elec-
tron energy, and does not reach a saturation at the highest energy of 100 MeV,
as can be seen from Fig. 3. Such behavior of 7, and ZT, contrasts with the be-
havior of the photon energy-reflection ratio %,g, which shows a maximum a-
round the incident-electron energy of 10 MeV as can be seen from Table 1 and
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Fig. 2 Average energy T, of reflected photons.
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Fig. 4 of Ref. 4.

From Fig. 4 we see that R, takes on an almost constant value of about 20%
at the lowest energies, and starts to show a rapid decrease with increasing inci-
dent-electron energy at an intermediate energy.

A final report on the empirical equation for the electron number-reflection ra-
tio 7.n will be given elsewhere.
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