

学術情報リポジトリ

PIXE Analysis on Desorption of Elements from Coastal Sediments

メタデータ	言語: eng
	出版者:
	公開日: 2010-04-06
	キーワード (Ja):
	キーワード (En):
	作成者: Matsuda, Yatsuka, Ishiyama, Toshio, Ito, Norio,
	Kiyoda, Shunji
	メールアドレス:
	所属:
URL	https://doi.org/10.24729/00008384

Bulletin of University of Osaka Prefecture Vol. 41, No. 2, 1993, pp.89-102.

PIXE Analysis on Desorption of Elements from Coastal Sediments

Yatsuka Matsuda*, Toshio Ishiyama*, Norio Ito* and Shunji Kiyoda*

(Received October 15, 1992)

Coastal sedimental elements were desorbed with ultrapure water, artificial seawater, 0.2M (NH₄)₂C₂O₄, 1M CH₃COONH₄, 0.01M EDTA • 2Na, 1N HCl and 6N HCl, independently. Fluid volume to sediment weight ratio was 28ml/g for batch systems. Extraction by 10 minutes stirring per day were done for 8 to 16 days. 56 μ 1 of extracted fluid was dropped on Kimfoil to make a target. Beam bombardment was done with a cyclotron using a 4.5 MeV proton energy. For a typical sample, the maximum concentration of Fe seen in the samples was obtained by extraction with 6NHC1 (7.6mg/g). In comparison, the concentration of Fe observed after extraction with ultrapure water, artificial seawater, and 1M ammonium acetate were essentially zero. However, the amounts seen with 0.01M EDTA • 2Na and 0.2M ammonium oxalate were high as 18% and 9.5% of the 6N HCl value, respectively. About the extraction with EDTA having most excellent characteristics of chelate agent, alkali earth elements, Mg²⁺ and Ca²⁺ were detected in almost all samples because they form ionic bonding chelates. Desorption rates of transition metal elements which form coordinate bonding chelates were observed to be proportional to the stability constant except for Mn^{2+} and Cu^{2+} anomalies.

1. Introduction

At present it is internationally expected for Japan to achieve some responsibility and to play an important role for protection of the environment with a global scale. We have to respond to the international expection by displaying leadership in environmental problems, such as the application of charged particle beams to elemental analysis of environmental pollutants. The environments in the neighboring seas and the coasts around our country have seriously become worse, even though attempts are being made to recover the natural marine environment by improving the clarification capacity with an artificial seashore, partially constructed. It is important to find the adsorption-desorption kinetics of elements in coastal sediments, as a means to estimate the behavior of pollutants,

^{*} Research Center of Radioisotopes, Research Institute for Advanced Science and Technology.

especially the heavy metal elements. For the purpose of the assessment, it may be effective to make clear the behaviors of elements with coastal sediments by the use of the several kinds of the chemical extracting solutions.

This paper describes the result of attempts to obtain information on the adsorption/desorption kinetics of elements in coastal sediments. The extraction method uses independently the following seven kinds of extracting solution; ultrapure water, artificial seawater, 1M ammonium acetate, 0.2M ammonium oxalate, 0.01M EDTA • 2Na aqueous solutions, and 1N and 6N hydrochloric acids adopted by Fukui et al.¹²

It is very important to analyze the cause of turbidity and to discover the origin of the adsorbed matters^{3,0} on the coastal sediments for learning the adsorption/desorption characteristics of the elements^{1,5,6}.

The reason why the extraction procedures were attempted as the pretreatment for PIXE analysis will hereinafter be described. It may be expected that ultrapure water and artificial seawater desorb the seawater-soluble matters adsorbed on the surfaces or porous porosities of coastal sediments. Fukui²) reported that ammonium ions in aqueous solution could more readily desorb trace metals adsorbed by the ion-exchange mechanism than by the sodium ion abundant in seawater. In these studies, (1) both ammonium salts of acetate (1M) and oxalate (0.2M) were used in order to obtain information on desorption kinetics under readily exchangeable and suboxic conditions, respectively; (2) EDTA \cdot 2Na (0.01M) was used for examining the possible formation of chelate compounds with the heavy metals; and (3) HCl (1N and 6N) was used for investigating metal desorption destroying a part of mineral lattices in the solution.

Why PIXE? PIXE analysis has the following three outstanding characteristics for the assessment of the environmental pollution. (1) Multielements can be determined simultaneously without destroying the samples; (2) it needs only trace amounts; and (3) a valuable sample, involving great time, effort and expense in chemical extraction, can be analyzed by repeated procedure at various sensitivities. In brief, chemical extraction plus PIXE is predicted to be very useful for work in the marine environment.

2. Experimental

2.1 Sample and pretreatment

At five points in the Osaka Bay Shore, near South of Sensyu, Osaka Prefecture (Fig. 1), ten samples of deposits from the surface mud layer and the 20cm deep layer were collected³⁰ and used in this experiment. The samples were dehydrated by centrifuging (≤ 5800 rpm, 10min) for three days after the samples were collected, then dried for 64 hours in a thermostat kept at 75°C. The samples thus obtained were sieved into four stages with 16, 24 and 32 mesh screens as shown in Table 1. External characteristics of samples after dehydration, dry-

Fig. 1 Schematic map of the sampling stations

Stag	e Mesh	Diameter (mm)	Diameter of sieving (μm)
1	>Mesh 16	d>0.590	1000
2	Mesh 16~Mesh 24	0.590>d>0.350	710
3	Mesh 24~Mesh 32	0.350>d>0.290	500
4	Mesh 32 $>$	0.290>d	

Table 1 Characteristics of analytical sieve fractions

Table 2 External characteristics of samples

	Collecting sites	Geographical position	Characteristics
St. 1	Surface layer* 20cm deep layer*	Dredging near Sano river	Mud, sand Shoulder and sand
St. 2	2 Surface layer 20cm deep layer	Aperture	Many shoulders Pebble
St. 3	8 Surface layer 20cm deep layer	Dredging near Kashii river	Bottom sediment Mud, sand
St. 4	l Surface layer 20cm deep layer	Tarui, Aperture (Sennan City)	Bottom sediment Mud
St. 5	5 Surface layer 20cm deep layer	Okadaura near kashii river	Bottom sediment, shoulder Sand

* Surface layer: Collecting mud from surface to 2cm depth

★20cm deep layer: Collecting 2 ~ 3 cm bottom mud obtained by inserting a pipe to 23~24cm depth of bottom of the sea

Yatsuka MATSUDA, Toshio ISHIYAMA, Norio ITO and Shunji KIYODA

	Dalla i Chaulden	Rate of sieve fraction (%)									
Collecting sites	Peddle + Snoulder	Stg. 1	Stg. 2	Stg. 3	Stg. 4						
St.1 Surface layer	20. 58%	24.03	8.57	13. 81	33.01						
20cm deep layer	25.05%	28.45	6.97	14.29	25.23						
St.2 Surface layer	37.90%	28.28	6.44	8.38	18.99						
20cm deep layer	25. 51%	38.50	5.65	8.94	21.44						
St.3 Surface layer	0%	0.82	1.01	3.00	95.17						
20cm deep layer	0%	11.18	3.75	4.03	81.04						
St. 4 Surface layer	5. 50%	33.43	7.32	8.35	45.40						
20cm deep layer	17.98%	24.48	9.60	9.84	38.10						
St.5 Surface layer	0%	6.87	1.75	5.00	86.38						
20cm deep layer	0%	0.23	0.60	4.76	94. 41						

Table 3 Particle size distribution of deposition

ing and sieving are shown in Table 2. Table 3 represents a distribution of the grain size of deposits, indicating the distribution of the whole containing the pebbles and the shells which have been removed before sieving.

2.2 Chemical extraction procedures

The stage 4 sample was most finely sieved. Each sample consisting of 1g at this stage was used in this extraction procedure. In the desorption test of the surface mud layer of the station 2 and 4, 0.5g of each sample was ground to powder in an agate mortar and was used for the extractions. Table 4 represents the constitution of extracting solution. A flow chart of the desorption test is shown in Fig. 2. To each sample of 1g or 0.5g, extracting solutions of 27.85 or 13.9ml were added in volumetric flasks of 100 or 50ml, respectively. In the desorption tests using ultrapure water and artificial seawater as extracting solution, samples were shaken occasionally for 10min per day during 15 and 16 days, respectively. In the desorption tests using 1M ammonium acetate, 0.2M ammonium oxalate, 0.01M EDTA • 2Na, and 1N and 6N hydrochloric acids, samples were extracted during eight and four days, respectively with the same shaking condition as that described above. It was considered that the extraction condition was pearly the same, although a shaking period differed somewhat with the kind of extracting solution. The liquids obtained by extraction with occasional shaking were filtered with a membrane filter (TM-2, pore size $0.45 \,\mu$ m, cellulose nitrate 47mm diameter) by the use of a Witt type filtering flask to which a stainless filter support screen was attached, in vacuo. The extracts from ultrapure water, artificial seawater, 1M ammonium acetate and 1N hydrochloric acid were filtered by the suction method mentioned above. In order to prevent the corrosi on by strong acid, the filtrations of the extracts from 0.2M (NH₄)₂C₂O₄, 0.01M EDTA • 2Na and 6N HCl were carried out by the use of a polycarbonate support screen instead of the stainless support screen. Each filtration time of 27ml of extract was about 3min, devided into two protions, where it took about 30s per filtration. Analytical data of the extracts from 1M ammonium acetate and 1N ydrochloric acid which were first filtered must be checked against the contamination arising from the stainless support mesh screen, which is readily corroded by acids.

Extracting solution	Preparation method
Ultrapure water Artificial seawater 1M Ammonium acetate	Distilled water → ion exchange column → Millipore filter *Pure water → Lyman and Fleming method *Pure water → 1M CH ₃ COONH ₄ dissolved
0.2M Ammonium oxalate 0.01M EDTA • 2Na 1N Hydrochloric acid 6N Hydrochloric acid	 *Pure water → 0.2M (NH₄)₂C₂O₄ • H₂O dissolved *Pure water → 0.01M C₁₀H₁₄N₂O₈Na₂ • 2H₂O dissolved *Pure water → Diluted Ultrapure HCl (40%) to 3.59% Ultrapure water → Diluted ultrapure HCl (40%) to 19.93%

Table 4 Preparation method of extracting solution

*Pure water was obtained by treating distilled water through ion exchange

Pretrentment of coastal sediment samples for desorption test Coastal mediment sampling: each 1g, grounded sample: 0.5g (Each surface layer or 20cm deep layer sample: total 10 samples

DExtraction with @Extraction with @Extraction ction DExtraction with 0.01W EDTA • 2Na GExtraction with with DExtraction with ultrapure wate artificial : IN NEL AC 0.2N (NEL),0x IN HCL **GN HC1** 1 1 1 I I 65 -oles mles Shaking for 10min king for 10mi Shaking for 10min for 10mi 10min 100 fo king for 1 Omi per day during da per day during 8 days per day during 15 days 16 ő days days 75 8 days dava 1 1 um filtratio The left way as the The with filtering fla left left left left left Filter: TH-2 stainle 5' M polycas ate stainless mesh polycari nate stainless eesh polycarbonate support scree moort scree -L 1 I ł I d 56 µl on the The The 6av The . left The left The : left The left Kimfoil membrane left left dried w nier infra .! ţ 1 20 samples pies 28 = oles 20 28 for target for target for target for target

Fig. 2 Pretreatment of coastal sediment samples for desorption test

2.3 PIXE analysis

PIXE target samples were analyzed by the PIXE analysis system in the cyclotron room at the Faculty of Science, Osaka University. A block diagram of the PIXE analysis system is shown in Fig. 3. Beam bombardment was done using 5MeV protons of the cyclotron, degraded to about 4.5MeV with a Kapton foil beam smoother $(2.5mg/cm^2)$. The beam cross section diameter at the target

Yatsuka MATSUDA, Toshio ISHIYAMA, Norio ITO and Shunji KIYODA

position was defined to 8mm by double graphite collimators. Beam current was about 1nA and cumulative charge was about 600nC. Characteristic X-rays from samples were measured with a Si(Li) detector (effective area: 28.3mm², FWHM: 160eV at 5.9keV) with a pierced Lumilar "funny" filter in front of the Be window. The angle between the sample plane and the beam direction was 45°. The distance between the sample plane and the Be window of Si(Li) detector was 5cm, and the angle between the detector head and the beam direction was 135°.

Fig. 3 Block diagram of PIXE+FAST system

Fig. 4 Sensitivity curves of the PIXE system

As references, standard samples for PIXE of Micromatter Co. were used. Sensitivity curves of the system are shown in Fig. 4. Spectrum analysis was done by using a personal computer based commercial MCA software, and the quantitative determination of elements was undertaken by calculating X-ray self absorption corrections.

2.4 NAA analysis

Part of the samples made as described in 2.2, two sets of samples of St.1 surface mud layer and 20cm deep layer were assayed by NAA to assure analytical results and increase the numbers of determined elements. Each sample portion on target Kimfoil membranes was scissored out and was seeled into a small These bags were put into a polypropylene capsule together polvethylene bag. with NBS standard river sediment and bovine lever references. This capsule was neutron irradiated in the F ring (thermal neutron flux: 1.4×10^{12} n · cm⁻² · sec⁻¹) of the reactor of Rikkyo University for 6 hours. A gamma-ray measurement was done tow times, for 4,000 and 40,000s with the γ -ray emmitting nuclide analysis system consisted of a shield box (10cm thick lead, 5mm thick copper lining, 5mm thick opaque acrylic lining, volume: 320×320×420mm³) and a coaxial ntype pure Ge detector (relative efficiency: 30%) of Research Institute for Advanced Science and Technology, University of Osaka Prefecture. Neutron flux was confirmed with an NBS river sediment standard sample, and found to be equal to the nominal value. Spectral analysis was done by using a personal computer based commercial MCA software for nuclide analysis.

3. Analytical results and discussion

The PIXE analytical results of St.1 surface and 20cm deep layer samples are listed in Table 5 as a typical example for main elements, together with the results of extracting liquid blanks. 21 elements, Mg, Al, Si, P, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Sr, Hg and Pb were determined. Seven elements, Si, S, Cl, K, Ca, Fe and Zn, were determined for all kinds of extracted samples. The NAA results corresponding to them are listed in Table 6. From the results, the following eight facts were found.

1) Hydroxides of Ca, Mg, and K were released from silicates in sediments by hydrolysis⁹. They were extracted with ultrapure water in the order, Ca>K>Mg (Ca:47-726 μ g/g, K:17-134, Mg:not detected), and with artificial seawater in the order, Mg>Ca>K (Mg:350-2090 μ g/g, Ca: 94-1087, K:4-540).

2) By 0.2M $(NH_4)_2Ox$, K⁺ was extracted much $(K:99-417 \mu g/g)$ in the form of $K_2C_2O_4$, while Ca^{2+} was scarcely detected because it precipitated as CaC_2O_4 . S was extracted fairly much $(S:142-2360 \mu g/g)$ in the forms of SO_4^{2-}/S^{2-} through some reactions with CaSO₄ and FeS. Ti⁴⁺ ion was extracted much $(Ti:205-342 \mu g/g)$ in the form of $[Tio(C_2O_4)_2(H_2O)]^{2-}$. V⁵⁺ is desorbed as VO_2^+ by the exchange with

Table 5-1 Analytical results of PIXE

Content (unit: $\mu g/g$ sediment or $\mu g/27.85$ ml extracting blank)

Sample									E	lemer	its										
	Mg	Al	Si	Р	S	C1	K	Ca	Ti	V	Cr	Mn	Fe	Ni	Cu	Zn	Hg	As	Pb	Br	Sr
ultrapure water blank	NÐ	ND	405	ND	ND	27.5	ND	21.5	310	ND	ND	ND	22	ND	ND	17	ND	ND	ND	ND	ND
artificial seawater blank	ND	ND	333	ND	ND	318	ND	32.5	460	ND	ND	ND	26	ND	ND	11	NÐ	ND	ND	ND	ND
0.2M (NH₄)₂Ox blank	ND	ND	633	ND	ND	ND	2.5	34.5	468	1.5	ND	ND	23	ND	ND	9.3	ND	ND	ND	ND	ND
1M NH₄Ac blank	ND	ND	343	ND	ND	ND	3.5	18.8	222	ND	ND	ND	19	ND	ND	7.3	ND	ND	ND	ND	ND
0.01M EDTA · 2Na blank	ND	ND	300	ND	ND	39.3	5.0	9.75	173	14	ND	ND	17	ND	ND	5.3	ND	ND	ND	ND	ND
IN HCI blank	NÐ	ND	633	ND	ND	201	33. 8	32.8	152	16	ND	ND	21	ND	ND	18	ND	1.3	ND	82	ND
6N HC1 blank	ND	ND	64.8	ND	ND	7.0	7.25	67.8	131	8.5	ND	ND	17	ND	ND	17	ND	ND	ND	500	ND
St.1 sf ultrapure water	ND	ND	107	ND	71	3400	110	400	ND	ND	ND	ND	23	ND	ND	ND	ND	ND	ND	ND	ND
St.1 sf artificial seawater	680	ND	ND	ND	81	2140	97.5	463	18.0	ND	ND	2.8	51	0.5	ND	1.5	ND	ND	ND	40	ND
St.1 sf 0.2M (NH ₄) ₂ Ox	ND	ND	550	ND	2360	2030	308	5.3	710	9.8	7	48	740	ND	ND	29	ND	ND	ND	ND	ND
St.1 sf 1M NH ₄ Ac	310	ND	ND	ND	88	2680	125	3230	11.8	ND	ND	29	16	ND	ND	ND	ND	ND	ND	ND	ND
St. 1 sf 0.01M EDTA · 2Na	29	ND	613	ND	343	2470	202	2600	715	ND	ND	79	1390	ND	8.5	48	ND	ND	ND	ND	ND
St. 1 sf IN HCl	ND	190	147	ND	465	10100	68.8	938	ND	ND	ND	ND	3850	ND	ND	ND	ND	2.5	ND	ND	ND
St. 1 sf 6N HC1	ND	780	64	35	273	17000	475	1990	490	ND	ND	95	7600	ND	ND	ND	22	ND	79	320	13
St.1 20cm ultrapure water	ND	ND	137	ND	10	3080	28	283	16	8	ND	ND	19	ND	ND	ND	NÐ	ND	ND	17	- ND
St.1 20cm artificial seawater	350	22	31	1.3	33	953	13	127	16	ND	ND	ND	17	1.3	. 25	1.0	ND	ND	ND	13	NÐ
St. 1 20cm 0. 2M (NH ₄) ₂ 0x	780	NÐ	483	ND	370	2500	293	57	673	55	ND	1.8	36	. 25	ND	17	ND	ND	ND	ND	ND
St.1 20cm 1M NH ₄ Ac	150	ND	73	ND	273	2050	335	4530	6	ND	ND	ND	19	2.8	ND	ND	ND	ND	ND	ND	8.0
St. 1 20cm 0.01M EDTA • 2Na	110	ND	620	ND	26	1800	98	5600	630	ND	ND	16	595	. 75	3.3	19	ND	ND	ND	7.5	25
St.1 20cm 1N HC1	ND	103	173	ND	598	17800	390	3200	21	ND	ND	38	5730	ND	ND	ND	ND	ND	ND	ND	ND
St. 1 20cm 6N HC1	1750	308	148	ND	400	18900	388	3800	558	ND	ND	61	6950	ND	1.0	49	60	ND	ND	343	33
	Mg	Al	Si	Р	S	Cl	K	Ca	Ti	V	Cr	Mn	Fe	Ni	Cu	Zn	Hg	As	Pb	Br	Sr

Yatsuka MATSUDA, Toshio ISHIYAMA, Norio ITO and Shunji KIYODA

Table 5-2 Analytical results of PIXE

Content (unit: μ g/g sediment or μ g/27.85ml extracting blank)

Sample	Elements																				
	Mg Al Si P S Cl K Ca Ti V Cr Mn Fe Ni Cu Zn Hg As Pb Br S														Sr						
St. 2 sf ultrapure water St. 2 sf artificial seawater St. 2 sf 0.2M (NH ₄) ₂ Ox St. 2 sf 1M NH ₄ Ac St. 2 sf 0.01M EDTA · 2Na St. 2 sf 1N HCl St. 2 sf 6N HCl	ND 568 14.8 470 60.5 ND 1930	ND ND ND ND 249 420	115 ND 403 83 573 ND 135	ND ND ND ND 88.8 ND	433 2270 345 233 470 3 535 418	4330 9580 3230 3730 3900 10100 17800	70.3 200 420 94.5 348 43.3 60.3	748 315 49.3 5130 4530 1650 2630	ND ND 685 21 658 ND 580	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND 12.3 21 30.5 ND 19.8	6 1 683 ND 733 3180 5900	ND ND 1.5 .25 ND ND	ND ND 1.3 2.0 ND ND	1.8 ND 33 ,75 3.3 ND ND	ND ND ND ND ND ND 6.8	ND ND ND ND ND ND	ND ND ND ND ND 16	18.5 ND 24.3 ND 19.8 ND 285	ND ND ND 11 ND ND
St. 2 20cm ultrapure water St. 2 20cm artificial seawater St. 2 20cm 0. 2M $(NH_4)_2Ox$ St. 2 20cm 1M NH_4Ac St. 2 20cm 0.01M EDTA · 2Na St. 2 20cm 1N HC1 St. 2 20cm 6N HC1	ND 1430 ND 153 ND ND 1490	ND ND ND ND 168 265	ND 538 73.5 448 14.3 166	ND ND ND ND ND ND	1970 3300 142 213 69.5 530 1850	2850 31800 1000 1930 1790 8500 13600	17.3 380 140 433 118 313 161	258 898 12.5 5100 5350 1830 2680	ND ND 703 12.3 433 ND 525	ND ND 34 2.5 ND ND ND	ND ND ND 2.5 ND ND	ND 2.5 ND 10 12.5 40 28.3	16.3 3.5 298 17.8 625 3550 5480	ND ND ND ND ND ND	ND ND ND 2.0 ND ND	ND 1.0 22 ND 18 ND 20	ND ND ND ND ND 94	ND ND . 75 ND ND ND ND	ND ND ND 4.5 25 ND	ND 418 ND 3.3 1 ND 308	ND 110 ND 24 ND 19
	Mg	Al	Si	Р	S	Cl	K	Ca	Ti	V	Cr	Mn	Fe	Ni	Cu	Zn	Hg	As	Pb	Br .	Sr
St.3 sf ultrapure water St.3 sf artificial seawater St.3 sf 0.2M (NH ₄) ₂ Ox St.3 sf 1M NH ₄ Ac St.3 sf 0.01M EDTA · 2Na St.3 sf 1N HC1 St.3 sf 6N HC1	ND 2090 588 200 229 ND ND	ND ND 143 ND 528 863	91 155 568 ND 520 75.5 142	ND ND ND ND ND ND	161 2730 328 247 4.0 184 73.3	3800 32500 2650 1680 1930 8350 7250	81. 8 540 300 247 179 93. 3 68. 0	101 1120 49.8 715 710 390 510	ND ND 808 15 618 ND 793	ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND 7.3 11.3 23.8 68.8 33.0	ND 758 19 1910 4080 4730	ND ND ND 1.8 ND ND	ND ND ND ND ND ND 8.0	ND ND 15 ND 24 ND 42	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND 24 ND	ND 450 ND 7.5 6.8 ND 270	ND 156 ND ND ND ND ND
St. 3 20cm ultrapure water St. 3 20cm artificial seawater St. 3 20cm 0. 2M $(NH_4)_2Ox$ St. 3 20cm 1M NH_4Ac St. 3 20cm 0. 01M EDTA · 2Na St. 3 20cm 1N HC1 St. 3 20cm 6N HC1	ND 1230 515 170 410 305 2160	ND ND ND 62.5 -232 325	78.3 5450 540 81.0 690 250 149	ND ND ND ND ND 72 ND	255 3380 222 146 128 273 300	1830 32800 2220 1690 2040 6950 13300	118 283 253 226 208 89.8 24	72 855 53.5 543 733 298 360	ND ND 775 8.75 728 ND 583	ND ND ND ND ND 9.8 ND	ND ND ND ND ND ND ND	ND ND 21.3 ND 26.5 61.5 42.3	15.3 13.5 142 19.5 2410 3300 5400	ND ND ND ND ND ND	ND ND ND 4.5 ND ND	ND 21 7.3 41 ND 34	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND A2	ND ND 11 11 4.5 ND 298	ND ND 8.5 5.5 ND ND
	Mg	Al	Si	Р	S	Cl	K	Ca	Ti	V	Cr	Mn	Fe	Ni	Cu	Zn	Hg	As	Pb	Br	Sr

PIXE Analysis on Desorption of elements from coastal sediments

Table 5-3 Analytical results of PIXE

Content (unit: $\mu g/g$ sediment or $\mu g/27.85$ ml extracting blank)

Sample							·			Eleme	nts										
· · ·	Mg	Al	Si	Р	S	C1	K	Ca	Ťi	V	Сг	Mn	Fe	Ni	Cu	Zn	Hg	As	Pb	Br	Sr
St. 4 sf ultrapure water St. 4 sf artificial seawater St. 4 sf 0. 2M $(NH_4)_2 \Omega x$ St. 4 sf 1M NH_4Ac St. 4 sf 0. 01M EDTA \cdot 2Na St. 4 sf 1N HCl St. 4 sf 6N HCl	ND 618 515 338 152 575 ND	ND 68.8 ND ND 240 755	116 3 34 418 83 610 202 20	ND ND ND ND ND ND	120 358 303 465 99, 5 458 2530	3480 3150 3400 2680 2130 9880 18500	64 25.5 268 59 228 83 408	608 470 278 2800 2160 1140 1630	ND ND 703 ND 620 ND 445	ND ND ND ND ND ND	NÐ ND ND ND ND ND	ND ND ND 28.5 79.3 74.3	7.3 20.3 61.8 11.0 1540 3850 7330	ND ND ND 2.3 ND ND	ND ND ND ND ND ND	ND 2.3 17 4.8 30 26 48	ND ND ND 9.8 ND ND	ND ND ND ND ND S. 3	ND ND ND 3.5 ND ND	ND ND 17.5 11 2.3 ND 360	ND ND 5 ND 5 ND ND 14 ND
St. 4 20cm ultrapure water St. 4 20cm artificial seawater St. 4 20cm 0. 2M (NH ₄) ₂ Ox St. 4 20cm 1M NH ₄ Ac St. 4 20cm 0.01M EDTA • 2Na St. 4 20cm 1N HC1 St. 4 20cm 6N HC1	NÐ ND 373 325 223 ND 1840	ND 30 ND ND 338 236	158 27.3 525 56.5 643 320 179	ND ND ND ND ND ND ND	2880 413 318 253 111 980 222	4200 3200 2400 1990 1580 16800 14300	134 147 318 55 137 76.5 268	228 165 53.3 2800 2380 1720 1100	8.3 ND 738 3.0 658 52.8 610	ND ND ND ND ND ND ND	ND ND ND ND ND ND	ND 25.3 ND 32.5 79.8 45.3	20 17.8 320 14.8 1580 6700 5080	ND ND 1.3 ND 1.3 2.5 ND	ND ND ND ND ND ND	ND ND 15 ND ND 39 5.8	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND 45 ND 6. 5 76 320	ND 14 ND ND 6.8 ND
	Mg	Al	Si	Р	S	C1	K	Ca	Ti	V	Cr	Mn	Fe	Ni	Cu	Zn	Hg	As	Pb	Br	Sr
St.5 sf ultrapure water St.5 sf artificial seawater St.5 sf $0.2M (NH_4)_2 0x$ St.5 sf $1M NH_4 Ac$ St.5 sf $0.01M EDTA \cdot 2Na$ St.5 sf $1N HC1$ St.5 sf $6N HC1$	ND 2040 710 236 393 ND 1780	ND ND ND 72.3 325 1680	91 ND 485 47.8 590 73.5 117	ND ND ND ND ND ND ND	503 1570 275 121 12 410 473	3830 6930 2550 2440 2700 7700 9250	102 500 323 214 283 59.8 214	533 853 50. 5 893 1330 483 925	ND ND 810 8.5 748 ND 558	ND ND ND ND ND ND	ND ND ND ND ND ND	ND 5.3 ND 2.8 20.3 ND 13.5	40 6.75 174 16.3 2650 3430 5950	ND 1.3 ND ND ND ND ND	ND ND ND 4.3 2.3 ND	NÐ ND 22 3. 0 27 23 43	ND ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND 9.5 ND ND	ND 149 17 13 6.5 ND 330	ND ND ND ND ND ND
St. 5 20cm ultrapure water St. 5 20cm artificial seawater St. 5 20cm 0.2M $(NH_4)_20x$ St. 5 20cm 1M NH ₄ Ac St. 5 20cm 0.01M EDTA \cdot 2Na St. 5 20cm 1N HC1 St. 5 20cm 6N HC1	ND ND 217 167 98.3 ND ND	ND ND ND 171 211 197	51.3 44.5 490 37.8 448 308 385	ND ND ND ND ND ND	338 18.0 184 145 368 57.3 498	2160 57.0 1400 1330 2230 5100 4400	96 4.0 102 95.3 2.0 109 66	68.8 31.8 20.5 132 280 109 140	ND 15.5 695 10.3 715 22.3 855	ND ND 43.8 ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND 2.75 ND ND ND 7.8	27.5 16.8 570 14.3 1660 2110 2750	ND ND ND ND ND ND ND	ND ND ND 4.5 ND 13	ND ND 18 3.0 33 8.0 31	ND ND ND ND ND ND	ND ND ND ND ND ND ND	NÐ ND ND ND ND ND ND	ND ND .5 4.0 11.3 48.8 218	ND ND ND ND ND ND ND
		Al	Si	Р	S	Cl	К	Ca	Ti	V	Cr	Mn	Fe	Ni	Cu	Zn	Hg	As	Pb	Br	Sr

Yatsuka MATSUDA, Toshio ISHIYAMA, Norio ITO and Shunji KIYODA

Table 6 Analytical results of NAA

Content (unit: μ g/g sediment or μ g/27.85ml extracting blank)

Sample									El	ement	S											
	Na	К	Sc	Cr	Mn	Fe	Co	Zn	Br	Ag	Cd	Sn	Cs	Ba	La	Sm	Eu	Lu	Hf	Ta	Pa	Yb
ultrapure water blank artificial seawater blank 0.2M (NH ₄) ₂ Ox blank 1M NH ₄ Ac blank 0.01M EDTA • 2Na blank 1N HCl blank 6N HCL blank	39 140000 77 47 3400 64 50	ND 1150 ND ND ND ND ND	.06 ND .01 ND ND ND	ND ND ND ND 6.6 ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND 42 ND	ND ND ND ND ND ND ND	49 13200 34 40 8300 1300 8330	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	NÐ NÐ ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND 5.5 ND ND	ND ND ND 2.9 ND ND	ND ND ND ND ND ND 24	ND 120 ND ND ND ND 160	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	. 68 ND ND ND ND ND ND
St. 1 sf ultrapure water St. 1 sf artificial seawater St. 1 sf 0.2M (NH ₄) ₂ Ox St. 1 sf 1M NH ₄ Ac St. 1 sf 0.01M EDTA · 2Na St. 1 sf 1N HC1 St. 1 sf 6N HC1	3200 220000 5300 3400 11000 3400 3400	ND 6000 ND ND ND 490 ND	ND ND .11 .01 ND .22 .33	ND ND 1.1 1.9 22 21 12	ND ND 4.7 ND 156 165	ND ND 140 2870 10300 12100	ND 11 1.7 1.4 2.9 5.7 7.0	ND ND 17 57 91 3090	340 17100 356 323 326 1510 8300	ND 6.2 ND .71 10 ND ND	ND ND 2.8 ND ND ND ND	ND 550 ND 360 300 ND ND	ND ND . 30 ND ND 1. 1	ND 5990 ND 5650 164 ND ND	ND ND ND 1.4 4.5 5.5	ND ND . 12 ND 1. 1 2. 4 2. 9	ND ND . 02 . 13 . 27 . 22	ND ND ND ND ND ND ND	ND 4.9 ND 1.2 ND ND 4.3	ND 5.3 .84 ND 4.1 3.4 ND	ND ND ND . 52 ND . 35	ND ND ND . 69 . 23 ND
St. 1 20cm ultrapure water St. 1 20cm artificial seawater St. 1 20cm 0.2M $(NH_4)_2Ox$ St. 1 20cm 1M NH_4Ac St. 1 20cm 0.01M EDTA \cdot 2Na St. 1 20cm 1N HC1 St. 1 20cm 6N HC1	2500 124000 2900 2600 9600 3200 2700	ND 2900 ND ND ND ND ND	ND ND . 13 . 07 . 17 . 48 . 44	2.8 5.6 5.0 ND ND ND 7.8	ND ND 5.1 ND ND 143 167	ND ND 3400 ND 810 9600 11000	8.6 5.2 24 ND 1.2 7.9 8.1	ND ND 25 19 32 110 84	260 20900 368 384 243 1580 8100	ND ND . 68 2. 2 ND ND ND	ND ND ND ND ND ND	ND ND 230 450 160 ND ND	ND ND ND ND ND 1.8	5800 ND 4500 3500 ND ND 7300	ND ND 4.4 ND 1.2 5.2 4.8	ND ND . 13 . 87 2. 6 2. 5	ND 11 ND ND . 07 . 16	ND ND 38 ND 170 ND . 11	ND ND ND 86 ND ND	ND ND 1.4 ND ND 7.0 7.5	ND ND ND ND ND . 50 8.9	ND ND .54 ND ND 1.2 ND
	Na	К	Sc	Cr	Mn	Fe	Co	Zn	Br	Ag	Cd	Sn	Cs	Ba	La	Sm	Eu	Lu	Hf	Ta	Pa	Yb

NH₄⁺ and forms complex anion, $[VO_2(C_2O_4)_2]^{3-}$ with oxalate ion $(V:8-53 \mu g/g)$. Mn²⁺ is desorbed by the exchange with NH₄⁺, but Mn was not detected or detected with low concentrations (Mn:2-48 $\mu g/g$) because the stability of the nonionic complex $[Mn(C_2O_4)(H_2O)_4]^{9}$ is low. As for Fe, the portion adsorbed as Fe³⁺ is desorbed as very stable complex anion $[Fe(C_2O_4)_3]^{3-}$. Fe was detected at a fairly high concentration (Fe:13-735 $\mu g/g$). As for Zn, desorbed Zn²⁺ by the exchange with NH₄⁺ forms the stable complex anion $[Zn(C_2O_4)_2]^{2-}$. Zn was detected in almost all samples (Zn:6-24 $\mu g/g$).

3) By 1M NH₄Ac with an ion-exchange function of NH₄⁺ ion, Mg²⁺, K⁺ and Ca²⁺ were extracted from clay minerals in the order, Ca>Mg>K (Ca:113-5110 μ g/g, Mg:150-470, K:51-429).

4) Desorption behavior with 0.01M EDTA • 2Na is as follows. EDTA makes ionic chelates with alkali earth metal elements. Mg^{2+} and Ca^{2+} were detected in almost all samples. Among them, the desorbed amounts and rates of Ca with EDTA are especially high. This is because when $edta^{4-}$ ions as doner ions arranged around a metal ion, the size of Ca^{2+} ion (1.18Å, $e^2/r=3.4$) is suitable for making a chelate compound having maximum stability (stability•constant, $\log K_1=$ 10.6). The size of Mg^{2+} ion is smaller than Ca^{2+} ion ($e^2/r=4.9$), nevertheless the desorbed amounts and rates of Mg are smaller than Ca^{2+} by more than one order. This is because chelate compounds having lower stability constants ($\log K_1 =$ 8.7, etc.)⁹ than those of Ca were formed.

On the other hand, among transition metal elements, the detected elements in this experiment, Ti, V, Mn, Fe, Cu, and Zn, form coordinate bonding chelates with EDTA. Except V among them, generally the desorption rates of these elements were proportional to the stability constants of chelates. About the sediment samples collected at St.1 surface and St.1 20cm depth, desorption amounts and rates with 0.01M EDTA \cdot 2Na and the stability constants of chelates are shown in Table 7. According to this table, the order of the desorption rate of transition metal elements are

 $Mn^{2+}>Ti^{4+}>Zn^{2+}>Fe^{3+}>Cu^{2+}$ (St.1 surface)

 $Ti^{+}>Zn^{2+}>Fe^{3+}$ (St.1 20cm depth).

The desorption tendency was in accordance with the order of the stability constants, $Cu^{2+}>Ti^{4+}>Zn^{2+} \ge Fe^{3+}>Mn^{2+}$, except for Mn^{2+} and Cu^{2+} ions. These Mn^{2+} and Cu^{2+} anomalies show that a greater part of Mn is in inorganic forms and a greater part of Cu is in organic forms as reported before by Matsuda et al³⁰. The existing modes of chemical forms of these elements coincide with the report by Sugimura et al⁵⁰.

5) In 6N HCl extracting liquid, Al and Fe which are thought to be mineral components were detected with the highest concentrations among all extracting liquids tested. For a typical sample, the maximum concentration of Fe seen in the samples was obtained by extraction with 6N HCl(7.6 mg/g). In comparison, the

Element Sample	Mg²+	Ca²+	Ti⁴+	Mn²+	Fe²+	Cu²+	Zn²+
*Conc. (μg/g) St. 1 sf	27700	12700	3990	488	39900	959	608
St. 1 20cm	≦8300	33800	5320	< 480	63200	≦200	378
St. 1 Desorption $(\mu g/g)$	29	2590	542	79	1373	8.5	42 . 7
surface Desorption (%)	0.105	2.04	13. 6	16. 2	3. 44	0.886	7.02
St. 1Desorption (μg/g)20cmDesorption (%)	110	5590	457	16	578	3.3	13.7
	≧1.3	16.5	8. 59	>3.3	0. 915	≧1.7	3.62
Stability constant, logK ₁ of metal-EDTA chelates ⁹⁾	8.7	10.6	17.5	14.5	15.2	18.8	15.9

Table 7 Desorption with 0.01M EDTA and the stability constants of chelates

 $* \leq$ and < show the values of the estimated limits because the elements were not detected.

Fe concentration observed after extraction with ultrapure water, artificial seawater, and 1M ammonium acetate were essentially zero. However, the amounts seen with 0.01M EDTA \cdot 2Na and 0.2M ammonium oxalate were as high as 18% and 9.5% of the 6N HCl value, respectively. Hg and Pb were extracted which were not desorbed by any other extracting liquids. In 1N HCl, mineral components were generally less desorbed than 6N HCl, as expected.

6) As for St.1 surface and 20cm deep layers, elements detected by both PIXE

and NAA methods had general tendencies that were similar to each other. However, the NAA values were greater than the PIXE values. It is thought that the main reason for these discrepancies is the evaporation loss of volatile matter in vacuum and during proton bombardments in vacuum.

7) With most elements, excepting a few elements (especially as seen in St.1 case Ca with each extracting liquid), desorption amounts tended to be greater in surface layer than in the 20cm deep layer.

8) From the NAA results, light rare earth elements, La, Sm and Eu, were extracted with chelate agent EDTA, 1N HCl and 6N HCl regularly, and the order of the desorpted concentrations were EDTA<IN HCl<6N HCl.

In summary, these techniques, chemical extraction plus PIXE, are shown to be very useful to understand adsorption/desorption behavior in environmental conditions. The accumulation of the experimental data obtained by continuation of the study should clarify the effects of seashore through the formation of a fundamental base of the study of marine science.

Yatsuka MATSUDA, Toshio ISHIYAMA, Norio ITO and Shunji KIYODA

Acknowledgement

We would like to thank people concerned by noting that this study is the one which is developed from "Investigation on Present Condition of Marine Environmental Pollution (1986/87)" made under the comission from the Tree Planting • Environment Association of Osaka Prefecture Foundation. And we would like to thank Professor H. Ejiri, Director of Osaka University Laboratory of Nuclear Studies and co-workers for affording convenience to use the cyclotron, Messrs. Higa and Matsuoka for the operation of the cyclotron, and Dr. Katakuse and Mr, Ichihara for the generous technical support of beam shaping. Also, we thank Professor T. A. Cahill very much for his valuable advice in the making up the paper.

References

- M. Fukui, Y. Fujikawa, T. Ioka, Y. Kimura, Y. Honda and K. Katsurayama: Partitioning of Radionuclides for Coastal Sediments and Adsorptive Behavior, J. Atom. Energy Soc. Jpn, 31, 1165-1175 (1989) (in Japanese).
- M. Fukui: Desorption Kinetics and Mobility of Some Radionuclides in Sediments, Health Physics, 59, 879-889 (1990).
- Y. Matsuda, N. Ito and T. Ishiyama: PIXE analysis of Chemical Selective Extracts with the Submarine Deposits in the Osaka Bay Coast, Ann. Rept. Osaka Pref. Rad. Res. Inst. 29, 11-22 (1989).
- Y. Matsuda, T. Ishiyama, N. Ito and S. Kiyoda: PIXE Analysis of Suspended Particulate in the Osaka Bay Coast, Ann. Rept. Osaka Pref. Rad. Res. Inst. 30, 45-50 (1990).
- M. Fukui, H. Shirai, K. Kuruma, M. Maekawa, T. lizima and K. Katsurayama: Estimation of Behavior of Radioactivity Discharged into Uchiura Bay, J. Atom. Energy Soc. Jpn, 33, 594-602 (1991).
- 6) Y. Sugimura, Y. Suzuki and Y. Miyake: The Behavior and the Chemical Forms of Metallic Elements Dissolved in Ocean Waters, Proc. of the Third NEA Seminar on Marine Radioecology, Tokyo, 1-5 Oct. 1979, Nuclear Energy Agency, pp. 131-141 (1980).
- A. E. Martell, M. Calvin: "Chemistry of the Metal Chelate Compounds", Translated by M. Kobayashi, M. Fujimoto and K. Mizumachi: pp. 384-385 (1960), Prentice-Hall Inc.
- K. Kawaguchi, et al.: "Pedology" pp. 112-117 (1964) Asakura Shoten (in Japanese).
- L. G. Sillen and A. E. Martell: "Stability Constants of Metal-Ion Complexes", 1971, The Chemical Society Burlington House, London, W1V OBN.