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   Bifurcations and Chaos Phenomena in Pieeewise
 Linear Systems with Unsymmetrieal Restoring Ferce

            Yoshiaki SHmAo', Hiroaki KAwABATA',
         Toshikuni NAGAHARA', and Yoshio INAGAKi'

                (Received November 15, 1991)

 This is a study of period-doubling bifurcations and chaos phenomena in
the nonautonomous piecewise linear dissipative systems with unsymmetri-
cal restoring force. In this paper we have clarified the period-doubling bifur-

cation condition analytically and various period-doubling sequences and
chaotic behavior are examined numerically. And we have the results that
complex features of period-doubling and various forms of strange attractors
may depend on the noniinearity, that is, the ratio of theslope, the loss fac-

tor, and the amplitude of external force. -

                            1. Introduction

 In the nonlinear systems such as mechanical systems, astromy, hydrodynamics,

meteorology, plasma physics, electric oscillators, and solid state systems, etc., the

many phenomena that are catised by the inherent nonlinear nature that under

some conditions leads to strong irregular behavior, chaos and at other time to

characteristic ordering phenomena are known.

  That is to say, whenever dynamical chaos is found, it .is accompanied by non-

  In many papers nonlinear phenomena have been discussed in curvilinear restor-

ing force systemsC5)-'(g). The number of paper dealing wich piecewise linear systems

is fairly low('O)N{'3). We have discussed the periodie solutions in piecewise linear

systems with unsymmetrical restoring force(")-("}. In these systems,we have merits;

        i. systems can be described in eaeh of the intervals by linear differen-

           tial equations,

        li. the smal1 parameters are not needed,

        di. the resu!ts of the piecewise linear systems appears to be sufficiently

           general to be al)!e to account for a consideral)le number of phenome-

           na encountered in curvilinear systems. '
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Therefore, we have investigated the nonlinear phenomena in pieoewise linear dissi-

pative systems with two straight line segments in the case of unsymmetrical re

storing force. Even though in such a simple case, we have complex features of

period doubling and various forms of strange attractors by means of the
:?ntlhineeZrxitteYr'natlhaftoricS6, teht2..ratiO Of the slope, the loss factor, and the amplitude

In this paper, we discuss the period-doubling bifurcation condition analytically

and numerical analysis of period-doubling sequences and chaos phenomena under

the condition of various stiffness and loss factors.

                        2. Periodieity.Conditions

  In this section the system with restoring force (see Fig.1) expressed in Eq.(1)

will be considered:
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                    Fig. 1 Restoring force characteristic

                           'li+2ath+f(x) =Ecosa)t ' (1)
                          '       . f(.) .. {£-x- K'xo [xi /L ",,lo,)) ' --(2)

                                                                '

where e2-=･iV+K', and le, e,. K, and tb are positive constants. The initial

conditions are expressed by

                             '                                      '
                                                                   '                           :･[gj:Yl .,. (3)

                               tttt                                     '
  In this paper dots over a quantity refer to differentiation with respect to time

8'henL,et the PeriOd Of external .force be tZe and the.,period of the solution be T., ..
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    2z
nt･-- ･
    tu

T==mZ (m== 1, 2, 3, ･･･) (4)

Here, we have the following periodicity conditions (5).

x(T)=M
i (T) ==IV

} (5)

 In this paper the periodic solutions are classified according to the number of

the times the solution reaches the deflection point, alo, during the period `5) . For

2n times the solution is designatod .A type solution in case M>xb, or .B (M

<Xb ) ･

 Here, we have derived the periodicity conditions for iB type (M<xo) periodic

solution with period T, shown in Fig.2. 0ther types of periodic solutions can be

analyzed similarly and not discussed here. From Fig.2 we have following eqttations.
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Fig. 2 Periodic solution of type B

Xi (tl)=Xb

Jt ? (ti) ==Xk,

x,(T)=
th3 (T) ==

M
N

(6)
,

where n(t) means the solution for the interval t-i$t$ti(i==1, 2, 3, and
te ==O, t3= T==rnZ) and the solution x(t) which reaches the deflection point,

xlo at t= ti(i=:1, 2) is connecting the solution x--i(t) smoothly at every de-

flection point.

  Given the system, that is, for given ,e, k, K, and xlo., equations (6) are the

periodicity conditions for obtaining B type solution with period T. Then, if ini-

tial values M and N, !oss factor a, and amplitude E of the externai force are
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known, the remaining elements are obtained, that is to say, basic frequency ca

of the external force, and transition time ti and te, which lead to periodic soiu-

tion, will be found.

 Finally, we write down the concrete forrn of equation (6) under the conditions

(3) . In the following solutions, we set

            otu==Ji?=Zli and tuca=J-Z-i:-Egi (7)

Thus

                        1.

where

xi (ti) =e-"b'{Ai cos weit,+--- (aAi+Bi) sm a)erti}

                 tu ca
     +Gcoswti+Disintuti =xic,

xlp (t2)=e-a(trti) {Ascostu ca (ts-ti)

                sin tu ca (tt-ti)}+ --""- xh     +-(aA+a)       tu ca e2
     +Cheosw ts+Z)tsin tu tt = lo

x, (T) =='e-ofT-ts){Aabos a)os (T-- t2)

     +-L (aAe+Bs) sin(vor(T-t2)}

       di cu
     + acos tu T+ Disin tu T= :M

k(T)=e-a{T-t'>{Bscosa)ca (T"tt)

        1      +-(kiA,+aB3) sin(z)ca (T-tj)}
       (D ca
      + di Dicos tu T- tu asin w T==IV

    (if- a)')E 2a wE               Di=G==
   (U- tus)2+4a2cas '                  (V- tu')2+4a2of.

     (g2- of)E 2a caE               , Lh==G=                   (- e 2- tu2)2+4a2dit   ( e 2- tuS)2+4a2tue

A,=M-G
At!n,-Cmoswti-Lhsintoti -,

As-- b-acos¢ts-bsinwtt , -Bt=h(ti)--ct)Z),cos(Dtl+aodsin(Dti ,

&==h(t2)-¢Drcosdit2+tuasintut2 ,
h (ti)= :e-"t' {Bicos a) cati

         1      - (VAi+aBi) sina)mti}
        (Dut

(8)

(9)

(10)

(11)

(12)
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          + tu Dicos tu ti- tu qsin ca ti,

k (te)=e-a(t'-`iX&cos(D ce (te"ti)

     - 1 ( e IA2+Be) sin (D ce (t2-ti)}+ (D thcos (v t2m ca asin (D t2

        ¢ce
     2z
T=rn- (rn : positive integer)

     di

           3. Stability and Period-Doubiing Bifurcation Condition

 If af'(t) is the periodic solution obtainable by using the periodicity.

in section 2, the stability of if (t) can be studied by the first-order

equation as to the solution of Eq.(1). Now, if y is the variation, then

order variation equation is given as

                 Y+2aab+a(t)y=O

conditions

 variation

the first-

(13)

where
                       Of (x)
                 a(t)fi!i
                         0x x= af' (t)

Also, a(t) c!early has the following characteristics ;

                 a(t)==a (t+T) }'
                     .,.IS2i,;,Xii,tj.>:,) l

  Let the independent solutions of equation (13) be denoted by

where ¢(O) =di(O)=1, di(O)= ¢(O) =e.
Let the two characteristic roots of equation (13) be pi and p2.

                     '                         '
                  Plp2=e"ar . , l

                  p,+ p, :¢(T)+ip (T) ･i

  From equations (16), we have three cases of the stability of

as follows oc) .

  <1) completely stable (C.S) if lAl<1, 1p2I<1

  (2) directly unstable (D.U) if pi>1>p2>O

  (3) inversely unstable (I.U) if pi<"--1<p2<O

  From equations (16), it is clear that the conditions for the

ble region boundary are followed :

¢(t)

Then

and

periodic

stable

(14)

(15)

¢(t)

(16)

solutions

and unsta-



222 Yoshiaki SHIRAO, Hiroaki KAWABATA, Toshikuni NAGAHARA,
                          and                              Yoshio                                    INAGAKI

                 (i) ¢(T)+di(T)==･--1-e-eut (17)
                 (ii) g5(T)+gb(T)=1+e-2a' (18)

 The equation (17) means the period doubling bifurcation condition, and Eq.(18)

means the jump phenomenon condition.

 Finally, we give the concrete form of equation (17) in terrns of, a, ti, tt, and

tu when the periodic solution is the T-periodic solution type B as shown in Fig.2

(or Fig.3)

e
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t

t

Fig. 3 Coefficient a(t) for periodic solution type B

COS CDce(ts-ti) COS(Dbl{T-(t2-ti)}

   1      (D ce          (v er- 7 ( -6T.+ ?5111 ) Sin tu ca ( t2-ti ) sin (D ut {T- ( te-ti )}

=- cosh ( a T)

(19)

                      4L Branching Phenomena`") '

  By investigation of the results in the preceding two sections, it is well known

that the systems have stable solutions under the specific values of parameters.

The stable solutions tend to the unstable solutions by changing the parameter

values little by little. Then the unstable solutions disappear physically and anoth-

er stable solutions will appear, that is, branching has occurred.

  The essential aim of this section ip the identification of the branching behavior

near bifurcation point of equation (1). In the neighborhood of the Tperiod sblu-

tion obtained in section 2, there exist two situations according to equations (17)

and <18) in section 3, which we ha've reported in the preceding articles('op･`i6). The

solution of equation (1) with x=M and i=N at t==O is written by

x (t ; M, IV, E) and the functions F and G are defined as follows.
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                                                                    '        F(M N; E)six(nT;M, IV; E)-x(O;M; N, E) l (2o)
         G(M, IV; E)!Et(nT;M, IV; E)-i(e;M; AC E)                                                    '

where n=:1 and 2.

  It is now clear that solution x(t;M; IV; E) has a period nT if and only if

                   F(M; 2V; E)=G(M, N; E)==O (21)

  Analysis of branching at an endpoint of an unstable arc of the curve ,F'=G=O

involves the computations of several partial derivatives of the functions F (M,

IV; E) andG(M; ,IV; E) at the point. ･
  Sinoe these computations ere long and tedious, we shal1 omit most of them in

what follows. When the equation (17) or (18) is satisfied, let the point satisfy-

ing equations (5) be denoted by (Mb, IVb, &) and then we have following results

in the analysis of (M-E) plane.

  In case n=2, (equation (17) satisfied) at the bifurcation point (Mb, &) we

have two branches, one is tangent to

                               E==& (22)

and the other

                 M-A4b=G(E-&), (G;constant) . (23)

On the second brarich, the solution satisfies

                          xe (t)=xa (t+T) (24)

The first branch tangent to E=& behaves like

                 E-G=&(M-Mb)2 (a:constant) (25)

and we have

                          xe(t+T)=-`xf' (t) (26)

 Thus the first branch corresponds to the 2Tmperiod solution, existing only on

one side of E=:Eh. This means period doubling bifurcation and this period-

doubling mechanism is one route to chaos.

 In the case of n= 1, (equation (18)), we have

               E =G, M-Mb+a (N-IVb)= O (G : constant)

 The branching which oecurs in this case is the wel! known jump phenomena for
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which a stable periodic solution coalesces with an unstable solution and disap-

pears.

                         5. Numerieal Analysis

                                                   '
  In this section we analyse the behavior of the various period doubling bifurca-'

tion and chaotic behavior numericaliy by using the results obtained in sections 2,

3. Here we set the pararneters as follows: iV==1, xlo==1, and (D=2.2. As to the

slope e2(stiffness ratio), we adopted next three cases ; (l) e2==9, (2)e2=:25,

(3)e2=49 and as to damping coefficient 2a, we examined in the range

2a=o.oo2･vo.3.
Here, also, we discriminate the solution x(t) as the periodic solution with period

T under the following conditions.

             I x(T)-x (O) l <10-iO, i ab (T)-ab (O) I <lo-iO

5. 1. Regions in which periodie solutions are sustained and Branching phenomena

  In Fig.4, we show M-E plane behavior of the periodic solutions with the period

           2z
T==5Tb(tTb= ) in what follows we say 5-periodic group in three cases:
           to
(1) e2==9, (2)e2==25, (3)e2 =49 when loss factor 2a is kept constant, 2a=O.Ol.

Increasing the value of e2, for example, for e2=25 or 49, we have the
jumping points (J.P), which do not exist when e2=9, on the side of inversely

unstable regions of periodic solutions of order 3/5 and features of behavior of

periodic solutions are more complex according as the magnitude of nonlinearity.

                                               '
                        .N-                           N.... C.S '                              tis..                                Nx -D.V                   10･e p.g ! ili '-"-NxN LU
                   sEo "ta"t'.211ei:.i-"'N:-':':::'1":1i'iiiirl?..s""'N'X5

.1"e M -s.e
("･ ea==g

s.e

N

1.0

"=as
"=1
so=1
w=X2

r->,×
 ls -×'< J.P 'Xi
 "'--..ufS･･x !1
        N..... N
2e=o.oi ';N -1
                  '

cs

D.U

LU

.so

 s.o

  N

 ,en

and

e#4g
P=1
N=1
wsX2
ler = O･91

              c.s
        3 --･- D.U
     . g ---- tut/lg･ilp.Tl-lr----l

    x..{>

    M , -1.0  (b}･lt=25 ･
Fig. 4 5-periodic group
      (k'=1, w=2.2, xe==1,

    -s.e M
. . (c) gt=49
bifurcation diagrams
,2a=O.Ol)

e.o.
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  These. characteristics are farniliar with other periodic solutions, such as T=

37b (3-periodic group) and T=:7b (2-periodic group). Bifurcation diagrarns of

fundarnental solutions (2-periodic group) in case e2==49, 2a==O.el are shown

in Fig.5. Fig.6 (2a =O.Ol) and Fig.7 (2a=O.1) present the bifurcation dia-

gram of the periodic solution of order 2/3 (3-periodic group) in both cases e2=

49, we see that in these cases these diagrams becarne more complex and especial-

ly in Fig.7 when the amplitude of external force, E, is increased frbm below,

stable periodic solution of order 5/6 appear about E=3.75 and then stable solu-

tions of order 7/12 bifurcate from periodic solu£ions of order 5/6 al)out E=3.9.

As increasing E through E==4.5, we have again stable periodic solutions of or-

der 5/6, which corresponds to window in chaos.

10.0

t
?

5.0

o.o

e2 = 49

k2 =i

xo =1

w=2.2
2a '= O.Ol

1

1

t
x
'x

{
N.t

:"x.

 ---:::-.-.

               c.s

          ---- D.U
         ------ I.U
     1
     5

""-×"" il,,f"5""" N'"""";g;,i...cb,

-･

.. /{, 4- . i't{L'"

.'.'  ' '･, -2'
        -- --li-

1

Fig.
 .-5.0 M
5 Bifurcation diagram
   (2a=e.Ol)

of 2-period

     e.o

ic group

10.01

t
5
i
)

5.0

o.o

    .N.         "'-b-            N.  mie N/"cNt N"X.x.
zzggiiss:-itstl-tll.ltSttJ-its;

l,'X=

.Nl2..i"i';.:.X':

                  -st2=49 N"N,ek, }N
k2 =1

xo =1

w = 2.2 2a t e.Ol

2

3

x.
   ×      x
....
  "'X･ r

･::･.. ,t:';i

5

6

  --.-
  ..--...--

×   .xX
      !x

 2 X.

 31    -.

c.s

D.U
1.U

Fig. 6 Bifurcation

   (2a=O.Ol)

-5.0

diagram

M
   '
of 3-periodic group

o.o
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10.0

pt

5:O

o.o

                                    ---- 'C.S

         ---･------N 2 -.-... D.u
  g:.. .t.iCO ,. ..Sr.(:e'i".'X-'s-x3s ..-･---･-- ru

   -------- ------N ----'---:-----. >SX
t2,.4g "'""r"r:;;::'y"'ttilii/ir::t;-"t.:･i':.-...,. ..:.f :'X'>

st:l """S'--:･:<::k.....-"" ,'"

w=2.2 2a=o.1 g
                            M -5.0 ' -1.0

                Fig. 7 'Bifurcation' diagram of 3-periodic group

                       (2a= O.1)

5. 2. Chaos Phenomena

  It is well known that there is no universal route from regular behavior to cha-

os but some rputes to chaos exist. A very popular model to chaos is said to be

a route based on a sequence of period doublings. We have showed a sequence of

period doublings depending on the systems parameters, 2a and E, in the system

expressed in equation (1). In the numerical calculations we observed next condi-

tions (1) N (8) , as deeiding the chaotic behavior.

(1) existence of prooess of period-doubling bifurcation.

(2) non£xistgnce of stable periodic solutions.

(3) Poincar6 map becomes a set of one dimensional manifolds.

(4) existence of a continuous spectrum.

(5) existence of homoclinic orbits.

(6) autocorrelation funetions decay.

(7) one of the Lyapunov exponents is positive (co) .

(8) fractal diipension is not integerM>., ･･

  Especially as to conditions (2), (3), we calculated the mapping points by run-

ning the program for 100,OOO forcing cycles and checked the periodic points
within 5,OO07b. In case the stiffness ratio is small (e2==9' ), the chaotic

phenomena appear in anarrow zone of 2a and E, and the results are shown in

Fig.8 (2a==O.Ol and E=4.0) and in Fig.9 (2a :O.1, E=3.875). When e2==25, the

chaotic zone is also limited because of the broad regions-of the stable 3-peri-

odic gr6up. One of the results'is showri in Fig.10. From Fig.11 to･ Fig.13

we showed the various ghaotic phenomena in case e2 =49.

 We show Poincar6 map in (a), enlargement of a part of Poincare map in (b),
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wave form in (c), power sbectrum (d), and autocorrelation function (e) in Fig.

11 in case 2a=O.Ol, E=4.55. In Fig.12, we present Poincar6 maps on both
sides of 3-periodic window in the case of 2a=O.1. In Fig.12 (a) Lyapunov

exponents of chaotic attractor are pti==O.127 and pt2==-O.227. In Fig.13 we have

the Poincar6 map and homoclinic orbit in the case of comparatively large

loss factor, 2a==O.3, when E=4.0.

                3.00
                gg.･,li:.:lesSll'#Ige IEii.=.,i2go

               -3-OO' -s.oo i.oo -×- zeo'
                            (a) Poincar6 map

                       E = 4.00
                ':"4, a-branen
                2.0
                                           ,"
                            w - brancA
                          "'"9
                          k2 =s 1
                          w=2.2 2az:O.Ol pte=t

                1'O-2.e x -1.o
                           (b) homoclinic orbi't

                     Fig. 8 Chaotic motion for eZ=9
                            (if==1, ta =2.2, xe :1 2a ==O.Ol, E :4.0)

3.00

l

F
a
×
×
a
l

-4.eo.

`N::,,,,,,,,,,4al...;tutM

t2 =9
 k2 =1

 xo=1
w= 2.2

E = 3.875

2a = O.1

-5.00 -x- 1.00+

Fig. 9 Po'incare' map in case
     ...e2=i25, k'=1, w=2.2, xe==1
      2ct =e.l, E==3.895

5.00
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Fig. 10 Poincar6 map in case
   e2=25, ld=1, tu=2.2, xe==1
   2a=O.15, E==4.0
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       (d) power spectrum
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                    (e) autecorrelation function

11 Chaotic phenomena in case
  e' :49, V :1, w=2.2, xe=1 ,
  2a ==O.Ql, E =4.oo
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      '
        - (b)
Chaotic motion in case
 e2==49, kl=1, w=2.2, xe=1
 2a =O.3

    X e.o
homoclinic orbit

                             6. Conclusions

  In the present paper, we describe that the period-doubling bifurcations develop

and in result the chaotic motions appear for the simplest piecewise linear sys-

tems with unsyrnmetrieal restoring force represented by two straight-line seg-

  The results are sumrnarized as follows:

             i. For the piecewise linear system, the period-doubling bifurcation

                condition is clarified. -
            ii. The period-doubling bifurcation phenomena have complex fea-

                tures of branching in small E when the nonlinearity factor e2

                <stiffness ratio) is increased while the loss factor 2ais kept

                constant.
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M. As to the chaos attractors, the rqgion of the chaos is in gener-

   al broad in E, the arnplitude of external force, when the stiff-

   ness ratio e2 is large. But, the chaotic motions are .prevented

   by stable 3-period solutions in the case of smal1 loss factor

   in magnitude when e2=25.
iv. The form of chaos attractors has relation to the fractal dimen-

 The future work includes investigation on the differences of the stiffness ratio

and coexistence of multiple steady state and the appearanceof chaos.

 Finally, it is noted that numerical calculations were performed by using ACOS-

930 at the computer center, University of Osaka Prefecture.
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