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 A rigorous formulation is presented for the guidance of light waves by the
anisotropic dielectric waveguides with index-modulated gratings, under the

most general condition of oblique propagation. An numerical method to
determine the propagation constants is formulated for the hybrid leaky waves

in an exact fashion. The accurate solutions of arbitrary level can be calculated

with increasing the matrix size necessary for the computatinos. Numerical
exampies of wave guiding properties are given for the index-modulated
waveguides consisting of lithium niobate whose optical axis makes a slanted
angle with respect to the periodic variation of the grating.

1. Introduction

  The guidance of light waves in periodic structures exhibits many interesting and

useful phenomena, and these phenomena have been employed in devices with

dielectric gratings in the fields of optics for many years. On the other side

anisotropic materials like lithium niobate are widely applied to the waveguides in

integrated optics. The anisotropic dielectric gratings are needed in the periodic

interdigitated electrode devicesi) such as swiches, modulators, mode converters

and optical computing applications. Numerous methods of analyzing these periodic

structures have been reported by using many perturbation approaches2)'`).

Recently, the rigorous methods of analyzing anisotropic gratings are reported on a

field of the scattering problems5)-9), However, very little rigorous methodiO)-i2}has

been applied on the wave guidance for the case of the oblique propagating waves or

the waveguides containing anisotropic materials. At least for the leaky waves

obliquely propagating in the anisotropic grating waveguides the rigorous formula-

tion have never been reported so far to the authors knowledge. In this paper a

method of analyzing the anisotropic waveguides with index-modulated gratings is

presented for the case of the oblique propagating leaky waves. The materials

consisting of the dielectric waveguides are arbitrary anisotropic. The analysis is the
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rigorous approach formulated in 4 unified matrix form in which the electromagnetic

fields in grating and external regions are expressed as a summation over all possible

space harmonics. Thus it is possible to obtain the accurate solutions of arbitrary

level by increasing the size of the matrix necessary for the calculation. Numerical

examples of wave. guiding properties are given for the case of index-modulated

waveguides caused by acoustic shear waves. The film and substrate regions of

waveguides are assumed to be uniaxial crystals consisting of lithium niobate. The

peculiar properties of the leaky wave due to the anisotropy of the materials are

shown.

2. Formulation of Problem

  We now consider the anisotropic dielectic slab waveguide whose film layer is

modulated by an acoustic shear wave propagating along the z-axis as shown in Fig.1.

The propagating direction of the light wave makes an angle e to the z-axis on the

y-2 plane. The acoustic waves causes a periodic perturbation in the relative per-

mittivity, and the film layer becomes the index-modulated grating with a period

equal to that of the acoustic wavelength A. The semi-infinite region above the

grating film layer is designated as the air with relative permittivity Ei, and the

substrate is an anisotropic dielectric medium with tensor permittivity E3. The

index-modulated anisotropic grating in the film is a function of both space and time
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in a strict sense. However, the grating caused by the traveling acoustic wave is

essentially stationary, since the velocity of sound is some five orders of magnitude

smaller than that of light. In this paper we use the coordinate variables normalized

by kb=2n/A, and put jkbx.x. kby.y and 1%2.2 for simplicity.

Therefore a relative permittivity tensor in the film region can be expressed as

                       e2 (2)=e-2+(SZIE2 cos(nKz) (1)

where, nK is the magnitude of the grating vector normalized by kb, and is expressed

as nK=1/A in terms of'the wavelength X of light wave and grating period zt. The

modulation factor 6 is given as the particle displacement of the acoustic wave, and

the tensor AE2 is the perturbation of the relative permittivity tensor caused by the

acoustic wave. The tensors E2 and E3 of the film and the substrate are. arbitrary

anisotropic.

  We assume that the acoustic shear wave is polarized along the x-axis. Then we

can express the particle displacement of the acoustic wave as

                      &=6sin(nK2), eiY=&=0 (2)
where 6 is the modulation factor. While we cQnsider that the,film region consists of

the uniaxial crystals, and the relative permittivity tensor is described by using the

coordinate systems (x; MZ) of the crystal as

                    Ec=diag[Eo Eo Ee], on (x XZ) (3)

where eo and Eo are the ordinary and the extraordinary relative permittivities,

respectively. The direction of the crystal axis is chosen to be an angle di to the z-axis

on the y-z plane as shown in Fig.1(b). Therefore the representation of the particle

displacement in eq,(3) can be rewritten in terms of the coordinate systems (ag ZZ)

as ,

                         el,=6sin(qg Y+ sg Z) (4)
with qg==NnKsin({b), sg=nKcos(g6). (5)
The strain tenser Sk(i=1'"v6) caused by the acoustic wave is described by

s=&==&t&=a
&= a&/ax + o&/aZ=6 sgcos(qg Y+sgZ),
&= a&/aY+ aes/ox=" qgcos(qg Y+ sgZ) ･

(6)

(7)

(8)

Consequently the change in the optical impermeability is given by

                                 6                            Aop, :2P,, Si (9)
                                j=t
where Aiji (i=1'v6) are the change in the element of optical impermeability tensor

and Rj is the strain-optic coefficients'3). In the end the change in the relative

permittivity tensor on the coordinate systems of the crystal is expressed as

                                                '                                    rAop, Aop, Aop,1

              6AE,cos(qgY+eqZ)=-ec tA77b Aop2 Aop41 Ec･ . aO)
                                    LAop, Aij, Aij,J
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Finally, we obtain the relative permittivity tensor in film with help of the coordinate

transformation between the (x; IZ) in the crystal and the (x;y,z>in the waveguide as

     ･ ' E-=RE,R-i, AE=RAE,R-i aO
with R= [i -gOg.s,di g.i2,di,] . a2)

The rotator R is related to the waveguide and the crystal coordinate system by a

coordinate rotation about the x axis.

3. Fields in grating and uniform regions

  We consider that a surface wave is incident from a uniform dielectric waveguide

upon a grating layer at an angle e with respect,-to the direction of the grating

variation as shown in Fig.1(c). The incident surface wave has a normalized propaga-

tion constant qo in the y direction. In the case of wave guidance by the grating

waveguide, qo is taken as a known parameter which has a pure real value. A

normalized propagation constant in the z direction is th which is the fundamental

space harmonic for the grating waveguide. Therefore fu is the single unknown to be

determined by the characteristic equation of the grating waveguide. The phase

constant P of the leaky wave along the direction of the propagation is･concerned

with qo and fu as

                      P/h= q,2+ {R,(co)}2 . a3)
  While the imaginary part im (th) of the normalized propagation constant in the z

direction means the attenuation constant with respect to the direction of the grating

vector. Therefore, if an angle e instead of qo is given as a prior parameter, we should

execute the trivial calculations to determine th as

                           fo =Re{&} }tane. ae
Maxwell's equations can be rewritten in terms of the coordinate variables normal-

ized by h as follows

                    curlJi'ieE=-7'u[2{IH) a5)
                    curlv[21iH=iEfa)/iPioE a6)
with y6=1/z6= V7ptII7Ei- a"
where, the time dependence exp (fot) is assumed throughout this paper. The relative

permittivity tensor E(z) is a periodic function of z, so that each element ei,J of the

tensor e can be expressed in terms of the Fourier expansion as

                       eij (z) =2 btj,mexp (]'mnK2). aat
                             m
The components of electromagnetic fields E} and M (i= t y,2) can be expressed

from the periodicity of the film region as following field expansions in terms of the

                          'space-harmonics; ･ '
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                 MoEi (`c,y,z) =2 et. (x)exp {-7'(qoy+s.z) }, ' (19)
                              m

                 VZiH} (x,y,z) =2 h. (x) exp {-1'(qoy+sinz)} eO)
                             m
with

                            &n= sb+mnK eD
Now let the truncation size of the expansions be (2M+1). We introduce the column

matrices whose･ elemets are coefficients of the expansions as

                 el= [et(-M)"'eio'･･eLM]t, on)

                 hi= [hi(-M)"'hto'"hiM]t･ (23)
Substitution of eqs. (19) and (20) into Maxwell's equations (15) and (16) yields the

following first order differential equations in matrix form;

               di/ du == .icf, f- [/l/ ), c== (g;: 8;:), e4

cii==

[ [,iq,l [ix.x.]i'[l.E.x]y-], [,..]- [,..] [q] [[e,x.x.]ii[,[.q.]]: [[;] ], es)

c,,=

[ [,.[.q]] [[,E.x.xi.-,' [[,E.x]]-[,..]-[,] [q] --[,[.q.i [::S:l [g] ]･ tz6)

Qi=
( [qiS[],][+E"xi,-.'.][Ex[y,]..] [,..]r,[...] - [,.ii][E.ei]x]Il [qq] ], <27)

G2-
[-[5il.[tgzax]iL[E::].] [,..]-, [,..]- [S] [[E,x.x.]i'[gi.]]t, ii,] ] es)

wher'e, f(x) is a 4(2M+1) × 1 column matrix with the elements described by eqs. (22)

and(23), and the matrix C indicates a 4(2M+1) ×4(2M+1) coup!ing matrix with

2(2M+1)×2(2M+l) matrices Ct.(Ln=1,2). The sub-matrices [Ei,･] (i,i=xy,z),

 [q] and [s] are (2M+1) × (2M+1) matrices, and they are written by using the
Kronecker delta (Sinn as

                     [EiJ`]= [biJ',(n-m)], mo)

[q ]= th [(Sinn] , (30)

                     [s ]= [s. cSin.]. (30
Moreover, [1] and [0] indicatetheunitandthezeromatrices,respectively,and
 [E..]-i is the inverse matrix of [ex.] . It is worth noting that the matrices [ei,･]

are composed of the Fourier coefficients of Ei,･(2). For instance, [Exy] implies the

matrix whose (m,n) element is the (n-m)th Fourier component bnv,(n-m) of Exy(z).
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For this grating, the coupling matrix C is independent of x. In this case the solutions

for the first order coupled-wave equation (24) are reduce to the eigenvalue problem

of the matrix C. Then, let {x.} be eigenvalues of the matrix C, and T be a

diagonalizer composed of the corresponding eigenvectors, and so we can transform

f(x) to g(x) by using the diagonalizer T as

                             f(x)=Tlg (x) (32)
where g(x) is the 4(2M+1) ×1 column matrix. The general solutions of the coupling
equation (24) are given by

                  f(x)=T [(Sin.exp {ixm(x-xb)}] g(x6) (gg)

where [(S)nnexp {ju.(x-ab)}] is the4(2M+1) × 4(2M+1) diagonalmatrix, and xb
is the arbitrary fixed point. This representation of the solutions in terms of g(x) may

be useful to describe the electromagnetic fields inside not only the grating region, but

also the external region such as the air and the 'substrate, since a column matrix g

(x) has a significant physical meaning described below.

  The first order coupled-wave equations (24) still hold in the uniform regions

whose relative permittivity tensor is a constant. In this case, the sub-matrices [Ei,･]

are diagonal because the Fourier series has the only zero-order term. Then all

submatrices constituting the coupling matrix C are also diagonal. We can decom-

pose the eigenvalue problem of the coupling matrix C into the 2M+1 eigenvalue

problems of 4 × 4 matrices. The eigenvalue problems of 4 × 4 matrices must be solved

2M+1 times, but this is advantageous to the computation-time in comparison with

that of the 4(2M+1) ×4(2M+1) matrix C. The elements g. of the column matrix
g mean the complex amplitude of the plane wave with the propagation constants xm

along the x-direction since the sub-matrices composing of T are all diagonal. From

the sign the eigenvalues {x.} , it is easy to determine whether the amplitudes g. are

incoming or outgoing waves with respect to the x-direction. Therefore the
eigenvalues{x.}and the amplitudes{g.}can be arranged in the order of the direction

of propagation as

                       x=(:ij･ g-(g:) (3e

where superscripts (') and (-) indicate the outgoing and the incoming waves along the

x axis. respectively. However, for m <0 and Re {sm} > 0 we must chose the improper

waves (im {s.}>o)i4).

  For the general anisotropic media without the grating, the eigenvalue problems of

the 4×4 matrices have to be determined by the numerical implementation. In the

isotropic uniform region such as region 1, the eigenvalue problems of the 4×4
matrices yield the solutions in closed form. The sorting in a similar way described

above is necessitated for x and T. In addition, when the optical axis of the uniaxial

crystal is coincided with the coordinate axis, if necessary, we can obtain the

eigenvalue solutions in the closed form such as the isotropic media.



Analysis of Oblique Pmpcrgating Leady Ve2zves ety Anisotropic

   Dielectric Vvazveguides with index-Modulated Grzztings

37

               4. Characteristic Equations of Leaky waves

 At the boundary surfaces (x= xi, i=1,2), tangential components of the fields are

continuous across these boundaries, that is,

                       fi(Xi)==f2(Xi), f2(X}i)=f3(h). (35)
For the wave guiding problems by dielectric waveguides the incoming waves do not

exist in region 1 and 3, and we can put as

                    gi'=g3'== [0･･･0･･･0･･･0･･･0･･･0]t. (36)
Therefore the boundary conditions at the each surface yield the homogeneous

    .equatlon as

             T, [g"6Xi)]= T2 [(sh,nexp{jx2m(xi-`ii2)}] [ i:[IIII], (37)

                       T, [lil:[lllil]-T, (..(i.)) (3s)

where, unknown valuables are gi'(xi), g2'%) and g3-(xle). Then the dimension of

the homogeneous equation is 4(2M+ 1) × 2. We can systematically calculate this large
system of equations by using the algorithn of the successive elimination, even if the

number of layered regions increases more than three regions. Consequently the

characteristic equation which determines the normalized compiex propagation

constant s o is given by

                                    ' fg,+) .
              det. [w]=o, [vv] l.E;:1=o. , (3g)

                                               k g3-J

The determinant of the matrix [W] is a function of the complex value s., then we

must search for det. [W]=0 on the so complex plane by using the numerical

iteration methods such as the two-dimensional Newton method.

5. Numerical calculations

  Numerical calculations were performed for the anisotropic dielectric waveguides

with the film and substrate consisting of lithium niobate(LiNb03). We assumed that

the principal relative permittivity of LiNb03 for an optical wavelength of O.633 pt m

is given by

                      efo=5.27, Efe=4.88 (film), "O)

                      Ese=5.23, E,e=4.84 (substrate). ' UD
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The relative permittivity in the film region is only a little percentages larger than

that in the substrate in order to fabricate the waveguides. The optical axis of the

uniaxial crystal consisting of the film and substrate makes an angle¢ to the 2 axis

on the y-z plane, and the inclination angle of the propagating direction of the light

is set to be 0 from the z axis as shown Fig.1(b) and (c).

  We first show the dispersion curves of the anisotropic waveguide without the

acoustic modulation(6=0) in Fig.2(a), and the variation of phase consants for the

inclination angle of crystal axis in Fig.2(b). In this case the guided modes are

propagating along the z axis (e=0), so that q.=0 and P/h=Re{sb}. It can be seen

that the phase constapts of TM-like modes do not fluctuate for a change of the

inclination angle of the c-axis, while those TE-like modes result in large variations.

Although we use the notations of TE-like and TM-like for weakly hybrid modes in

Fig.2, it is worth noting that two modes become the complete hybrid modes at the

near point of the degeneration.

  Figures 3(a) and (b) show the propagatios constants of leaky waves as a function

of modulation factor for the angle of propagation e=0". Here, the inclination angle

of crystal axis is di =5", and the thickness of the grating region is d/a =3.0.
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The normalized grating vector is set to be nK=X/A :3.a so that leaky waves

radiate a single beam from the film to the substrate. Moreover, it is worth noting

that the modulation factor 6 is the normalized particle displacement of the acoustic

wave. At the degenerate point of two phase constants, the attenuation constants of

two hybrid leaky waves change abruptly and exchange these values each other.

  Figures 4(a) and (b) show the propagatios constants for the oblique propagation of

leaky waves. Here, we use the normalized phase constant P/ko along the,direction

of the propagation and the attenuation constant im(s.) along the z axis, since the

leaky waves are obliquely propagating under the condition im (qo)= 0.

  Next we show the variations of the propagation constants for the period of
acoustic waveS for the case of the angle of propagation e==Oe in Fig;5(a) and(b).
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Similarly for the obique propagation of leaky waves the curves are shown is Fig.6(a)

and (b). Where the modulation factor is 6= O.(22; the inclination angle of crystal axis

is g6 =5e and the thickness of the grating region is d/A = 3.0. It can be seen that the

phase constants decrease near the stop band nKii4.5Cl5; while the attenuation

constants change rapidly in the 1-beam radiation region.

  We finally show the･accuracy of the solution by the truncation size of the field

expansion in table 1. Here,the parameters correspond to the grating stuctures used

in Fig.4 except for the fixed value 6=O.(22. The convergence of the propagation

constants for truncation size is very fast for such a small modulation factor.

Table 1. Aqcuracy of the solutions by the truncation size of the field expansions.

            6=O.(]a e=100. di=5', dlA=3.a , nK=3.0

(TEo-like)I(TMo-like)
2M+1 PlkoIm(so)l'P/koIm(so)

31 2.29128594476,3.309E-07I2.29056561679,5,535E-06

2.29128578932,3.309E-07i2.29056593424,5.539E-06
2.29128578934,3.309E-07i2.29056593414,5.539E-06
2.29128578934,3.309E-07l2.29056593414,5.539E-06

11 2.29128578934,3.309E-07i2.29056593414,5.539E-06
13

2.29128578934,3.309E-07i2.29056593414,5.539E-06'
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                             6. Conclusions

  The formulation of rigorous numerical method on grating waveguides has been

presented under the most general conditions such as anisotropic waveguides de-

scribed by arbitrary tensor permittivities and oblique propagation with respect to

the periodic variation of the grating. This formulation has been applied to the

analysis for oblique propagating leaky waves in anisotropic dielectric waveguides

with the index-modulation caused by the acoustic shear wave. In this method any

arbitrary level of accuracy can be obtained by increasing the number of space

harmonics retained in the numerical calculations. Although this analysis has been

performed only for the guidance of light waves, this method may be applied to the

analysis for the three dimensional scattering problems from the anisotropic media.

  Finally, the authors wish to express their thanks to Prof. S.Sawa, Mr.S.Mori and

Dr.M.Kominami for his valuable suggestions.
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