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Learning Algorithms of Neural Networks for Interval-Valued Data

Mizuho OMAE*, Ryosuke Fujioka**, Hisao ISHIBUCHI**
and Hideo TANAKA**

(Received June 15, 1991)

In this paper, we propose a classification method using a multilayer neural
network for two-group discriminant problems where attribute values of each
sample are given as intervals. First, by extending a real-valued activation
function in a neural network to an interval-valued function, we show an
architecture of the neural network which can deal with interval-valued data.
Next, we derive a learning algorithm of the neural network from a cost
function which is defined by the maximum squared error beween an interval-
valued output and a target output. The derived algorithm can be viewed as an
extension of the back-propagation algorithm to the case of interval-valued
data. The proposed method is illustrated by simulation results for numerical
examples. Last, we show a general formulation of the cost function and derive
a general learning algorithm of the neural network for interval-valued data.
The generalized cost function is defined as the weighted sum of the maximum
and minimum squared errors between an interval-valued output and a target
output.

1. Introduction

In conventional discriminant problems, attribute values of each sample are usually
given as real numbers. There are, however, many cases where attribute values can
not be represented by real numbers since the values are fluctuating or can not be
measured precisely. In these cases, it may be appropriate to represent the attribute
values by intervals. For a discriminant method of interval-valued data, Ishibuchi,
Tanaka and Fukuoka? proposed an LP based method using a linear interval func-
tion. This method can apply only to linearly separable interval-valued data.

In this paper, we propose a two-group discriminant method for interval-valued
data using a feedforward neural network. First, we show an architecture of the
neural network which can deal with interval-valued data as input vectors. This
network is obtained by extending the real-valued activation function of each unit to
an interval-valued function. The proposed network can be viewed as a nonlinear
interval system which maps an interval vector into an interval. Next, we define a
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cost function, which should be minimized in learning of the neural network, by the
maximum squared error between an interval-valued output and a given target
output. We derive a learning algorithm for interval-valued data from this cost
function. The derived algorithm can be regarded as an extension of the back-
propagation algorithm? to the case of interval-valued data. Furthermore, to illus-
trate the proposed algorithm, we show simulation results for numerical examples.
Last, we show a general formulation of the cost function and derive a general
learning algorithm of the neural network for interval-valued data. The generalized
cost function is defined as the weighted sum of the maximum and minimum squared
errors between an interval-valued output and a target output.

2. Back-Propagation Algorithm

Before we propose a learning algorithm for interval-valued data, we briefly
describe a two-group discriminant method for real-valued data using the back-
propagation algorithm.

Let us assume that m patterns that are divided into group 1(G1l) and group 2(G2)
are given. It is also assumed that n attribute values of each pattern are given. Let
n attribute values of the p-th pattern be x,=(x;,,...,%»). A two-group discriminant
problem can be viewed as finding a discriminant rule that divides an »#-dimensional
pattern space into two areas from the given data {x;,X,,....Xn} -

Fig.l1 Neural network

To find a nonlinear discriminant rule for a two-group discrimination, we employ
a three-layer feedforward neural network with » input units and a single output unit
as shown in Fig.l. The number of hidden units, denoted by »-, can be arbitrary.
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When the n-dimensional input vector X,=(%,,....Xsn) is presented to the neural
network in Fig.1, the input-output relation of each unit is calculated as follows.

Input units  : 0p=Xp, 1=1,2,..0. (1)
Hidden units : op; =f(net,;), j=1,2,-,n,, (2)
nety; = élw,-iopi +6,. (3)
Output unit : o,=f(net,), {4)
net, ———glw,-opj +4, {5)

where f (net) is the following activation function.
f(net)=1/ {1+ exp (—net)} . {6)

The learning of the neural network for the p-th input vector x, is to minimize the
following cost function.

ep=(to—05)°/2, (7)

where 1, is a target output defined as
1 if p € Gl,

t":{o if p € G2. ®
Therefore the weights w, and w;; are changed according to the following rules®.

Apw;=7(—2ep/ OW;)= 70,05, (9)

Apwyi = n(— 2ep/ dW;1) = 765;0p1, 10
where # is a learning rate. &, and &, are as follows.

> =(tp —0p)0p(1—05) , an

8oy = Op; (1 = 0py) S W;. 12

Rumelhart et al.? introduced the following method with a momentum term in
order to accelerate the learning.

AW](t+ 1): ﬂ(prp] +a/AW,(t), (13)
Aw;(t+1)= 76,05 + a Aw;(t), 19

where ¢ is a presentation number and « is a constant corresponding to the momen-
tum term. The biases 6 and 6 are changed in the same manner as the weights w; and
Wi,

An example of a two-group discrimination using the neural network is shown in
Fig.2, where the patterns of group 1(G1l) and group 2(G2) are denoted by closed
circles and open circles, respectively. The boundary curve is drawn by plotting all
the points in the pattern space [0,20] X [0,20] for which the output values from
the neural network are close to 0.5. This means that the output values corresponding
to the input vectors on the boundary curve are close to 0.5. Figure 2 is a simulation
result of learning of the neural network with five hidden units. The learning is
iterated 2,000 times for each pattern with =0.5 and a=0.9.
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Fig.2 Two-group discriminant analysis by means of a neural network

3. Discriminant Analysis of Interval-Valued Data

In Section 2, we briefly mentioned the two-group discriminant method for real-
valued data using the feedforward neural network. In this section, we extend the
discriminant method to the case of interval-valued data where attribute values of
each sample are given as an interval vector. In other words, we generalize the
back-propagation algorithm to cope with interval-valued data.

3.1 Interval-valued data

Suppose that m patterns divided into group 1(G1) and group 2(G2) are given. It is
assumed that the attribute values of each sample are given as intervals. Let the
interval X,; denote the i-th attribute value of the p-th pattern. Then the attribute
values of the p-th pattern are denoted by the interval vector X,=(X,,..., Xpn).
Therefore our discriminant problem is to find a discriminant rule that divides the
n-dimensional pattern space into two areas from the given interval-valued data

(X, X0 Xm}

3. 2 Real interval arithmetic

In this paper, we denote intervals by uppercase letters A,B,...,Z. An interval is
represented by its lower (left) and upper (right) limits. For example, X,,= [%,;",
Pl I

The generalization of ordinary arithmetic to closed real intervals is known as real
interval arithmetic. For complete details, see Alefeld and Herzberger®. The basic
definition is as follows®.

{definition>
Let * € {+,—,+,=} be binary arithmetic on the set of real numbers. If 4 and
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B are closed real intervals, then

A % B= {axb | aEA, bEB} {15
defines binary arithmetic on the set of all closed real intervals. In the case of
division, it is assumed that 0&B.

The operations on intervals used in this paper can be explicitly calculated from the
definition as

A+ B= [al, av']+[bt, bY]

= [at+b, a¥+bY] 9

>
I

os]
I

[aL, aU]_[bL, bU]

[at—bY, a'—b'], 1

[mat, mav] for m=0,
me+ A=m- [al, aY]= 18
[ma!, ma'] for m<0,

where m is a real number.

3. 3 Architecture of neural network

For the discriminant analysis of interval-valued data, we use a three-layer feedfor-
ward neural network with one output unit as shown in Fig.1. Since attribute values
of each pattern are given as intervals, the neural network should be able to deal with
the interval vector X,=(X,,,...,Xps) as an input vector. Therefore we extend the
input-output relation of each unit in Section 2 to the interval-valued relation as
follows.

Input units  : Oy =X, i=1,2,...n. (19
Hidden units : Oy =f(Net,), i=1,2,.1n,, @0
Net,, :éw,,opi +6,. Q)
Output unit : O, =f(Net,), @)
Net,= £ w,0,+9, ®)

where the activation function f (*) of the hidden units and the output unit is the
logistic function in Eq.(6). Figure 3 shows the interval input-output relation of the
hidden units and the output unit. The interval input-output relations in Eqs.(19—(3)
can be explicitly calculated from the interval arithmetic in Section 3.2 as follows.
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Fig.3 Interval-valued activation function

Input units : opt=xp%, i=1,2,..,n, 24
00V =%pY% i=1,2,..,0. )
Hidden units : o,*=f(nety;"), j=1,2,...,n,, 26
0p Y =f(nety,Y), j=1,2,...1,, )
netij:'§1WJ|OPQL+I§IW“OP|U+ aj, (28)
w;; =0 w; <0
l’letij=lng“OmU"'lng”Op]L'i' 0]. (29)
Wii =0 Wi <0
Output unit : o,-=f(net,"), ‘ (30
0,V =f(net,"), ’ @)
net,= ¥ w,00,"+ £ w,0,°+6, @
W;j =0 Wj <0
netp”=§lw,op,”+§lw,op,'-+ 6. )]

W,éO Wj<0

3. 4 Learning algorithm
Using the interval output O, corresponding to the input vector X,, we défine a cost
function ¢, for the pattern p as follows.
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ep=max {(t,—0,)?/2 | 0,€0,}
(tp—o0p1)?/2 if t,=1,

{ (te—0,Y)?/2 if t,=0.
This cost function is defined as the maximum squared error between the interval-

valued output O, and the target output %. The learning of the neural network is to

minimize the cost function of Eq.34. The weights w; and w;, are changed according
to the following rules.

Apw; = 5(— de,/ owy), %)
AWy =5(— e,/ OwWy), (36)

where 9¢,/8w; and de,/ dw;; are calculated as follows.

34

(1) aep/awj
@ 1If t,=1 and w;=0, then

O _ 9 Ly
ow ~ow, {(to—0p4)?/2}

L L
— o {(tp_opL)z/Z} __a_OP_ a_ngtL

T 90," onet," ow;

=—(tp,—0p")0p (1 —0p")0p;". 3N
@ If t,=1 and w,;<0, then

2 —(t, 0,50, (1~ 0, 0" 3

® If t,=0 and w;=0, then

ade 2
_Yp - —n )2
aw, oW, {(tp Op ) /2}

__2o e 90, 2nety”
d0,Y {(t—0,%)/2} onet,’ ow;

=—(t,— OpU)OpU(l - OpU)Opj v, 39
@ If t,=0 and w,;<0, then
20— (£, 0,%)0,°(1 — 0,205 w0

aWj

(2) aEp/aWji
@ If t,=1, w,20 and w;; =0, then
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ﬁLz 9 {(tp_OpL)z/z}

oWy owy
__0o i 20" onet," 20p"  dnetyt
do,t {t,—o,y/2} onet,t Aoyt onety;* awy,
= —(tp, —0p")0p (1~ 0p")W;0p; (1 —0p; “)op L. @

@ If t,=1, w;=0 and w;;<0, then

==t~ 0,051~ 0,w;05"(1 =05 oy 0
il

® If t,=1, w;<0 and w;;2 0, then

ﬁLz ) {(tp—op")z/Z}

awjl aW“
= a - L)2 aoPL anetpL aopju anetﬂ_u_
aopL {(tp Op ) /2} anetp'- aOp,U anetp,” aw,,
= —(tp—0,")0,"(1 — 0, )W, 05, °(1 — 055 Y)0p V. )

@ If tp=1, w,<0 and Wj,'<0, then

aa\fl” = —(t, —0p")0p " (1 — 05" )W;05;"(1 — 0p; V)05, . )

® If t,=0 w,20 and w;;2 0, then

o& __ 9 __ {(t,—0,9)2/2)

aW“ aW“

= o —a 02 aOPU anetpU aopju anetp,”
aopu {(tp Op ) /2} anetpu aONU anetpju aW“
= —(t, — 0,)0,"(1 — 0,°)W;0p; (1 — 0p;Y)0p, V. )

® If t,=0, w;20 and w;;<0, then

gv?l-i =" (t" - OPU)OP ‘a- 0, )w; OpiU(l —0p;V)0pst. 0
j

@ If t,=0, w;<0 and w,;;=0, then
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_Q_eL: a {(tp_opU)Z/z}

OW;j; A
__9 —a )2 90," dnet," 905" onet,;"
90," {(tp Op )/2} dnet,’ aOij anet,;t ow,
= _(tp _OPU)OPU(l _OpU)WjOPj L(l — Opj L)OpiL. (47)

If t,=0, w;<0 and w;;<0, then

—g—;’fi—= —(t,— 0,05 (1 — 0, )W 05" (1 — 0p;)0p; . “®
J

The following momentum terms can be introduced in the same manner as Rumel-
hart et al?.

Aw;(t+1)=5(— de,/ dwW;)+ a Aw;(t), {9

AWj{(t+1)=ﬂ(_aep/ale)+ a’Ale(t). (50)

The biases 6 and ¢, are changed in the same manner.

4. Numerical Examples

In this section, we illustrate the proposed discriminant method of the interval
valued data using numerical examples.

[Example 1] ;
Suppose that attribute values of six patterns are given as shown in Table 1.

Table 1 Interval-valued data in Example 1

Group 1 (G1) Group 2 (G2)
NO. X1 X2 NO- Xl XZ
1 [1, 5118, 14] 4 [8, 14] [16, 20]
2 [4, 10] [1, 5] 5 [13, 19] [1, 3]
3 [6, 12] [9, 11] 6 [14, 18] [5, 15]

First, we apply the learning algorithm proposed in Section 3.4 to this example
using the neural network with five hidden units. The algorithm is iterated 2,000 times
for each pattern with « =0.9 and =0.5. By plotting all the points in the pattern
space for which the output values from the neural network are close to 0.5, we can
draw the boundary curve as Fig.4. We also show the interval-valued outputs corre-
sponding to the given interval input vectors together with the target outputs in Table
2. We can see from Fig.4 and Table 2 that the neural network trained by the
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proposed algorithm can discriminate all the given interval-valued data correctly.
Next, in order to compare the original back-propagation algorithm with the

proposed algorithm, we apply the back-propagation algorithm to this example. Since

the original back-propagation algorithm can not deal with interval-valued data, we

use the four vertexes of each of the given six interval input vectors. The neural

network with five hidden units is trained 2,000 times using the back-propagation

algorithm for each vertex with the same parameterization as the proposed algorithm.

%2

I
I
-

10

P N Y T 1
%] 19 20

LI B AL B T B R N

Fig.4 Simulation result after 2,000 iterations of the proposed
algorithm for the interval-valued data in Example 1

Table 2 Interval-valued outputs corresponding to the input vectors given in Table 1

Group 1 (G1)
Target output=1

Group 2 (G2)
Target output=20

Interval-valued

Interval-valued

No. output No. - output

1 [0.99, 1.00] 4 [0.00, 0.02]
2 [1.00, 1.00] 5 [0.00, 0.02]
3 [0.96, 1.00] 6 [0.00, 0.02]

The boundary curve corresponding to the output values close to 0.5 is shown in Fig.5.
We can see from Fig.5 that the neural network trained by the back-propagation
algorithm discriminates all vertexes of interval vectors correctly, but does not
discriminate all the given interval vectors. Of course, if we use many other points
included in the interval vectors for the learning of the neural network, all the given
interval-valued data may be discriminated correctly. But in such a method, many
points are needed for each interval vector. Actually, if we use the vertexes and the
midpoints of intervals as shown in Fig.6, the neural network should learn 3" points
for an n-dimensional interval vector. Therefore the learning using many points in
each of the given interval vectors may require enormous learning time especially in
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the case where the dimension of the pattern space, i.e., the number of attributes is
large.

g

20

10

LA e A NI B

e ....|.|.,Lm

[ 10 &

Fig.5 Simulation result after 2,000 iterations of the back-propagation

algorithm for all vertexes of interval-valued data in Example 1
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Fig.6 Simulation result after 2,000 iterations of the back-propagation algorithm

for all vertexes and midpoints of inteval-valued data in Example 1

[Example 2]

Since the proposed algorithm is the generalization of the back-propagation algor-
ithm to the case of interval-valued data, it can deal with interval-valued data where
some attribute values are given as real numbers. An example of such data is shown
in Table 3.

We apply the proposed algorithm to the example in Table 3 using the neural
network with five hidden units. In this case, we regard a real number x as a
degenerated interval [x, x]. The algorithm is iterated 2,000 times for each pattern
with «=0.9 and #=0.5. The boundary curve corresponding to the dutput values
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close to 0.5 is shown in Fig.7. We can see from Fig.7 that the neural network can
discriminate both interval-valued data and real-valued data correctly.

Table 3 Interval-valued data and real-valued data in Example 2

Groupl (G1) Group2 (G2)
No. X, X; No. X X;
1 [2, 10] [2, 10] 4 3 15
2 13 5 5 11 16
3 13 11 6  [16, 20] [2, 20]
®2
20

1@

Illl]lll‘lllIlllllllI

NPT BV BT RETY | AP RPETSr | %1
%] 10

Fig.7 Simulation result after 2,000 iterations of the proposed algorithm
for the inteval-valued data and the real-valued data in Example 2

5. General Formulation of Cost Function

In Section 3, we define the cost function as the maximum squared error between
the target output and the interval-valued output from the neural network. In this
section, we define a general cost function and derive a learning algorithm. The
generalized cost function is defined as the weighted sum of the maximum and
minimum squared errors between the target output and the interval-valued output
from the neural network. We define the following cost function.

€, =pf * max {(tp_op)2/2 I OPEOP}
+(1—8) * min {(t,—0,)%/2 | 0,€0,}

B {ﬁ(tp—opL)2/2+(1—/3)(tp—o,,U)Z/z if t,=1,
Blto— 0, /24 (1= B)t,—0p")/2  if t,=0),
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where 8 is the constant within the closed interval [0,1] . This cost function is
coincident with the cost function in Section 3 in the case of 8= 1.00. In the case of
B=0.00, Eq.6) is the minimum squared error between the target output % and the
interval-valued output O, from the neural network. We show the learning algorithm
based on the cost function defined by Eq.6]) in Appendix.

We apply the learning algorithm based on Eq.6]) to the data in Example 1 using
various values of 8 in order to investigate the effect of 8 on the learning speed of
the neural network. Using the neural network with five hidden units, the learning
algorithm with #=0.9 and = 0.5 is iterated until the sum of cost functions:

€sum — pgl €p (52)
is less than 0.01.

We show the number of iterations for esyy < 0.01 in Table 4. From Table 4, we can
see that the value of 8 has large effect upon the learning speed of the neural
network. Since the cost function in the case of #=1.00 is the same as in Section 3,
we obtain a similar result as Fig.4 for 8= 1.00. For the cases of 8=0.75, §=0.50,
B=0.25 and 8= 0.00, we show the results in Figs.8, 9, 10 and 11, respectively. These
results show that the neural network after learning can discriminate the given
interval-valued data correctly in the case of £>0.00. In the case of 8=20.00,
although the sum of the cost functions is very small (i.e., 0.01), the neural network
can not discriminate the given interval-valued data correctly (see Fig.11). From these
results, we can see that it is proper to set §= 1.00 for the data in Table 1. We obtain
a similar result for the data in Table 3, that is, it is also proper to set 8= 1.00.

Table 4. Number of iterations for esyu <0.01

8 1.00 0.75 0.50 0.25 0.00
Tterations 2,049 4,546 82,890 5,145 41
A2

1||v||||1l

10

T T T

A
s

Fig.8 Simulation result with §=0.75

%1
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Fig.9 Simulation result with 8=0.50
Yo
R
10
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Fig.10 Simulation result with #=0.25

T T T T T

Fig.11 Simulation result with £=0.00
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Next, we apply the same algorithm to the data in Table 5. In Table 5, it should be
noted that the given data have an overlap between two groups. Accordingly, the
neural network can not discriminate all the given data correctly.

Table 5 Overlapping data

Group 1 (G1) Group 2 (G2)
No. X X, No. X X,
1[4, 8] [12, 20) 5 [8, 12] [6, 10]
2 [2, 4]0[2, 8] 6 [16, 20] [8, 10]
3 [6, 101 [4, 8] 7 [18, 20] [12, 20]
4 12, 18] [2, 4] 8 [12, 16] [16, 20]

We show the results after learning using various values of £ in Figs. 12,13,14,15
and 16. All of these figures are obtained after 20,000 iterations of the learning
algorithm. From Figs. 12,13,14,15 and 16, we can see that the discrimination result
with #=0.5 is more proper than that with 8= 1.00.

From these simulation results mentioned above, we can see that 8= 1.00 may be
proper for the data with no overlap and may not be proper for those with overlaps.

16

L S L IR A IR

.1..1....1....1.,..\\3{1

a 1@ s

Fig.12 Simulation result for overlapping data with #=1.00
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Fig.13 Simulation result for overlapping data with £=0.75
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Fig.14 Simulation result for overlapping data with 8=0.50
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Fig.15 Simulation result for overlapping data with #=0.25
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Fig.16 Simulation result for overlapping data with 8=0.00

6. Conclusion

In this paper, we proposed a classification method using a multilayer neural
network for two-group discriminant problems where attribute values of each sample
are given as intervals. The derived algorithm can be viewed as an extension of the
back-propagation algorithm to the case of interval-valued data. Furthermore, we
illustrated the proposed method and demonstrated its classification power using
simulation results for numerical examples. Last, we showed a general formulation of
the cost function defined by the weighted sum of the maximum and minimum
squared errors between the interval-valued output and the target output.The learn-
ing algorithm based on the generalized cost function was also derived.

Appendix: Generalized learning algorithm

The learning of neural network is to minimize the cost function of Eq.6l. The
weights w; and w;,; are changed according to Eqs.@9 and 6. 3¢,/ 8w, and 8e,/ dw;; are
calculated as follows.

109
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(1) 3e,/ow;
@ If {,=1 and w;=0, then

9& _, 90 —a L)2 - — U)2
—a;V;L—ﬂ W, {(to—0p")?/2} +(1 ﬂ)awj {(tp,—0pY)%/2}

aopt onet,"
L)2 P P
aop {(ts—0p")%/2} dnet, ow;

e 90,Y onet,"
+1= Aoy to—0p/2) — 2 208

=—B(t, —0,")0,"(1— 0, )0p"

— (1= B)t, —0pY)0, (1 —0,Y)0y,;". (A—-1)
® If t,=1 and w;<0, then
=~ Alts— 0,051 010"
— (1= Bty —0pY)0p"(1 — 0, )0 . (A—2)
® If t,=0 and w;20, then
98 _ 5 0 (0 _ vy P - B PRy
aw, 'Baw, {(t,—0pY)?/2} +(1 ﬁ)aw, {(to—0p4)%/2}
—p 9 —a U2 90p" dnet,"
ﬂaop” {(t—0p")/2} onet,Y ow;
Ly do," onet,"
+(1- /3) — {(t,—0,1)%/2} Bnet,t oW,
=—B(ts —0,")0;" (1 —0p%)0p;"
—(1— BNty —0p )0 (1 — 0, )0y . (A—3)
@ If t,=0 and w; <0, then
—g\i’?—: — Bt —0,Y)0, (1 —0,%)0,"
(A—4)

== B)t,—0p")0, (1 — 0, 0",
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(2)  Bep/ Bw;:
@ If t,=1, w;=0 and w;;20, then
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oe o) 2
Y€ _,p 9 A L2 P W = A U)2
aw,  Poaw, {(te—0,")?/2} +(1 ﬂ)aw“ {(to—0,9)%/2}
_ 4.0 e 20," onet," 20p;" onety; -
ﬁaOpL Or ) /2} anetp" aOPjL anetij AT
o 20," onet,’ 20" onety;"
+a-= ﬂ) {(t,—0p")%/2) onet,V 20, onety;Y dw;;
=—B(t,—0,")0,"(1 —0p )W, 0p; (1= 0p; )05 "
_(l_ﬁ)(tp_opu)opu(l_OpU)WJ'OPJ‘U(l—Oij)OplU- (A_S)
@ If t,=1, w;=0 and w; <O, then
ﬁL— L L — L L L U
E) =—B(t,— 0p")0p"(1—0p")W;0y; (1—0p5")0p:
Wit
— (1= B)t,—0,Y0,"(1—0,Y)W;05;"(1— 0p;Y)Ops ™. (A—6)
® If t,=1, w;<0 and w;; =0, then
_a_gL—- {(t _0L2/2}+(1 ﬁ—“‘ { »—O0 U)Z/Z}
aW” aW i P P P
_, 0 e dop" dnet," 205" onety; Y
ﬁa L {to—0,%/2) dnet," 30y anet,;" oWy
_ s 90," dnet,” oyt onet,;-
- ﬁ) {to—0,/2} onet,’ dopt  dnetyt AW
=—B(t,—0,")0,"(1 —0p")W;0p;°(1 — 05 )05y
'_(1—ﬁ)(tp_0pu)0pu(1_OpU)Wjoij(l_Oij)OpiL- (A—7)
@ If t,=1, w;<0 and w;;<0, then
aep e L L 1_ L U 1_ U L
aW“ — Bty — 0p")0, (1 —0p")W;0p; (1—0p;Y)0ps
_(1_5)(tp—OPU)OPU(l_OpU)WjOPjL(l_Oij)Op1U~ (A—8)
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® If t,=0, w;20 and w;;Z0, then

ae = i — 2 -— ...a_ — Ly2
FVZ__/SBWH {6 0,%%/2}+(1 ﬂ)aWn {t—0,"/2}

=62 —0,Y)? 90, _dnet,” _30,"  dnety"
ﬁaop Op ) /2} anetp” aONU anetpju aW“
L L L L
=B, — {(tp—0p")?/2} 90p Onet, 30y dnet,,

onet,t o0t onety;t ow;,

== Bty —0,")0,"(1—0,")W;0p;"(1 — 0p;")0p ¥

— (1= B)(ts —0p")0p (1 — 0, )W;0p; (1 — 0ps-)0ps - (A—9)
® If £,=0, w;20 and w;;<0, then

oe
EVP_= — Bty —0p")0, (1 — 0, )W;0,,%(1 —0p; Y)op
i

—(1— Bty —0p1)0, (1 — 0,1 )W 0p;(1 — 0551 )0p, V. (A—10)
@ If t,=0, w;<0 and w;20, then

0¢ _, 9 o 8 e
awy ~Paw, (tmo/21+1=B5 - {(t:—0,1)/2}

-39 — U)2 90" onet," 20, onet, "
ﬂao"u {to=0p%7/2) onet,’ 90," onet,;" oWy
L L v N
TA=A5, T — {(t,—0,")?/2} 90p onet, 30y, dnet,,

dnet,t 20" onet,;’ ow;;

= —B(ts — 05")0,"(1 = 0,")W;05; (1 — 0p; )0 -

—(1—B)t,—0p )0 (1 — 0,1 )W;0p; (1 — 0p;Y)0p, V. (A—-11)
If t,=0, w;<0 and w;;<0, then
ae —_ U U 1 U L 1
aw“ — B(t, —0,%)0, (1 — 0,Y)W;0p; (1 — 0p; )0,

—(1—B)tp —0p")0p (1 — 0,1 )W;0p; Y (1 — 0p;V)0ps . (A—12)
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