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Learning AIgorithms of Neural Networks for Interval-Valued Data

Mizuho OMAE", Ryosuke FuJIoKA"", Hisao IsHIBucHi"'

               and Hideo TANAKA""

(Received June 15, 1991)

  In this paper, we propose a classification method using a multilayer neural

network for two-group discriminant problems where attribute values of each
sample are given as intervals. First, by extending a real-valued activation
function in a neural network to an interval-valued function, we show an
architecture of the neural network which can deal with interval-valued data.

Next, we derive a learning algorithm of the neural network from a cost
function which is defined by the maximum squared error beween an interval-
valued output and a target output. The derived algorithm can be viewed as an

extension of the back-propagation algorithm to the case of interval-valued
data. The proposed method is illustrated by simulation results for numerical
examples. Last, we show a general formulation of the cost function and derive

a general learning algorithm of the neural network for interval-valued data.

The generalized cost function is defined as the weighted sum of the maximum

and minimum squared errors between an interval-valued output and a target
output.

1. Introduction

  In conventional discriminant problems, attribute values of each sample are usually

given as real numbers. There are, however, many cases where attribute values can

not be represented by real numbers since the values are fluctuating or can not be

measured precisely. In these cases, it may be appropriate to represent the attribute

values by intervals. For a discriminant method of interval-valued data, Ishibuchi,

Tanaka and Fukuoka'} proposed an LP based method using a linear interval func-

tion. This method can apply only to linearly separable interval-valued data.

  In this paper, we propose a two-group discriminant method for interval-valued

data using a feedforward neural network. First, we show an architecture of the

neural network which can deal with interval-valued data as input vectors. This

network is obtained by extending the real-valued activation function of each unit to

an interval-valued function. The proposed network. can be viewed as a nonlinear

interval system which maps an interval vector into an interval. Next, we define a
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cost function, which should be minimized in learning of the neural network, by the

maximum squared error between an interval-valued output and a given target

output. We derive a learning algorithn for interval-valued data from this cost

function. The derived algorithm can be regarded as an extension of the back-

propagation algorithm2> to the case Of interval-valued data. Furthermore, to illus-

trate the proposed algorithm, we show simulation results for numerical examples.

Last, we show a general formulation of the cost function and derive a general

learning algorithm of the neural network for interval-valued data. The generalized

cost function is defined as the weighted sum of the maximum and minimum squared

errors between an interval-valued output and a target output.

2. Back-Propagation Algorithm

  Before we propose a learning algorithn for interval-valued data, we briefly

describe a two-group discriminant method for real-valued data using the back-

propagation algorithm.

  Let us assume that m patterns that are divided into group 1(Gl) and group 2(G2)

are given. It is also assumed that n attribute values of each pattern are given. Let

n attribute values of the P-th pattern be xp= (2tlpi,...,xpal. A two-group discriminant

problem can be viewed as finding a discriminant rule that divides an n-dimensional

pattern space into two areas from the given data {xi,x2,･･.xm} ･
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 To find a nonlinear discriminant rule for a two-group discrimination, we employ

a three-layer feedforward neural network with n input units and a single output unit

as shown in Fig.1. The number of hidden units, denoted by n2, can be arbitrary.
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When the n-dimensional input vector xp==(2xlp,,...,xb.) is presented to the neural

network in Fig.1, the input-output relation of each unit is calculated as follows.

     Input units :opi=x,i, i=1,2...n. (1)
     Hidden units:o,j =f(net,j), j=1,2,･'',n2, (2)

                   net,, =i2.,w,iopi+ 6}･ (3)

     Output unit :o,=f(net,), (4)
                   net, :j¥,w,opj+e, (5)
where f inee is the following activation function.

     f(net)=1/ {1+an (-net)}. (6)
  The learning of the neural network for the P-th input vector x, is to minimize the

following cost function.

where oj is a target output defined as

              if pE G2.         ko

Therefore the weights wj and wji are changed according to the following rules2).

      A,wj=ij(- Oe,/awj)= op(Sbo,j, (9)
      A,wj,= op(- ae,/awj,)= op(sbjo,,, aO)
where op is a learning rate. of and ofj are as follows.

      (Sb= (t,-o,)o,(1-o,), (ID
      (Si,j=o,j(1-o,j)(Sbwj. (12)
  Rumelhart et al.2) introduced the following method with a momentum term in

order to accelerate the learning.

      Awj (t+1)= op(Sb o,j +aAwj (t), (13)
      Awj,(t+1)=opcsi,jo,,+aAwj,(t), a4
where t is a presentation number and a is a constant corresponding to the momen-

tum term. The biases e and e are changed in the same manner as the weights wj and

WJ'i'

  An example of a two-group discrimination using the neural network is shown in

Fig.2, where the patterns of group 1(Gl) and group 2(G2) are denoted by closed

circles and open circles, respectively. The boundary curve is drawn by plotting all

the points in the pattern space [O,20] × [O,20] for which the output values from
the neural network are close to O.5. This means that the output values corresponding

to the input vectors on the boundary curve are close to O.5. Figure 2 is a simulation

result of learning of the neural network with five hidden units. The learning is

iterated 2,OOO times for each pattern with ij=O.5 and a=0.9.
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Fig.2 Two-group discriminant analysis by means of a neural network

             3. Discriminant Analysis of Interval-Valued Data

  In Section 2, we briefly mentioned the two-group discriminant method for real-

valued data using the feedforward neural network. In this section, we extend the

discriminant method to the case of interval-valued data where attribute values of

each sample are given as an interval vector. In other words, we generalize the

back-propagation algorithm to cope with interval-valued data.

3. 1 Interval-valued data

  Suppose that m patterns divided into group 1(Gl) and group 2(G2) are given. It is

assumed that the attribute values of each sample are given as intervals. Let the

interval Xbi denote the i-th attribute value of the P-th pattern. Then the attribute

values of the p-th pattern are denoted by the interval vector Xp=(:Xbi,...,Xb.).

Therefore our discriminant problem is to find a discriminant rule that divides the

n-dimensional pattern space into two areas from the given interval-valued data

 {Xi,X2,".X.} .

3. 2 Real interval arithmetic

  In this paper, we denote intervals by uppercase letters A,a..:,Z An interval is

represented by its lower (left) and upper (right) limits. For example, X,i= [alpi`,

XbiU] .

  The generalization of ordinary arithmetic to closed real intervals is known as real

interval arithnetic. For complete details, see Alefeld and Herzberger3). The basic

definition is as follows3).'

 '

 <definition>

  Let * E {+,-,.,÷} be binary arithmetic on the set of real numbers. If A and
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B are closed real intervals, then

     A*B= {a*b1aEA,bEB} (15)
defines binary arithmetic on the set of all closed real intervals. In the case of

division, it is assumed that 0CB.

  The operations on intervals used in this paper can be explicitly calculated from the

definition as

     A+B== [aL, aU]+[bL, b"]

           =[aL+bL, aU+b"], a6)
     AmB= [aL, a"]-[bL, bU]

           =[aL-bU, aU-bL], (17)
     -･A=-･[aL, av]-( [.M:L,l ::ii igi .M2IO,I as)

where m is a real number.

3. 3 Architecture of neural network

  For the discriminant analysis of interval-valued data, we use a three-layer feedfor-

ward neural network with one output unit as shown in Fig.1. Since attribute values

of each pattern are given as intervals, the neural network should be able to deal with

the interval vector Xp=(:Xbi,...,Xbn) as an input vector. Therefore we extend the

input-output relation of each unit in Section 2 to the interval-valued relation as

follows.

  Input units :O,i=X,i, i= 1,2...,n. (19)

  Hidden units:O,j=f(Net,j), j=1,2,mn2, eO)

               Net,,=,2.,wjiO,i+a. (20

  Output unit :O,=f(Net,), (n)
               Net, =j¥, wj o,j+e, e3)

where the activation function f(') of the hidden units and the output unit is the

logistic function in Eq.(6). Figure 3 shows the interval input-output relation of the

hidden units and the output unit. The interval input-output relations in Eqs.(19)-(23)

can be explicitly calculated from the interval arithmetic in Section 3.2 as follows.
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                   Fig.3 Interval-valued activation function

  Input units : opiL=xptL, i=1,2,...,n,

              optU=xptU, i=1,2,...,n.

  Hidden units : opjL=f(netpjL), j=1,2,...,n2,

              opj U = f(netpj U), j = 1,2...,n2,

              netpj L= 2.iwjioptL+ S.iwjtopiU+ a,

                  wj,)o wj,<o

              netpjU =iS.iwjtoptU+S.iwjtoptL+a.

                  wjtlO wji<O.

 Output unit :o,L= f(net,L),

             opU=f(netpU),

             netpL=j¥iwjopjL+j¥iwjopjU+e,

                  wj lO wj <O

             netpU =Xwj opj U + j¥i wj opj L + 0.

                -wBO wj<O '
                  '          '              '                           '                                      tt3. 4 Learning algorithm

 Using the interval output Op corresponding to the input vector X

function q for the pattern P as follows.
p7

          tze

          tz5>

          e6)

          (27)

          as)

          oo)

          (3ot

          (3P

          (32)

          (33)

we define a cost
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     e,=max {(t,'o,)2/2 1 o,EO,}

       -([t,::Z:L,li/,i li t,:':.5I (,4)

  This cost function is defined as the maximum squared error between the interval-

valued output O, and the target output 6. The learning of the neural network is to

minimize the cost function of Eq.(34). The weights wj and wji are changed according

to the following rules.

         A,wj="(-ae,/aws), (35)
         A,wj,=ij(-ae,/ewj,), (36)
where aep/Owj and aep/awji are calculated as follows.

(1) aep/Owj

  (D If oj=:1 and wi2-a then

    diOgll, =aaw, {(t,-o,L)2/2}

         =aoa,L {(tp-o,L)2/2}3/lli2::i]Oet,,QtillSifi-linewtj

          =-(t,"opL)o,L(1-opL)opjL. (37)

  @ If oj=1 and wj<0, then

    -:a;zliJlill-j =-(tp-opL)opL(1-o,L)o,j". (3s)

  @ If oj=O and wj2mO, then

    dia:, =oaw, {(t,-o,u)2/2}

          =aoa,.{(t,-o,u)2/2}S/l;kilfiOet,,Qtg:f!Vnewtj

          =-(tp-op")opU(1'opU)opjU. (39)

  @ If fp=O and wj<a then

    Xa;IIj =-(tp-opU)o,U(1-o,U)o,jL. (4o)

(2) aep/Ow,･i

  (D If oj=:1, wj2-0 and wjiZa then
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-lgtl:)};"i:) l,, = a(II;,, {(tp-opL)2/2}

                                          '
     ==aoa,L{(tp-opL)2/2}:Stlli[I:;liii-Oet,L -{tl:Iilll-noe,l, -StlilltiirOet,j,-Qti}:f?-Lnewtj,

     =-(tp-opL)opL(1-OpL)wjOpjL(1-OpjL)OplL･

 If lf=1, wj2-0 and wji<O, then

                                      '
-2asi:II:i) -j t = - (tp - o, L)op L(1 - op L)wj opj L(l r o,j L)o,i u.

 If fp=1, tqi<O and wjiZa then

-5a;li?;:) -,, = a(l;,, {(tp-opL)2/2}

     =aoapL{(tp-opL)2i2}-StliX;lii-Oet,, -{tleeitLnoe,l. ut/Oet,j,-Qtiieef?HILnewtjt

     = - (tp - Op L)opL(1 - opL)wj opj U(1 - opj U)opiU.

 If ts=1, wj<O and wji<a then

-50ijl)IL;Iil) Nj t = - (tp - op L)op L(1 - op L)wj o,j U(1 - opj u)opi L.

 If 4=a utslO and ztLii2-a then

-5a;l;l;:l) -j, = a:I;j, {(tp-op")2/2}

      =ooa,.{(tp-opu)2/2}uttOet,. -{tlill:tl-noe,lu -5/lli2ttllfi-Oet,ju-QtlillfttEl-newtJi

     =-(tp-OpU)OpU(1-OpU)wjopjU(1-OpjU)OptU.

 If oj= a zqi)O and zqii<a then

diOiill)j i = - (tp - op U)op U(1 - op U)wj opj U(1 - opj U)opi L.

 If 4=a uLi<0 and w,i2-a then

ep

Q2)

U3)

e4

U5)

"6)
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    se℃e:lili -,, = agll,, {(t,-o,u)2/2}

          =aoO,u{(tp-opu)2/2}-si/li2:lli-Oet,, estnoe,l., nt/Oet,j,-0tiiiglif!fLneiji

          =-(tp-op")opU(1-Op")wjopjL(1-opjL)opiL. (47)

  @ If oj =a ag･<O and zcts･i<a then

    dia:)ji =-(tp-opU)opU(1-opU)wjopjL(1-opjL)opiU. "si

The following momentum terms can be introduced in the same manner as Rumel-

hart et a12).

     Awj (t+1)= ij(- ae,/awj)+ cr Awj (t), "9)

     Awji(t+1)=op(-ae,/awji)+aAwji(t). (sw
The biases e and a are changed in the same manner.

                         4. Numerical Examples

  In this section, we illustrate the proposed discriminant method of the interval

valued data using numerical examples.

 [Example 1]

  Suppose that attribute values of six patterns are given as shown in Table 1.

                    Table 1 Interval-valued data in Example 1

Group1(Gl) Group2(G2)

No. X, X, No. X,X2
[1,5][8
[4,10][1
[6,12][9

,14]

,5]
,11]
4
5
6

[8,14][16,
[13,19][1,
[14,18][5,

20]

3]

15]

  First, we apply the learning algorithm proposed in Section 3.4 to this example

using the neural network with five hidden units. The algorithm is iterated 2,OOO times

for each pattern with a=0.9 and ij= 0.5. By plotting all the points in the pattern

space for which the output values from the neural network are close to O.5, we can

draw the boundary curve as Fig.4. We also show the interval-valued outputs corre-

sponding to the given interval input vectors together with the target outputs in Table

2. We can see from Fig.4 and Table 2 that the neural network trained by the
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proposed algorithm can discriminate all the given interval-valued data correctly.

  Next, in order to compare the original back-propagation algorithm with the
proposed algorithm, we apply the back-propagation algorithm to this examPle. Since

the original back-propagation algorithm can not deal with interval-valued data, we

use tihe four vertexes of each of'the given six interval input vectors. The neural

network with five hidden units is trained 2,OOO times using the back-propagation

algorithm for each vertex with the same parameterization as the proposed algorithm.

                   xu
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'su":'lr,,e
e
t
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,. ,..i,' , v'v{" n;'`' ;'

 X"4t-'"'S,.'. ,S

g' ig,gs'eellX.l

Xl

Fig.4 Simulation result after 2,OOO iterations of the proposed

    algorithm for the interval-valued data in Example 1

Table 2 Interval-valued outputs corresponding to the input vectors given in Table 1

Group1(Gl)
Targetoutput=1

Group2(G2)
Targetoutput=O

Interval-valued

No.output
Interval-valued'

No.output

1[O.99,1.00]
2[1.00,1.00]
3[O.96,1.00]

4[O.OO,O.02]
5[O.OO,O.02]
6[O.OO,O.02]

The boundary curve corresponding to the output values close to O.5 is shown in Fig.5.

We can see from Fig.5 that the neural network trained by the back-propagation

algorithm discriminates all vertexes of interval vectors correctly, but does not

discriminate all the given interval vectorsL Of course, if we use many other points

included in the interval vectors for the learning of the neural network, all the given

interval-valued data may be discrimiriated correctly. But in such a method, many

points are needed for each interval vector. Actually, if we use the vertexes and ･the

midpoints of intervals as shown in Fig.6, the neural network should learn 3" points

fot an n-dimensional interval vector. Therefore the learning using many points in

each of the given interval vectors may require enormous learning time especially in
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the case where the dimension of the pattern space,

large.

Fig.5
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Simulation result after 2,OOO iterations of the back-propagation

algorithm for all vertexes of interval-valued data in Example 1
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Simulation result after 2,OOO iterations of the back-propagation algorithm

for all vertexes and midpoints of inteval-valued data in Example 1

 [Example 2]

  Since the proposed algorithm is the generalization of the back-propagation algor-

ithm to the case of interval-valued data, it can deal with interval-valued data where

some attribute values are given as real numbers. An example of such data is shown

in Table 3.

  We apply the proposed algorithm to the example in Table 3 using the neural

network with five hidden units. In this case, we regard a real number x as a

degenerated interval [x) x]. The algorithm is iterated 2,OOO times for each pattern

with a=0.9 and op=O.5. The boundary curve corresponding to the output values
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 close to O.5 is shown in Fig.7. We can see from ･Fig.7 that the neural network

 discriminate both interval-valued data and real-valued data correctly.

            Table 3 Interval-valued data and real-valued data in Example 2

can

Groupl(Gl) Group2(G2)

No. X, X, No. XiX,
[2,10][2
13

13

,10]

5
1
1

4
5
6

1116[16,20][2,20]

xa

pm

le

o
o

e

e

Fig.7

Xl

Simulation result after 2,OOO iterations of the proposed algorithm

for the inteval-valued data and the real-valued data in Example 2

                5. General Formulation of Cost Function

  In Section 3, we define the cost function as the maximum squared error between

the target output and the interval-valued output from the neural network. In this

section, we define a general cost function and derive a learning algorithm. The

generalized cost function is defined as the weighted sum of the maximum and

minimum squared errors between the target output and the interval-valued output

from the neural network. We define the following cost function.

     ep=P . max {(t,-o,)212 1 o,EO,}

         +(1-P) ' min {(t,-o,)2/2 1 o,EO,}

                                                                 '       =tp(t,-o,L)2/2+(1-J8)(tp-OpU)2/2 if tp=1, (sD
         'L J8(tp-Op")2/2+(1-I3)(tp-OpL)2/2 if tp=O,
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where P is the constant within the closed interval [al] . This cost function is

coincident with the cost function in Section 3 in the case of P=1.00. In the case of

6= 0.on Eq.(5D is the minimum squared error between the target output 6 and the

interval-valued output Qp from the neural network. We show the learning algorithm

based on the cost function defined by Eq.(5D in Appendix.

  We apply the learning algorithm based on Eq.(5D to the data in Example 1 using

various values of 6 in order to investigate the effect of P on the learning speed of

the neural network. Using the neural network with five hidden units, the learning

algorithm with a= 0.9 and ij == 0.5 is iterated until the sum of cost functions:

     esuM =
           p=1

is less than O.Ol.

  We show the number of iterations for esuM < 0. 01 in Table 4. From Table 4, we can

see that the value of 6 has large effect upon the learning speed of the neural

network. Since the cost function in the case of P =1.00 is the same as in Section 3,

we obtain a similar result as Fig.4 for P=1.00. For the cases of P=0. 75; P=0.5a

P= O.25 and B= 0. on we show the results in Figs.8, 9, 10 and 11, respectively. These

results show that the neural network after learning can discriminate the given

interval-valued data correctly in the case of P>0.00. In the case of P=0.on

although the sum of the cost functions is very small (i.e., O.Ol), the neural network

can not discriminate the given interval-valued data correctly (see Fig.11). From these

results, we can see that it is proper to set P= 1.oo for the data in Table 1. We obtain

a similar result for the data in Table 3, that is, it is also proper to set P=1.00.

                   Table 4. Number of iterations for esuM <O.Ol

p 1.00 O.75 O.50 O.25 o.oo

Iterations
2
0
4
9
'

4
5
4
6
'

82890'
5
1
4
5
'

41

X2

ra

le
Elffgeitw

[=]
Xl

  Fig.8 Simulation result with P =O.75



106

Mizuho OMAE, Ryosuke FUJJOKA, Hisao ISHIBUCHI and Hideo TANAKA

n

me

le
  ttttt tt tt t tt ttt    tt tt t tt tttt   tt ttttt   t ttt   'l.t tttt ttttt

t -.: l l'･ ･II :,･['1･,':: ･±''1

1:,:Ztbn,

[=]
e

pm

rc

le

Fig.9

L-"---Lx!
        le

Simulation result with P=

  iv

O.50

'"t ':='
, . T'. :-±t=±
tt' t t'tttt t
'.' !u ''''

 : Ittt tt tt

tttt:

  tt±t t t

  g･. 1.
tttt t t :t

[=]
e

n

xu

le

Fig.10

        le

Simulation result with 6=

  tw

O.25

Yl

!tt ttttt t!fi:

titttttltttttl:ttl

'.t "''=.'E'..

tt :tt: t ttt
t t.t'tttr 't

.L: :.. :'/- ;'.:! -....:iLi:tw

tt t t t t t: :±t:t t t:t::t:t
=' - - .. - :. ":Vt.=:!,Ll!T

H--. ', ' !. "L .rt.': " T, 't' :

e

Fig.11

         le

Simulation result with P=

  N
o.oo

Xl



                                                                    107
           Leaming Aigorithms of IVleuiul AJetworks for interval- Vdlued beta

  Next, we apply the same algorithm to the data in Table 5. In Table 5, it should be

noted that the given data have an overlap between two groups. Accordingly, the

neural network can not discriminate all the given data correctly.

                         Table 5 Overlapping data

Group1(Gl) Group2(G2)

No. X, X, No. XiX2
[4,8][12,

[2,4][2

[6,10][4

[12,18][2

20]

,8]

,8]

,4]

[8,12][6,10]

[16,20][8,10]

[18,20][12,20]

[12,16][16,20]

  We show the results after learning using various values of 6 in Figs. 12,13,14,15

and 16. AII of these figures are obtained after 20,OOO iterations of the learning

algorithm. From Figs. 12,13,14,15 and 16, we can see that the discrimination result

with 6=O.5 is more proper than that with B=1.00.

  From these simulation results mentioned above, we can see that P=1.00 may be

proper for the data with no overlap and may not be proper for those with overlaps.

2,O

le

Fig.12

e

                      [=]

                 EXZ I]

              1[[･) 2･L]1

Simulation result for overlapping data with P=1.00
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Fig.16 Simulation result for overlapping data with P=O.OO

                            6. Conclusion

  In this paper, we proposed a classification method using a multilayer neural

network for two-group discriminant problems where attribute values of each sample

are given as intervals. The derived algorithm can be viewed as an extension of the

back-propagation algorithm to the case of interval-valued data. Furthermore, we

illustrated the proposed method and demonstrated its classification power using

simulation results for numerical examples. Last, we showed a general formulation of

the cost function defined by the weighted sum of the maximum and minimum

squared errors between the interval-valued output and the target output.The learn-

ing algorithm based on the generalized cost function was also derived.

                Appendix: Generalized learning algorithm

  The learning of neural network is to minimize the cost function of Eq.(5D. The

weights wj and zq)･i are changed according to Eqs.U9) and (5ot. alp/atvj and aep/azvji are

calculated as follows.
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aep/azcti

 If fp=1 and wj-2a then

diOill, =paa., {(t,-o,L)2/2}+a-i7)aaw, {(t,-o,u)2/2}

      ==Paoa,,{(tp-opL)2/2}-Eit}[l:IiT-Oet,, -9til;f!Lnewtj

                '
       +a-p)aoa,.{(t,-o,u)2/2}-Ei/iiZ:llii-Oet,, -Qtiiglf!Y-newt,

      =-Xil(tp-opL)o,L(1-o,L)o,jL

       -(1-JB)(tp-OpU)op"(1-o,")o,j".

 If ts=1 and wj<a then

-ae =-p(t,-o,L)o,La-o,L)o,ju
  awj

        -(1-I3)(tp-OpU)opU(1-o,U)o,jL.

 If fp==O and wj-2a then

diaSI, =paO., {(t,-o,u)2/2}+(1-p)aa., {(t,-o,L)2/2}

      ==paoa,,{(t,-o,u)2/2}-Eltilill:llii-Oet,. -Qtgg;f!ELneij

       +(i-fi)aoa,L{(tp'opL)2/2}iii/lli221ii-Oet,, -QtglfLLneij

      =-B(tp-OpU)o,U(1-opU)opjU

       -(1-iC3)(tp-o,L)o,L(1-o,L)o,jL.

 If 6=0 and ztts<a then

20e      =-P(tp-opU)opU(1-opV)o,jL
  awj

                   '

       -(1-/3)(tp-OpL)opL(1-o,L)o,jU.

(A-1)

(A-2)

(A-3)

(A-4)
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(2) Oep/Ozqii

  (D If fp =1, zqi40 and wjila then

    diOi£l,, = ,(iia(ll;,, {(t,-o,L)2/2}+(i-je)oel,, {(t,-o,u)2/2}

          =paoO,L{(tp-opL)2/2}-3/li[ltiiJ-Oet,, estnoe,i., -ii/lli2;70et,j,-ati]g;f?Lnewtj,

           +(i-p)aoa,.{(tp-opu)2/2}-5/I:illtlii-Oet,. -{tliRllelLnoe,I.. -EI/lli2tllfi-Oet,j,-Qtllg5ftLY-newtj,

          =-X3(tp-opL)opL(1'opL)wjopjL(1-opjL)opiL

           -(1-6)(tp-o,U)opU(1-op")wjo,jU(1-opjU)o,i". (A-5)

  @ If oj=L zqi40 and zqi,<a then

    -5eljilL;1£l -ji =-X3(tp-opL)opL(1-o,L)wjo,jL(1-o,jL)o,,u

           -(1-X3)(t,-o,U)op"(1-opU)wjo,j"(1-o,jU)o,iL. (A-6)

  @ If fp=1, wj<0 and wj,la then

    -5aljill:II -,, :x3a(l;,, {(tp-o,L)2/2}+(i-i3)a[},, {(t,-o,u)2/2}

          =paoa,L{(tp-opL)2/2}S/ilitli-i-Oet,, -{tli"li-noe,i.. -EI/il2elrOet,j.-Qtllglif?-iLnewtj,

            +(iffp)aoO,.{(tp-opu)2/2} aanOeptU,, -{tleeiilLnoe,i., -ii/il2eei-Oet,j, -etlll?llf?-Lnewtj,

          =-P(tp-opL)opL(1-opL)wjopjU(1-opjU)opiU

            '(1-jB)(tp'OpU)opU(1-op")wjOpjL(1-OpjL)opiL. (A-7)

  @ If 4=1, wj<0 and wji<a then

      oawei.1 =-/(3(t,-o,L)o,La-o,L)wjo,jua-o,ju)o,iL ･

            -(1-I3)(t,-o,")o,"(1-o,")wjo,jL(1-o,jL)o,iU. (Aff8)
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@ If 6=a tcti)0 and wjila then
                                              '
  -5a;:fl;lillil -,, =xgagl;,, {(t,-o,u)2/2}+a-p)agl;,, {(t,-o,L)2/2} -

        =paoO,u{(tp-opu)2/2}nt/Oet,. -{tl:Il{iLnoe,iu -iltleeIfi-Oet,ju-Qtl}gf?ELnewtji

         +(1-P)aoO,L{(tp'opL)2/2}-sl/l2:liii-Oet,, -Ctl:Ii}il-noe,i, th/Oet,j,-QtlilftLLnewtj,

                             '                                  '

        =-]3(tp-OpU)OpU(1-OpU)wjopjU(1-opjU)opiU

          -(1-P)(tp-opL)opL(1-opL)wjopjL(1-o,jL)opiL.

@ If ts=a zqi)O and zttii<a then

   diaej , = - /3 (t, - o,u)o,ua - o,u)wj o,j u(1 - o,j u)o,t L

          -(1-18)(tp-OpL)OpL(1-opL)wjopjL(1-opjL)optU.

@ If fp=a wJ<0 and wji)a then

  -2aiijl91;:i) h,, :i3a[il;,, {(tp-op")2/2}+(1dxir)a:l;,, {(tp-o,L)2/2}

        =paoa,u{(tp-opu)2/2}-]i/ll2:llu-Oet,. -CtlftIliili-noe,l, -S/li[strOet,j,-etiilf?-Lnewtjt

         +(i-p)aoa,L{(tp-opL)2/2}-sl/ili:liir-Oet,L '{tll:III-noe,tju -S/}22IllirOet,ju

            '
        =-P(tp-opU)opU(1-opU)wjo,jL(1-opjL)opiL

         -(1-P)(tp-opL)opL(1-opL)wjopjU(1-o,jU)opiU.

@ If fp=a wj<0 and tqii<a then

  -ilOlliifl;lil) -ji =-P(tp-opU)opU(1-opU)wjopjLa-r-o,jL)o,iu

         -(1-]3)(tp'opL)opL(1-opL)wjopjU(1-opjU)opiL.

(A-9)

(A-10)

Onet    U

aw"

(A-11)

(A-12)
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