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  The present paper deals with program development for the simulation of the

effect of retardation on the fatigue crack propagation life distribution under

randorn loading in reference to the fact that the correct prediction of fatigue

life or fatigue strength becomes of crucial importance since almost all practi･

cal machines and structures are usually subjected to random loading, and most

of their failures are caused by fatigue. In this respect, first, a simulation

progfam in consideration of the effect of retardation caused by overload is

developed to predict fatigue life under random loading with the aid of,experi-

mental data obtained comparatively easily by constant amplitude. fatigue
tests. This simulation program is expected to provide a qtiite effective

measure for the reliability ahalysis of fatigue life with wide applicability.

Then, by use of the program, the effect of retardation is investigated. In case

of ignoring the retardation effect, fatigue life is naturally estimated to be

shorter. On the other hand, in consideration of the retardation effect, the

Willenborg model brings more risky results such that the life becomes longer

than that based on the Vroman model. Therefore, the Vroman model may be
considered more rational than the Willenborg model in a practical sense..

1. Introduc.tion

  Structural reliability assurance is of vital importance in designing structures of

much societal concern such as airplanes, br'idges and buildingsi since their fracture

will cause, directly or indirectly, a fatal loss of human life. The failure of these

structures is mostly due to fatigue caused by randomly applied external stresses.

Cracks are initiated in structural components due to the repetition of random

loading and they grow gradually until final failures take place. Therefore, in the

reliability-based fatigue-proof design, the correct prediction of fatigue life and
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fatigue strength of structural components becomes indispensable. For this purpose,

a so-called full scale fatigue test is considered most desirable under service condi-

tions. This kind of fatigue test, however, requires large amount of cost with respect

to time, labor and/or expenses.

  In reference to the above, the present study first deals with the construction of

fatigue crack growth model on a structural component subjected to random loading

in consideration of the retardation effect due to overloads which exceed the yield

strength of the material used, based upon the recent remarkable advance of fracture

mechanics. Then, this paper devotes itself to the program development for the

simulation of fatigue life under r,andom loading by use of some parameter values

which are obtained easily by the test of constant stress amplitude. Finally, the effect

of retardation on the crack propagation life distribution is exemplified with the aid

of the program thus developed.

2. Technical Background of Fracture Mechanics for Fatigue Crack Growth Law

2.1 Fatigue crack growth law

  In general, the fatigue crack growth law' can be expressed in the following form:

    da
    d. =f(a, Oinax, R･ T; E"') (1)
where

    a=the crack length after n cycles of stressing,

    do/dn=the crack growth rate after n cycles of stressing,

    ohiax =the maximum stress level at the n-th cycle,

    o}nin == the minimum stress level at the n-th cycle,

    R= olninlohiax= the stress ratio at the n-th cycle,

    T= temperature, and

   E=other environmental conditions.

Based upon Eq.(1), various studies on the crack growth law have been recently made

and a variety of the following･ crack growth laws have been constructed and

proposed:

(a) Paris-Erdogan's growth law

  Recent advancement in fracture mechanics has shown that the crack growth rate

can be expressed in terms of the stress intensity factor range AK at the crack tip

defined as

   AK=Kinax-Kintn =(1-R)Klnax

where

(2)
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   Klnax = Olnax vt-JiZi`
                                                                (3-a)
       ==the maximum stress intensity factor

   Kin in = (shi in vt--iiZi-

                                                                (3-b)
       =the minimum stress intensity factor

for through-the-thickness cracks when the correction factor due to the finite speci-

men size is disregarded.

  Paris proposed the 4th power type growth law based upon the experirnental results

on aluminum alloy in the following form'):

    du

       =f(AK) == C(AK)4 (4)    dn

where C is a material constant.

  At present, the･Paris' cack growth law is widely applied in the following general-

ized form which is often termed as the Paris-Erdogan's growth law:

where C and m are material constants. This equation indicates that ･the crack

growth rate is primarily determined by AK and the effects of the stress ratio, the

repetition speed of stressing and the specimen thickness would be regarded as

secondary, being reflected in the material constants such as C and m. Though the

value of the exponent m practically assumes 2･--8 according to the material, it is

often the case for fatigue life estimation that m is approximated by･4 as the

representative value which Paris first proposed. Taking the natural logarithm of

Fig. 1
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The linear relationship between daldn and AK.
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both ･sides of Eq.(5), it follows that

       do

         )=lnC+mln(AK) (6)   ln(
      dn

From this equation, as shown in Fig. 1, the relationship between duldn and AK

becomes linear if both quantities are measured on a logarithmic scale. As can be

easily seen, the exponent m represents the slope of this straight line and C the value

of the ordinate for AK=1.

(b) Forman, et al.'s equation

  In reference to the fact that the crack growth rate increases quite rapidly, widely

apart from the straight line of the Paris-Erdogan's law, when the value of the

maximum stress intensity factor Knax approaches that of the fracture toughness Kic,

the following equation of crack growth law is proposed by Forman, et aL2}.

    cia C(AK)M C(AK)M    d" = (1-R)Kc-AK -(1-R)(Kc-K;,,.) (7)

where the constant value C and the exponent m are similar to those of the
Paris-Erdogan's law, but not necessarily the same, and R = oin,n!olnax represents the

        .stress ratlo.

(c) Collipriest's equation

  A progress in the research on the relationship between cia/dn and AK has clarified

that ln(deldn)- ln(AK) curve has a sigmoidal shape, as shown in Fig. 2, between the

fracture toughness Kic and the threshold stress intensity factor range AKh. From

                                      I

                                     /ii

                                      ll

               ge l               'ti I               ll'; Threshold i

               £ Ail/`h Fractuiire toughness

                        '                       : ' (1- R)KIc
                       l

                              ln AK

Fig. 2 The relationship between ln(cialdn) and ln(AK) showing a sigmoidal shape.
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this point of view, Collipriest proposed the equation in the following form3).

    dCian :exp[m(lnKlc-21nAKLh)

    ' ln{(1-R)Kc}+lnAKLh                  lnAK-
                                 2
         × tan h-i                      ln{(1-R)Kc}-lnAKIh (8)
                              2･

         +ln{ cexp( lnKc+21nAKLh ×m) }]

where m' and C are material constants. The above Collipriest's equation is also

termed as "sigmoidal equatiop".

(d) Walker's equation

  The accumulation of data base of fatigue test results under constant stress

amplitude has made it clear that the fatigue crack growth rate is affected also by the

stress ratio R. From this viewpoint, Walker introduced the notion of effective stress

range, AK6tt, which can be represented by use of the stress intensity factor as

   AKbtt == (1-R)"Kinax (9)                           '
where v is a material constant. Applying Eq.(9) to the generalized Paris-Erdogan's

law in Eq.(5), we get

    de       =C(AKI,tf)M'C[(1-R)VKnax]M (10)
    dn

Moreover, this equation can be transformed with the aid of AK in Eq.(2) in the

following form:

    dde. =C[a-ARK),-.]M ' al)
This equation is called the Walker's crack growth law, which reduces to the follow-

ing equation in case of v= 1:

    de
       =C(AK)m
    dn

This is nothing but the Paris-Erdogan's growth law as in Eq.(5).

(e) Hall, et al. 's equation

  Hall, et al. proposed an experimental equation to be fitted to the crack growth

data in USAF (United States Air Force) as follows5):
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da
   = C(Kinax - Klh)" (AK)M
dn

(12)

where C, a and m are material constants obtained through the curve-fitting tech-

nique. The above equation is also called the "Boeing equation",

(f) Bell, et al. 's equation

  Under random loading, it is often the case that overloads are imposed, which

might cause retardation of the crack growth. Bell, et al. proposed the following

equation in consideration of the preceding retardation effect6).

    du       =C[(1+qR)AK]M (13)    dn

where R is defined as

     R=R . for RSkut    {
                                                                 (14)     R=Kut forR>Rb.t

in which &ut, the cut-off stress ratio, is defined as the upper cut-off value of the

stress ratio R. C q and m are experimental constants of the material obtained

through the curve-fitting technique.

  It should be noted here that the above equation is derived by modifying the Elber's

closure model') defined in the following forrn and is considered to give a good fit to

the experimental data.

     AKI,ft= UAK= ( illl.e.Xioosinf. )AK

        U=O.5+O.4R (for-O.1<R<O.7)
              (in case of 2024=T3 aluminum alloy) (15)

        R = o;ninlOlt)ax

       obp=the crack opening stress

2.2 Retardationmodel
  Among several models proposed so far to take into consideration the above-

mentioned retardation effect on the crack growth rate caused by overload, the

present paper describes two well-known models, the Willenborg's model and the

Vroman's model.

(a) Willenborg's model

  It is the Willenborg's mode18) the purpose of which is to omit the troublesome data

fitting operations required, for instance, for the model proposed by Wheeler9). In this

model, the following assumptions are adopted:

(i) Retardation is a function of the maximum stress in each cycle of stressing and

   the overload immediately before it stressing.
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Fig. 3 Schematic representation of the plastic zone at the crack tip.

( ii ) Retardation is proportional to the amount of reduction in the maximum stress

   by that of the residual stress due to the overload.

(iii) Retardation effect gradually decreases through the plastic zone around the

   crack tip caused by the overload.

(iv) In the case where a larger amount of overload is newly applied than that of the

   last one, a new conditional equation of retardation is formed, entirely indepen-

   dent of all the past conditions,

(v) Every applied stress is non-negative.

  As shown in Fig. 3, assumed that the application of the overload obi is completed

at the time of the crack length tlai, the size Ryoi of the plastic zone at the crack tip

is given, by Irwin, as follows:

   Ryoi== clrr(K'i'lilXO' )2 (16)

where

    Kina.oi =the maximum stress intensity factor caused by the overload abi

       ay =the yield stress of the material
                                                                    (l7)
        c =2 (in case of plain stress condition)

         =4 "2 (in case of plain strain condition)

Therefore, the zone size a,oi affected by the overload obi is

Suppose that ot is the applied stress at the crack length a=q(< aboi). Then Kinsx, the
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stress intensity factor at that time, and ･the plastic zone size at the crack tip for

a= oh are given, respectively, as

   Knax=oj V-iiZailrll- (19)
   R,,= ,1.(K,ft,y'aX )2 ' (20)
Hence, the total size abc of the zone affected by ob can be expressed as

With the aid of Eqs.(18) and (21), the conditional equation of the retardation can be

constructed in the following way:

(i) If apc> apoi, through the assumption, a new conditional equation of the retarda-

   tion is constructed. Therefore, the quantities

     abo1""" Clpc(     Ryoi-- Ryc
     Kinaxoi- Knax

are replaced, as shown in the above, by the new ones, respectively.

(ii ) If apc$aboi, the crack growth is retarded. This retardation effect is due to the

   residual stress calculated in the following fashion. That is, the stress intensity

   factor Kina.ap, which satisfies Eq.(23), corresponding to the apparent stress q,

   which would produce the same size of plastic zone as the residual size Ryap of

   the plastic zone at the present is first computed as follows:,

   -Ry,p= ciz(Kin;yxap )2 (23)

   Klr)axap=ohpMzRyap (24)
With the aid of oh., thus obtained the residual stress

    OVes'ojp'(oj)max (25)
is calculated, and then, the stress intensity factor

   Kes =Kinaxap-Klnax (26)
is obtained, The retardation caused by this residual stress can be evaluated by

re-calculating (Klnax)', (K}ntn)' and R' as follows:

l
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                Fig. 4 The residual stress caused by retardation.

    (KhaxY =: Khiax - Kes

        = 2K;nax - Kinakap

    (KninY=:Kintn-Kes･ (27)
        =(Klriax+Klnin)-Kinax5p

      R"= (K}nin)r/(:KImax)'

Figure 4 represents the relationship between Eqs.(23) and (26). By the way, it follows

through Eqs.(16), (18) and (23) that

   (Kinaxap)2 = cne(apoi - ab)

Therefore, we have the following relationships:

   Knaxap = Knaxoi

                                                                    (28)

         : Kihaxoi

   ab=: c})oim(aboi-cq,i)( llilla,X.a,l )2 (2g)

  The retardation effect based upon the Willenborg's model can be evaluated by use

of Eq.(27). Since this model treats only non-negative stresses, negative stresses need

to be replaced by O and, in addition, Kinaxap =.Klnaxoi holds through Eq.(28), since

c%=clai holds immediately after the loading of the overload obi. Therefore, the

following three modes of retardation effects can be categorized according to which

is larger or smaller between the overload obi and the successively applied stress ob.

(i) Mode l

  This is the retardation mode based upon the reduction both of AK and R. This

mode corresponds to the case that (Kin..)'>O and (Kiht.)'$O. Therefore,

dyoi-ah

Ryoi

abei-tZ

Clpo1"MCeq)1
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   b.l.n,",."(ines.S..fea,',O,'.<,2(bl)Z.} ･ (3o-a)

 In this case, since equations hold such that (Kinax)ert=(Klnax)' and (K;ntn)etf=O, it

follows that

   "R,Iii,'L'72illliilrl.r,:',>-7iIIIiil,l:X),7,IIIi8s} (3o-b>

(ii ) Model II

 This is the retardation mode based upon the reduction only of R. This mode

corresponds to the case that (Kini.)'>O. Therefore,

   ii.ls.",',.",i"LL3.>..Ig:aao:] .(3i..)

 In this case, since equations hold such that (Kinax)eft =(Kinax)' and (K;nin)etf == (K;ntn)',

it follows that

   AKlirt=(Kinax)ert-(Klt)in)etr

       =Kinax-Klnin=AK
                                                        (31-b)
    Rett=(Kinin)effl(Kinax)etf

       = (K;nin - Kes)1(Kinax - Kl'es)

(iii) Mode III

 This is the mode where maximum retardation is produced. Ih this mode, the crack

growth ceases completely and this corresponds to the case that (Kinax)'$O. There-

fore,

   i('.C":.X,ii,II`i,7,a:O') (32-a)

 In this case, since the equation that (Kina.)ett=(Kintn)ett=O holds, it' follows that

a

![]llE Ool

amax
amin

iN,T

(a} MODE-I
 cmtn+amt:$cro!<2amtx
 [Cmin]ett= amtn-ares<O

 .'. [amtn]ett=O

 ttiKl ett= tKmtxl ert

 [Rl.tt=O

a

,i[]Xl]ll]<I aol

amax
amin

Fig. 5

(b) MODE-I
 Uel<amin+amtx
 [atuln]ert>O

 :･ [AK]ett==[dK]
 [R]otr:+KKM.i.".]]".ti

N'

a
viiil]lllll aol

aTllax
O'Lllill

Ar

(c) MODE-M
 20rnarSaol
 [crrnLx]err<O

 [o'minleff<O

 :. [crmtxlett= [crmsn] eff =O

 [dK]ett= tR]erf=O

Willenborg's retardation model.
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  The applied stress condition is schematically represented in Fig. 5 corresponding

to the abovestated modes I'vllI. By the way, obi/oj is termed as the overload ratio.

In the Willenborg's model, the crack growth is predicted to cease when this ratio

becomes'more than or equal to 2. In fact, the cease of crack growth is reported in

case of obilobk2.3 in aluminum alloyiO).

  The crack growth can be predicted by applying AKhfr and R,ff obtained based

uPon the above method to any of the preceding crack growth laws, for example, the

Paris-Erdogan's law or the Walker's law.

(b) Vroman'smodel")
  Though this model is similar to the preceding Willenborg's model, the way to

calculate AKbff and Reff is different, respectively. This model utilizes the stress ratio

R== ointn/oinax as it is for Reft and uses the following equation for AK,ff.

    Reff:li,:,Khlin/Klriax ig; li;li:::} . (33)

   AK12fr (Klnax'Klnin)-i [Kihaxoi teq"+RR,',O,iM(q-Knax] (34)

where

   Ryoi= in ( Klnt xei )2

    cy =the yield stress of the material

   Kinax=the maximum stress intensity factor under the current loading cycle

   Kinin == the minimum stress intensity factor under the current loading cycle

    `eq,, 1

    iil'jO,i･.,,j ValUeS baSed On the overload obi previously loaded

  It is a standard practice to apply AKhtt and Reft defined by the aforementioned

method to a certain suitable crack growth law. For example, in applying to the

Walker's law, the equation becomes as follows:

                                    '    dda. =c[ (i-ARIIIi,if),L, ]M , (3s)

where C, m and v are material constants to be obtained by experimental data under

the constant stress amplitude test.

2.3 Equation of stress intensity factor i

  A variety of calculations for the stress intensity factor K are made in detail

according to various combinations between shapes of specimens and stress
conditions'2･'3). The present paper deals with the uniform tension of plain plate both

with through-the-thickness center grack and with through-the-thickness single edge
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   (a) center crack (b} edge crack
Fig. 6 Through-the-thickness center crack and single edge crack.

crack, as shown in Fig. 6.

(i) Uniform tension of plain plate with through-the-thickness center crack

 In this case, the stress intensity factor K corresponding to the applied stress d is

approximated in the following form:

                2a
     K=d V-iiZiF(                   )
                 w

   F(e) or sec( "24 ')

where F(g) is a correction factor associated with specimen geometries. Approxima-

tion error is O.3% for 4$O.7, and 1% for e= O.8.

( ii ) Uniform tension of plain plate with through-the-thickness single edge crack

 The stress intensity factor K for the applied stress a can be approximated as

f611ows:

                a     K =tr V-liTF(-)
                w
     g=a/w
   F(Oor 1.12-O.2314+10.ss42-21.72e3+3o.39g4

Approximation error is O.5% for e$O.6.

(37)
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        3. Program Development for Simulation of Fatigue Craek
          '            Growth in Consideration of Retardation '

3.1. Crack growth Iaw applied in the program
  Among various crack growth laws stated earlier, the most essential and popular

laws could be pointed out as follows:

(i) Paris-Erdogan's law

(ii)Forman's law, and

(iii) Walker's law

  The Paris-Erdogan's law is utilized most often for its ease of use. Though the

Forman's law is considered to be charaGteristic in consideration of the effect of Kc,

the Walker's law would be adopted more often for researcher's liking.

  Consequently, in developing the simulation program for the prediction of fatigue

crack growth under random loading in the present study, the following two types of

crack growth laws are adopted:

    du

    dn

( ii ) Walker's law

    dda.=C[a-ARK),-,]M (39)
The program is made so as to be able to choose either law properly, as the occasion

may demand, by use of the control parameter NTYPE in the following fashion:

    NTYPE=O -. The･Paris-Erdogan's law is chosen.

    NTYPE #O . The Waker's law is selected.

3.2. Retardation model applied in the program
  The Willenborg or the Vroman model can be selected properly according to the

practical necessity through the control parameter NRETRD. Such a case of

disregarding the effect of the retardation is also involved as follows:

    NRETRD$b -This corresponds to the case of neglecting the retardation

                 effect.

    NRETRD=1 - The Willenborg model is chosen.

    NRETRD>O(tl)--, The Vroman model is of concern.

  In consideration of retardation, the plastic zone at the crack tip needs to be
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 calculated with the aid of Eq.(16), that is,

                                                         '    R,.i= clz(K"atXOi )2 (4o)
                '
 The coefficient c in the above equation differs according to the stress condition and

hence this value is controlled by use of the control parameter NPLANE in the

following fashion:

    NPLANE=O .This corresponds to the plane stress condition, and c is chose as

                 c == 2.

    NPLANE #O -This is for the case of the plane strain condition, with c being

                 put to be c :4 V-2:-

3.3. Shape ot crack and its location

  Though the shape of the crack would vary widely according to the specimen

geometries and loading conditions, the present program deals only with through-the-

thickness crack, since this type of crack could be deemed to appear quite frequently

in the practical applications.

  The location of the crack is chosen by use of the control parameter NLOC as

follows:

    NLOC)O . This is the case for the through-the-thickness center crack.

    NLOC<O --> This corresponds to the case of the through-the-thickness single

              edge crack.

3.4. Input data for random loading specifications

  Assuming the case of aircraft structures, the input random load is treated in terms

of the unit flight of necessary random loading cycles where a unit loading cycle

consists of a pair of the minimum stress oln!n and the maximum stress okiax. The load

unit may be given by absolute unit in terms of kgf/mm2 or by percentage of the

design limit stress aiim (kgf/mm2). In the latter case, conversion to the absolute unit

is performed automatically inside the program. In other words, in case that a' is

prescribed by percentage unit of qim, then the conversion

       a= cr'. ol L./100.0(kgf/mm2) (4 1)

is made. This load unit is controlled by the parameter MSCON in the following way:

   MSCONIO.The input load cycles are given by the absolute unit

              (in terms of kgf/mm2).

   MSCON<O -"The input load cycles are given by % qim unit

          ' (unit is prescribed as % of diim).

  Since the present program never deals with negative stresses, the repladed value

is applied in such a case that the minimum stress oihin or the maximum stress oihax,

converted to absolute unit in terms of kgf/mm2, assumes the following value. At that
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time, the original stress data are expressed "as prescribed" and the converted data

"as modified".

    0hitn <O - Ohiin =O kgf/mm2

    Oihax <O･Ol ' Ohiax= O.Ol kgf/mm2

  Further, dealing with the design limit stress oihtn, the function to quit computation

is supplied when the design limit stress intensity factor, Klim, exceeds the fracture

toughness KLc or the m,aterial of interest. Kltm is calculated under the assumption

that specimen with the present crack length a is uniformly loaded with qim as

   Kiim= olj. . F(a)
                                                                  (42)
    F(a)= the function to compute stress intensity factor

In the case that no consideration is made of this design limit stress which is utilized

widely for aircraft design and so forth, the parameter SIGLIM is prescribed as

follows:

   SIGLIM = O.O

  In addition, since the input data are the history of random loading per unit flight,

the statistical properties can be investigated by obtaining the mean with respect to

the power exponent. In case of POWER=2.0, the root mean square value of the

load-time history is computed.

3.5 Integration cal¢ulus of crack growth
  Since the Paris-Erdogan's or the Walker's law is provided as the differential

equation, the crack growth can be obtained by integrating this equation by cycle by .

cycle for each loading cycle. The integration is performed with the aid of area

summing-up method in terms of sufficiently small divisions. However, it can be

easily predicted that this method might lose cost performance in case of long

fracture life, since the whole calculation consumes really a long time, although

depending on the smallness of the divisions for integration. Therefore, the present

program adopts the following way of computation:

  Suppose that the current crack length is a and n times of loading cycles of ohiin

- ohiax are loaded. In case of n== 1, the integration comes to be performed by cycle

by cycle.

(i) First, AK and R or AKbtf and Reff are calculated by use,of the applied stresses

    oinin and olriax under the selected conditions. Then, cia/dn is computed through

   the crack growth law of concern. At this time, in reference to the experimental

   results that both the crack growth rate and the retardation are not influenced

   strongly by the sufficiently small change in the crack length, the above calcula-

   tion is carried out for the following expected value of crack length, with the

   sufficiently small change in crack length being Aa=O.Ola:
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         1
   a =a+-A= 1.005a
         2

               do
( ii ) Compare Aa/(                  ) with a given number of cycles n.
               dn
               '   (a) In case that Aa/(du/dn)>n, the crack growth at this step is deemed as

       (Aa)'=n ･ (cia/dn)

       and the next loading step is followed with the new crack length of

       a=a+(Aa)'.
   (b) In case that Aa/(du/dn)$n, the crack length and the number of cycles are

      modified as follows:

      Z==a.'-Oo'Polaa/(du/dn))

   Based upon the above conditions, this loading step is re-calculated through the

   preceding procedures.

(iii) When calculations are completed for all the input loading histories per one

   flight, the crack length at that time is stored into the memory. Then, the same

   computation is performed for the next flight, returning to the first step (i).
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(iv) Fracture or failure is assumed when the larger value Qf either Kiim for the design

   limit load or Klnax for the maximum spectrum load exceeds Kc. Further, in

   order to examine the effect of AKh, by comparing AKhff with AKh, when AKhtf

   for the current loading cycle is not greater than AKh, no'computation of the

   crack growth is made and the,next loading cycle is proceeded under the

   assumption that no crack grows. Therefore, the effeqt of the threshold stress

   intensity factor range･is ignored in case of the input condition of AKh =O.O.

3,6 Input data and their format

 An example of the input data necessary for the calculation in the present program

is represented in Fig. 7. The data on one line in the figure correspond to one card in

case of card input system. The brief explanation is given in what follows. It should

be mentioned that the patentheses O behind a variable shows the format for the

present computer program, which can be easily modified as the occasion may

demand.

(i) The first card (the first line in Fig. 7)

   IDENT(40A2)･= This is supplied to identify the case of computation. This can be

                given up to 80 characters in the present example, and may be

                easily modified according to the occasion.

( ii ) The second card (the second line in Fig, 7)

   SIGMAY(FIO.5) :the yield stress of the material, oy [kgf/mm2]

      CKIC(FIO.5)= the fracture toughness, K[c [kgf/mm2 fiiiiii]

   DELKTH(FIO.5)=the threshold stress intensity factor range, AKh [kgf/mm2

                  vftfifi]

     EXPN(FIO.5)= the power exponent v in the Walker's law. In case of applying

                 the Paris-Erdogan's law, this value is regarded as dummy.

     EXPM(FIO.5)= the power exponent m in the Walker's or the Paris-Erdogan's

                 law.
    CONST(E12.5) =the constant value C in the Walker's or the Paris-Erdogan's

                 law. ･

     RCUT(FIO.5>==the upper cut-off stress ratio, kut.

(iii) The third card (the third line in Fig. 7)

   HALFW(FIO.5)= the half width of the specimen, w12 [mm]

         T(FIO.5)=the thickness of the specimen, t [mm]

        NLOC(16)=the identification parameter for the crack location

                 NLOCIO . the center crack
                 NLOC<O - the single edge crack
     NRETRD(16) == the selection parameter of the retardation model

                 NRETRD$O - to neglect retardation
                  NRETRD= 1 -･ the Willenborg's model

                  NRETRD>O( #1)--, the Vroman's model
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      NTYPE(16)=the selection parameter of the crack growth law

                  NTYPE=O . the Paris-Erdogan's law
                  NTYPEtO . the Walker's law

     NPLANE(16) == the stress condition parameter for the calculation of the plastic

                 zone at the crack tip

                  NPLANE==O -- the plane stress condition

                  NPLANE=O -. the plane strain condition

      NCASE(16)=the number of different initial crack length in predicting life

                 for various initial crack lengths under the same stress (loading)

                 condition
(iv) The fourth card (the fourth line in Fig. 7)

    CO(I), I=1, NCASE･･･Up to NCASE can be used for different initial crack

            length (10F8.5). In case that NCASE is larger than 10, the fifth card

            is also used with the same FORMAT.
(v) The fifth card (the fifth line in Fig. 7)

      NLOAD(16)=the number of loading cycles per one flight

   POWER(FIO.5)=the power exponent for mean square of loads. In case of

                 POWER= 2, the root mean square (rms) value of the applied

                 stress history can be obtained.

    SIGLIM(FIO.5)= the design limit stress, qt. (kgflmm2).

                 In case of disregarding this, SIGLIM =O.O

      MSCON(16)= the identification parameter for the unit of loading hiStories

                 per one flight

                 MSCON)O . The unit is given in terms of kgflmm2

                 MSCON<1 . The unit is given in terms of % of the design
                 limit stress, qt. (kgf/mm2).

(vi) After the sixth card (the sixth line in Fig. 7)

  NLOAD number of loading histories are provided as a pair of olntn (SIGMIN(I))

and oin,. (SIGMAX(I))(10F8.3). Since one card has 5 pairs of ointn and ohiax, (that is 5

loading cycles), the corresponding number of cards needs to be given in order to

supply the given number of loading cycles per one flight.

4. Numerical Computations and Discussions

4.1 Simulated results of crack propagation life

  Though it is of much interest to compare the simulated results with actual

experimental data, unfortunately at this time, there have been no available experi-

mental data so far. Therefore, in the present study, such virtual data as shown in

Fig. 7 as "SAMPLE INPUT DATA FORMAT" are applied for the cra(ilc growth

prediction by use of thi$ program. The parameter values adopted for this computa-

tion are given, assuming those for aluminum alloy, as follows:
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    qtm = 20 kgf/mm2

  As random loading histories for the input data, such loading histories as indicated

in Fig. 8 are applied, which were obtained by the simulation of the gust loads

subjected to the flight vehicle. Loading cycles in one flight are assumed for 100/2 ==

50 cycles.

  The maximum value of the loading history is supposed to be around 60% of the

design limit stress of qi. =20 kgf/mm2.

  Figure 9 represents the simulated results with the aid of both the Walker's crack

growth law and the Vroman's retardation model. In this case, the initial crack length

assumes 5 different kinds of values such as

    fa= 1.5, 1.8, 2.0, 2.5 and 3.0 mm

From this figure, the crack growth proves to cease when the crack length becomes

around 3.2 mm, which satisfies the fracture condition such that KiimIKc since the

design limit stress critm is set to be 20 kgflmm2.

4.2. Effect of design limit stress

  Next, in order to examine the effect of the design limit stress, qim, such a case is

simulated as qim :O.O kgflmm2 and the initial crack length fa =3.0 mm. As can be

clearly seen in Fig. 10, the crack is observed to propagate to more than 6 mm in

length until fracture takes place. This fact may be an evidence for the satisfactory

processing of the present program.

4.3 Cornparison between Paris-Erdogan's and Walker's growth law

  Figure 11 represents the difference in simulated results between the Paris-

,
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4.4. Comparison of retardation models

  Figure 12 provides the effect of the retardation model on the simulated results. In

case of ignoring retardation, fatigue life is simulated to be shorter, that is, to a safer

side. On the other hand, in consideration of retardation, the Willenborg's model

brings less safe results that the predicted life becomes longer than that by the
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Vroman's model. Therefore, the Vroman's model may be considered more desirable

than the Willenborg's model in a practical sense.

 As can be clearly observed from the above figures, the validity and applicability

of the present simulation program can be fully clarified.

5. ConcludingRemarks

 The present study develops the simulation program for the estimation of fatigue

life under random loading in consideration of the retqrdation effect, which undoubt-

edly plays a crucial role in the reliability-based fatigue-proof design. With the aid of

the program, the retardation effect can be clarified for given random loading cycles.

The present program is applicable to various practical engineering problems as-

sociated with crack propagation. With respect to the applicability of this program,

brief suggestions for future study are provided as follows:

(1) In such complex structures as aircraft and so forth, the shape of fatigue crack

   to exist or to be initiated would vary widely and the loading conditions also have

   a wide variety. Even for those cases, the present program can be easily extended

   and modified as the occasion may demand. More specifically, it would be easy

   to modify the present program to the case of crack shapes other than through-

   the-thickness center and single edge, or the case of cracks which propagate from

   rivet holes.

(2) By integrating the following crack growth law,

   cla/dn=f(AK R, ･･･ )

   the crack growth curve and the fatigue life are obtained. It is often the case that

   the calculation of the integration process is time-consurning and considerably

   costly. Hence, it is of practical importance to study the method to shorten

   execution time of the present program, for example, by transforming this

   differential equation to the equation which can be,directly integrated with the

   aid of polynomial approximation. This method will enable many cases to be

   simulated in a short time, and also enables reliability analysis by use of Monte

   Carlo simulation technique.

(3) Since gust loads and so forth can be treated as stationary random processes, the

   simulation for such loads can be performed comparatively easily. On the other

   hand, flight loads are considered non-stationary random processes in the light of

   their nature. Consequently, from the practical viewpoint, it would be of vital

   significance to construct the simulation method for random loading as a non-

   stationary random process'`).
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(4) By the repetition of varying loads, fatigue damage is accumulated gradually and

   fracture takes place finally through the initiation and propagation of cracks.

   The residual strength might decrease according to the crack growth. Hence, it

   becomes of much importance to clarify the probabilistic nature of the residual

   strength and to develop the method for analyzing structural reliability in

   relation to random loading,
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