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Effect of Retardation on Crack Propagation Life Distribution
under Random Loading

Hidetoshi IsHikawa*, Hiroshi IsHikAwA** and Yoshisada MUROTSU***
(Received November 15, 1990)

The present paper deals with program development for the simulation of the
effect of retardation on the fatigue crack propagation life distribution under
random loading in reference to the fact that the correct prediction of fatigue
life or fatigue strength becomes of crucial importance since almost all practi-
cal machines and structures are usually subjected to random loading, and most
of their failures are caused by fatigue. In this respect, first, a simulation
program in consideration of the effect of retardation caused by overload is
developed to predict fatigue life under random loading with the aid of experi-
mental data obtained comparatively easily by constant amplitude fatigue
tests. This simulation program is expected to provide a quite effective
measure for the reliability analysis of fatigue life with wide applicability.
Then, by use of the program, the effect of retardation is investigated. In case
of ignoring the retardation effect, fatigue life is naturally estimated to be
shorter. On the other hand, in consideration of the retardation effect, the
Willenborg model brings more risky results such that the life becomes longer
than that based on the Vroman model. Therefore, the Vroman model may be
considered more rational than the Willenborg model in a practical sense.

1. Introduction

Structural reliability assurance is of vital importance in designing structures of
much societal concern such as airplanes, bridges and buildings, since their fracture
will cause, directly or indirectly, a fatal loss of human life. The failure of these
structures is mostly due to fatigue caused by randomly applied external stresses.
Cracks are initiated in structural components due to the repetition of random
loading and they grow gradually until final failures take place. Therefore, in the
reliability-based fatigue-proof design, the correct prediction of fatigue life and
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fatigue strength of structural components becomes indispensable. For this purpose,
a so-called full scale fatigue test is considered most desirable under service condi-
tions. This kind of fatigue test, however, requires large amount of cost with respect
to time, labor and/or expenses.

In reference to the above, the present study first deals with the construction of
fatigue crack growth model on a structural component subjected to random loading
in consideration of the retardation effect due to overloads which exceed the yield
strength of the material used, based upon the recent remarkable advance of fracture
mechanics. Then, this paper devotes itself to the program development for the
simulation of fatigue life under random loading by use of some parameter values
which are obtained easily by the test of constant stress amplitude. Finally, the effect
of retardation on the crack propagation life distribution is exemplified with the aid
of the program thus developed.

2. Technical Background of Fracture Mechanics for Fatigue Crack Growth Law

2.1 Fatigue crack growth law
In general, the fatigue crack growth law can be expressed in the following form:
—d-a_—=f(a: o'max; R, 7") E)”.) (1)
dn
where

a=the crack length after »n cycles of stressing,
da/dn=the crack growth rate after # cycles of stressing,
Omax = the maximum stress level at the #n-th cycle,

Omin =the minimum stress level at the »-th cycle,

R = 6nin/ omax =the stress ratio at the »n-th cycle,

T =temperature, and

E =other environmental conditions.

Based upon Eq.(1), various studies on the crack growth law have been recently made
and a variety of the following crack growth laws have been constructed and
proposed:

(a) Paris-Erdogan’s growth law

Recent advancement in fracture mechanics has shown that the crack growth rate
can be expressed in terms of the stress intensity factor range AK at the crack tip
defined as

AK = Kpax— Knin=(1— R)}Knax (2)

where
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Kinax = Onax V' 7a

=the maximum stress intensity factor @-a)
Kmlnzamln vV na (3_b)

=the minimum stress intensity factor

for through-the-thickness cracks when the correction factor due to the finite speci-
men size is disregarded.
Paris proposed the 4th power type growth law based upon the experimental results
on aluminum alloy in the following form":
da
——=f(6K)=C(aK)* @
dn
where C is a material constant.
At present, the Paris’ cack growth law is widely applied in the following general-
ized form which is often termed as the Paris-Erdogan’s growth law:

IV o ®)

an
where C and m are material constants. This equation indicates that the crack
growth rate is primarily determined by AK and the effects of the stress ratio, the
repetition speed of stressing and the specimen thickness would be regarded as
secondary, being reflected in the material constants such as C and m. Though the
value of the exponent m practically assumes 2~8 according to the material, it is
often the case for fatigue life estimation that m is approximated by 4 as the
representative value which Paris first proposed. Taking the natural logarithm of

In da/dn

In AK

Fig. 1 The linear relationship between da/dn and AK.
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both sides of Eq.(5), it follows that
ln(ﬂ) =InC +mIn(AK) (6)
dn’

From this equation, as shown in Fig. 1, the relationship between da/dn and AK
becomes linear if both quantities are measured on a logarithmic scale. As can be
easily seen, the exponent m represents the slope of this straight line and C the value
of the ordinate for AK=1.

(b) Forman, et al.’s equation

In reference to the fact that the crack growth rate increases quite rapidly, widely
apart from the straight line of the Paris-Erdogan’s law, when the value of the
maximum stress intensity factor Knax approaches that of the fracture toughness K,
the following equation of crack growth law is proposed by Forman, et al.?.

da _ CaK)™ _ CaK)™

dn~ (1-R)Kic—AK  (1— R)(Kic— Knax) &

where the constant value C and the exponent m are similar to those of the
Paris-Erdogan’s law, but not necessarily the same, and R = 6jin/ Omnex represents the
stress ratio.

{c) Collipriest’s equation

A progress in the research on the relationship between da/dn and AK has clarified
that In(da/dn)—In(AK) curve has a sigmoidal shape, as shown in Fig. 2, between the
fracture toughness K. and the threshold stress intensity factor range AK,,. From
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Fig. 2 The relationship between In(da/dn) and In(AK) showing a sigmoidal shape.



Effect of Retardation Crack Propagation Life Distribution under Random Loading 119

this point of view, Collipriest proposed the equation in the following form?®.

da InKic—InAK,,
oo ()

an
A K_ln{(l—R)K;c}HnAKm
Xtanh™!
an ln{(l—R)K.c}——lnAKm @®)
+1n{ Cexp (an,C*I-lnAKm }]

where m and C are material constants. The above Collipriest’s equation is also
termed as “sigmoidal equation”.

(d) Walker’s equation

The accumulation of data base of fatigue test results under constant stress
amplitude has made it clear that the fatigue crack growth rate is affected also by the
stress ratio K. From this viewpoint, Walker introduced the notion of effective stress
range, AKey, which can be represented by use of the stress intensity factor as
follows*:

AKer=(1— R)*Kunax ’ )]

where v is a material constant. Applying Eq.(9) to the generalized Paris-Erdogan’s
law in Eq.(5), we get

%—cmmm ClA~ R)"Knan]" (10)

Moreover, this equation can be transformed with the aid of AK in Eq.(2) in the
following form:

=l a

This equation is called the Walker’s crack growth law, which reduces to the follow-
ing equation in case of v=1:

da
I C(AK)

This is nothing but the Paris-Erdogan’s growth law as in Eq.(5).
(e) Hall, et al.’s equation

Hall, et al. proposed an experimental equation to be fitted to the crack growth
data in USAF (United States Air Force) as follows®:
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%= C(Knax— Kon)* (AK)™ 12)
n

where C, &« and m are material constants obtained through the curve-fitting tech-
nique. The above equation is also called the “Boeing equation”.

(f) Bell, et al.’s equation ‘

Under random loading, it is often the case that overloads are imposed, which
might cause retardation of the crack growth. Bell, ¢ al. proposed the following
equation in consideration of the preceding retardation effect®.

o Cl+eRAK]" 13)
dn

where R is defined as

{R=R - for RS Ry, (14)

R=R.. for R>Ry

in which R, the cut-off stress ratio, is defined as the upper cut-off value of the
stress ratio R. C, ¢ and m are experimental constants of the material obtained
through the curve-fitting technique.

It should be noted here that the above equation is derived by modifying the Elber’s
closure model” defined in the following form and is considered to give a good fit to
the experimental data.

Omax — O¢
s

U=054+04R (for —0.1<R<0.7)
(in case of 2024—T3 aluminum alloy)
R = 6inin/ Omax
o.p =the crack opening stress

(15)

2.2 Retardation model

Among several models proposed so far to take into consideration the above-
mentioned retardation effect on the crack growth rate caused by overload, the
present paper describes two well-known models, the Willenborg’s model and the
Vroman's model.

(a) Willenborg’s model

It is the Willenborg’s model® the purpose of which is to omit the troublesome data
fitting operations required, for instance, for the model proposed by Wheeler®. In this
model, the following assumptions are adopted:

(i) Retardation is a function of the maximum stress in each cycle of stressing and
the overload immediately before it stressing.
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r—(0] Ryol—

ac i Ryap—=
e Ry o
apc
\WFT_TT/
(o

Fig. 3 Schematic representation of the plastic zone at the crack tip.

(i) Retardation is proportional to the amount of reduction in the maximum stress
by that of the residual stress due to the overload.

(iii) Retardation effect gradually decreases through the plastic zone around the
crack tip caused by the overload.

(iv) In the case where a larger amount of overload is newly applied than that of the
last one, a new conditional equation of retardation is formed, entirely indepen-
dent of all the past conditions.

(v) Every applied stress is non-negative.

As shown in Fig. 3, assumed that the application of the overload o, is completed
at the time of the crack length a,, the size Ry, of the plastic zone at the crack tip
is given, by Irwin, as follows:

_ 1 Kmaxol
Ryol"‘ . ( Py

)’ (16)

where

Kinaxor =the maximum stress intensity factor caused by the overload oy,
oy =the yield stress of the material

c=2 (in case of plain stress condition) an
=4 v/ 2 (in case of plain strain condition)
Therefore, the zone size a,, affected by the overload oy, is
Gpor = Qo1+ Ry ’ ’ (18)

Suppose that o is the applied stress at the crack length a= a,(< @o1). Then Kuay, the
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stress intensity factor at that time, and the plastic zone size at the crack tip for
o =0, are given, respectively, as

Kmax =0V 7 (19)
1 Kmax 2 |
Ry =——(—"2
i cr ( Oy ) (20)

Hence, the total size a,. of the zone affected by ¢. can be expressed as
Ope=ac+ Rye (21)

With the aid of Egs.(18) and (21), the conditional equation of the retardation can be
constructed in the following way:

(i) If @pe> apor, through the assumption, a new conditional equation of the retarda-
tion is constructed. Therefore, the quantities

Qpo1 <™ pc
Ry~ Ry,
Knexor— Kmax

are replaced, as shown in the above, by the new ones, respectively.

(i) If @pc = aa1, the crack growth is retarded. This retardation effect is due to the
residual stress calculated in the following fashion. That is, the stress intensity
factor Knaxep, Wwhich satisfies Eq.(23), corresponding to the apparent stress oap
which would produce the same size of plastic zone as the residual size Ryqp of
the plastic zone at the present is first computed as follows:

Ryap=po1— (22)
1 Kooxan \2
ap———(—— 23
By (K e
Kunaxap = 0ap V 7Ryap (24)

With the aid of oy, thus obtained the residual stress

Ores = Oap — (Gc)max (25)
is calculated, and then, the stress intensity factor

Kres = Kinaxap — Kmax (26)

is obtained. The retardation caused by this residual stress can be evaluated by
re-calculating (Knax), (Kum) and R’ as follows:
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Amaxap

Kres by residual stress

l\’maxol\ / Orescaused by overload

Amaxp————=—=_Z-____

aol ac apol a

Fig. 4 The residual stress caused by retardation.

( = Knax — Kres
=2Knax— Kmakap
(Kaun) = Kinin — Kres 27)

=(Knax T Kmin)— Knaxan
R'=(Kan) / (Knax)’

Figure 4 represents the relationship between Eqgs.(23) and (26). By the way, it follows
through Eqgs.(16), (18) and (23) that

(Kmaxap)’ = Cﬂof(apol —a)

Therefore, we have the following relationships:

o1 &
Konso = Ko, /=
yol 28)
_ Gpor — A
e maxol
Qpo1 ™ Qo
Kmﬂxa 2
ac=apol“(apol_ao1)(7’—'?') 29)
maxol

The retardation effect based upon the Willenborg’s model can be evaluated by use
of Eq.(27). Since this model treats only non-negative stresses, negative stresses need
to be replaced by 0 and, in addition, Knaxep=Kmexo: holds through Eq.(28), since
a.=da, holds immediately after the loading of the overload ¢,,. Therefore, the
following three modes of retardation effects can be categorized according to which
is larger or smaller between the overload o, and the successively applied stress o.

(i) Model
This is the retardation mode based upon the reduction both of AK and R. This
mode corresponds to the case that (Knax)’ >0 and (Kuin)’ =0. Therefore,
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Km n + Kmax Kmaxo < 2Kmax
! = Kmaxor } (30-a)

(0)min + (0 max = 001 < 2(0c)max

In this case, since equations hold such that (Knax)err = (Kmax) and (Knim)err =0, it
follows that

AKeti=(Kmax) = Kmax — Kres }
Reut= (Kmln)eﬂ/(Kmnx)en =0

(ii ) Model 11
This is the retardation mode based upon the reduction only of R. This mode
corresponds to the case that (Kn.) >0. Therefore,
Kmln+Kmux>Kmaxol }
(O'C)mln +(°'c)max> 601

(30-b)

(31-a)

In this case, since equations hold such that (Knay)err =(Kmax)’ and (Kmin)ert = (Kmin)s
it follows that

AKen =(Kmnx)eu —(Kmln)en
= Kmax - Kmln =AK
Rett =(Kmin)ert/ (Kmaxert
=(Kmin — Kres)/ (Kmax— Kres)

(31-b)

(iii) Mode 111

This is the mode where maximum retardation is produced. In this mode, the crack
growth ceases completely and this corresponds to the case that (Knax) =0. There-
fore,

=
szax = Kmaxol } (32-8)

2(6)max S o1

In this case, since the equation that (Knax)err = {(Kmin)err =0 holds, it follows that

AKe =0
eff } (32*b)
Rerr=0
g (o) ag
Ool Jol gol
Omax
\Eamgx ,’ \N\;i m.a\ Jmax
O'min Omin Jmin
N N N
(a3} MODE—] (b MODE—I (¢} MODE—II
Omin+ O max S 001 <20 max 001<<Omin—+ 0 max 20 max = Gol
[O'mln]ctf=0'mln—0'ras<0 [U'm!n] ot >0 [O'mlx] ot <<(
. [0'mln].ﬂ=0 S [4KYorr= [4Kj [Gminerr<O
l4K]ert= [Kmax]ere [Rh”_____[_]{mxn]orr S [Omax]err=[Omin) err=0
[R)etr=0 [Kmax}ore [dK])etce=[R]erc=0

Fig. 5 Willenborg’s retardation model.
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The applied stress condition is schematically represented in Fig. 5 corresponding
to the abovestated modes I~IIl. By the way, 0.,/ ¢ is termed as the overload ratio.
In the Willenborg’s model, the crack growth is predicted to cease when this ratio
becomes more than or equal to 2. In fact, the cease of crack growth is reported in
case of 6y1/0.22.3 in aluminum alloy'®.

The crack growth can be predicted by applying AK.y and Ry obtained based
upon the above method to any of the preceding crack growth laws, for example, the
Paris-Erdogan’s law or the Walker’s law.

(b) Vroman’s model'?

Though this model is similar to the preceding Willenborg’s model, the way to
calculate AK,; and Re; is different, respectively. This model utilizes the stress ratio
R = 0uin/ Omax as it is for R and uses the following equation for AKeys.

Repy=R=Kuin/Knax for RS Ry,
=Rew for R> Rew } (33) ‘
1 FRyoi—
A]<efr:(l{max_[{min)“_ [Kmaxol M_Kmax] (34)
3 yol
where
1 Kmaxol 2
Ryqn =—— (022
U e ( Oy )

oy =the yield stress of the material

K..x =the maximum stress intensity factor under the current loading cycle
K,i»=the minimum stress intensity factor under the current loading cycle
(2291

Ry values based on the overload ¢, previously loaded

Kmaxol

It is a standard practice to apply AKey and Rey defined by the aforementioned
method to a certain suitable crack growth law. For example, in applying to the
Walker’s law, the equation becomes as follows:

da _ I: DKoy :I
an = C LT Ry | (35)

where C, m and v are material constants to be obtained by experimental data under
the constant stress amplitude test.

2.3 Equation of stress intensity factor

A variety of calculations for the stress intensity factor K aré made in detail
according to various combinations between shapes of specimens and stress
conditions!>'®. The present paper deals with the uniform tension of plain plate both
with through-the-thickness center crack and with through-the-thickness single edge
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fa} center crack (b} edge crack

Fig. 6 Through-the-thickness center crack and single edge crack.

crack, as shown in Fig. 6.

(i) Uniform tension of plain plate with through-the-thickness center crack

In this case, the stress intensity factor K corresponding to the applied stress ¢ is

approximated in the following form:

K=g \/_—naF(ZTa)
E=2alw

e
F&= _ SeC(T)

(36)

where F(£) is a correction factor associated with specimen geometries. Approxima-

tion error is 0.39% for £=0.7, and 1% for £=0.8.

(ii) Uniform tension of plain plate with through-the-thickness single edge crack
The stress intensity factor K for the applied stress o can be approximated as

follows:

K=c naF(%)

E=alw
F(©=112-0.231&£+10.55&£2—21.72&3+ 30.39&*

Approximation error is 0.59% for £=0.6.

@37
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3. Program Development for Simulation of Fatigue Crack
Growth in Consideration of Retardation

3.1. Crack growth law applied in the program
Among various crack growth laws stated earlier, the most essential and popular
laws could be pointed out as follows:

(i) Paris-Erdogan’s law
(ii) Forman's law, and
(iii) Walker’s law
The Paris-Erdogan’s law is utilized most often for its ease of use. Though the
Forman'’s law is considered to be characteristic in consideration of the effect of K,
the Walker’s law would be adopted more often for researcher’s liking.
Consequently, in developing the simulation program for the prediction of fatigue
crack growth under random loading in the present study, the following two types of
crack growth laws are adopted:

(i) Paris-Erdogan’s law

—d—az CAK)™ (38)
dn

(i) Walker’s law

da _ AK ™
In =C [ A—R)-* ] 39)

The program is made so as to be able to choose either law properly, as the occasion
may demand, by use of the control parameter NTYPE in the following fashion:

NTYPE=0 — The Paris-Erdogan’s law is chosen.
NTYPE=+0 — The Waker's law is selected.

3.2. Retardation model applied in the program

The Willenborg or the Vroman model can be selected properly according to the
practical necessity through the control parameter NRETRD. Such a case of
disregarding the effect of the retardation is also involved as follows:

NRETRD=0 — This corresponds to the case of neglecting the retardation
effect.

NRETRD=1 — The Willenborg model is chosen.

NRETRD>0(=+1)— The Vroman mode! is of concern.

In consideration of retardation, the plastic zone at the crack tip needs to be
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calculated with the aid of Eq.(16), that is,

1 Kmaxo 2 '
Rm=——(———~‘ ) (40)
(%4 a'y

The coefficient ¢ in the above equation differs according to the stress condition and
hence this value is controlled by use of the control parameter NPLANE in the
following fashion:

NPLANE=0 — This corresponds to the plane stress condition, and ¢ is chose as
c=2. ,

NPLANE#0 — This is for the case of the plane strain condition, with ¢ being
put to be c=4 Vv 2.

3.3. Shape ot crack and its location

Though the shape of the crack would vary widely according to the specimen
geometries and loading conditions, the present program deals only with through-the-
thickness crack, since this type of crack could be deemed to appear quite frequently
in the practical applications.

The location of the crack is chosen by use of the control parameter NLOC as
follows:

NLOC=z0 — This is the case for the through-the-thickness center crack.
NLOC<0 — This corresponds to the case of the through-the-thickness single
edge crack.

3.4. Input data for random loading specifications

Assuming the case of aircraft structures, the input random load is treated in terms
of the unit flight of necessary random loading cycles where a unit loading cycle
consists of a pair of the minimum stress oy, and the maximum stress opax. The load
unit may be given by absolute unit in terms of kgf/mm? or by percentage of the
design limit stress o (kgf/mm?). In the latter case, conversion to the absolute unit
is performed automatically inside the program. In other words, in case that ¢’ is
prescribed by percentage unit of oy, then the conversion

0=0"*0un/100.0(kgf/mm?) (41)

is made. This load unit is controlled by the parameter MSCON in the following way:

MSCON=0 —The input load cycles are given by the absolute unit
(in terms of kgf/mm?).
MSCON <0 —The input load cycles are given by % oy unit
(unit is prescribed as % of oim).
Since the present program never deals with negative stresses, the repladed value
is applied in such a case that the minimum stress oni, or the maximum stress cuax,
converted to absolute unit in terms of kgf/mm?, assumes the following value. At that
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time, the original stress data are expressed “as prescribed” and the convérted data
“as modified”.

Omin <0 > Omin =0 kgf/mrn2
Omax <0.01 = 0imax=0.01 kgf/mm?

Further, dealing with the design limit stress omin, the function to quit computation
is supplied when the design limit stress intensity factor, Kym, exceeds the fracture
toughness K¢ or the material of interest. K, is calculated under the assumption
that specimen with the present crack length « is uniformly loaded with oy, as

Kiim=0im * Fla@)

. . . 42
F(a)=the function to compute stress intensity factor “42)

In the case that no consideration is made of this design limit stress which is utilized
widely for aircraft design and so forth, the parameter SIGLIM is prescribed as
follows: ‘

SIGLIM=0.0

In addition, since the input data are the history of random loading per unit flight,
the statistical properties can be investigated by obtaining the mean with respect to
the power exponent. In case of POWER=2.0, the root mean square value of the
load-time history is computed.

3.5 Integration calculus of crack growth

Since the Paris-Erdogan’s or the Walker’s law is provided as the differential
equation, the crack growth can be obtained by integrating this equation by cycle by .
cycle for each loading cycle. The integration is performed with the aid of area
summing-up method in terms of sufficiently small divisions. However, it can be
easily predicted that this method might lose cost performance in case of long
fracture life, since the whole calculation consumes really a long time, although
depending on the smallness of the divisions for integration. Therefore, the present
program adopts the following way of computation:

Suppose that the current crack length is a and # times of loading cycles of omin
— Omax are loaded. In case of z=1, the integration comes to be performed by cycle
by cycle.

(i) First, AK and R or AK. and Rey; are calculated by use of the applied stresses
Omin and omax under the selected conditions. Then, da/dn is computed through
the crack growth law of concern. At this time, in reference to the experimental
results that both the crack growth rate and the retardation are not influenced
strongly by the sufficiently small change in the crack length, the above calcula-
tion is carried out for the following expected value of crack length, with the
sufficiently small change in crack length being Ae=0.01a: '
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[HPUT DATR FORMRT SAMPLE CHART -- PROBLEM IDENTIFICATION UP TQ 28 CHERACTERS
SlaMpy  CKIC DELKTH  EXPH EXPN CONSTCE12, SYRCUT

HALFY T NLOCKRETRD NTYPERPLANE MCASE

CO(D s I=1, HCASE ~-— FORMAT(1GFB. 5

NLORDPOYER STELIN HMSCON

SEMINCIY ) SRMAK(LY s [=1,M.ORD —~~ FORMATC(1BFE,3) --- MIN. AND MAX, STRESSES.

---~=~ SAMFLE INPUT DATR FORMAT ---—-
CASE-2: WALKER®S EQUARTION: WILLEMBURG' MODEL; CENTER CRACK: C8=3,0MM

.9 68,9 2.9 8,313 3,400 1,758 -898.509
10,0 2.8 { | ! 1 !
3.

562.% 28.8 {

8,88 4,89 [.¢0
2,88 7.68 2,59
1,28 5.8¢ 3.00
J.68  5.28  2.90

a

2,80 6,83 4,68 V.48 2.88  7.48
1,46 6,28 2,88 6.8 346 7.8
2,60  T.e9 3,88 7.6 8.48 5,20
4.8 7.2 268 6,00 .06 18,60
2,68 5.4 2,89 .48 7.86 1,86 ig.48 3.8 4,89
1.8 6.88 4.80 . 2,00 4,66 2060 .80 180 .60
2,68 9,26 368 6,20 2,20 4,66 220 I.63 .66 7.00
5.08 - 868 3,88 7,40 4,40 7.68 468 760 2.4 5.
3.8 648 1,88 7,48 5.8 (1.86 2,68 5.8¢ 2.28 S.60
2,88 660 3,60 4.8 1.6 6.8 2,28 7.60 1.8 £.60

Q M BN T

QW ~N N~ N~y
DRSS

Fig. 7 Input data format.

a=a+~21*A=l.005a

e
(ii) Compare Aa/(~gz—-) with a given number of cycles #.

(a) In case that Aa/(da/dn)>n, the crack growth at this step is deemed as
(Aa) =n -+ (da/dn)
and the next loading step is followed with the new crack length of
a=a+{Aa).

(b) In case that Aa/(da/dn)= n, the crack length and the number of cycles are
modified as follows:

a=a+0.0la
n=n—0.01a/(da/dn) }
Based upon the above conditions, this loading step is re-calculated through the
preceding procedures.
(iii) When calculations are completed for all the input loading histories per one
flight, the crack length at that time is stored into the memory. Then, the same
computation is performed for the next flight, returning to the first step (i).
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{(iv) Fracture or failure is assumed when the larger value of either K}, for the design
limit load or Kmex for the maximum spectrum load exceeds K. Further, in
order to examine the effect of AK.,, by comparing A Kt with AKy, when AKy,
for the current loading cycle is not greater than AK.,, no computation of the
crack growth is made and the next loading cycle is proceeded under the
assumption that no crack grows. Therefore, the effect of the threshold stress
intensity factor range is ignored in case of the input condition of AK,,=0.0.

3.6 Input data and their format

An example of the input data necessary for the calculation in the present program
is represented in Fig. 7. The data on one line in the figure correspond to one card in
case of card input system. The brief explanation is given in what follows. It should
be mentioned that the parentheses ( ) behind a variable shows the format for the
present computer program, which can be easily modified as the occasion may
demand.

(i) The first card (the first line in Fig. 7)

IDENT(40A2)=This is supplied to identify the case of computation. This can be
given up to 80 characters in the present example, and may be
easily modified according to the occasion.

(ii) The second card (the second line in Fig. 7)
SIGMAY(F10.5)=the yield stress of the material, ¢, [kgf/mm?]
CKIC(F10.5)=the fracture toughness, K. [kgf/mm? v/ mm)
DELKTH(F105)=the threshold stress intensity factor range, AK,, [kgf/mm?
v/ Tim]
EXPN(F10.5)=the power exponent » in the Walker’s law. In case of applying
the Paris-Erdogan’s law, this value is regarded as dummy.
EXPM(F10.5)=the power exponent m in the Walker’s or the Paris-Erdogan’s
law.

CONST(E12.5)=the constant value C in the Walker’s or the Paris-Erdogan’s

law.

RCUT(F10.5)=the upper cut-off stress ratio, Reu:.

(iii) The third card (the third line in Fig. 7)
HALFW(F10.5)=the half width of the specimen, w/2 [mm]
T(F10.5)=the thickness of the specimen, # [mm]
NLOC(16)=the identification parameter for the crack location

NLOC=0 — the center crack
NLOC <0 — the single edge crack

NRETRD(16)=the selection parameter of the retardation model
NRETRD=0 — to neglect retardation
NRETRD=1 — the Willenborg’s model
NRETRD>0(+1)— the Vroman’s model
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NTYPE(16)=the selection parameter of the crack growth law
NTYPE=0 — the Paris-Erdogan’s law
NTYPE+#0 — the Walker’s law

NPLANE(16)=the stress condition parameter for the calculation of the plastic

zone at the crack tip '
NPLANE=0 — the plane stress condition
NPLANE=#0 — the plane strain condition

NCASE(16)=the number of different initial crack length in predicting life
for various initial crack lengths under the same stress (loading)
condition

(iv) The fourth card (the fourth line in Fig. 7)

CO(), I=1, NCASE---Up to NCASE can be used for different initial crack
length (10F8.5). In case that NCASE is larger than 10, the fifth card
is also used with the same FORMAT.

(v) The fifth card (the fifth line in Fig. 7)
NLOAD(16)=the number of loading cycles per one flight
POWER(F10.5)=the power exponent for mean square of loads. In case of
POWER =2, the root mean square (rms) value of the applied
stress history can be obtained.
SIGLIM(F10.5)=the design limit stress, o,m (kgf/mm?).
In case of disregarding this, SIGLIM=0.0
MSCON(16)=the identification parameter for the unit of loading histories
per one flight
MSCON 20 — The unit is given in terms of kgf/mm?
MSCON <1 — The unit is given in terms of % of the design
limit stress, oum (kgf/mm?).
(vi) After the sixth card (the sixth line in Fig. 7)

NLOAD number of loading histories are provided as a pair of omin (SIGMIN())
and omax (SIGMAX(I))(10F8.3). Since one card has 5 pairs of opin and omex, (that is 5
loading cycles), the corresponding number of cards needs to be given in order to
supply the given number of loading cycles per one flight.

4., Numerical Computations and Discussions

4.1 Simulated results of crack propagation life

Though it is of much interest to compare the simulated results with actual
experimental data, unfortunately at this time, there have been no available experi-
mental data so far. Therefore, in the present study, such virtual data as shown in
Fig. 7 as “SAMPLE INPUT DATA FORMAT” are applied for the crack growth
prediction by use of this program. The parameter values adopted for this computa-
tion are given, assuming those for aluminum alloy, as follows:
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oy =50 kgf/mm?
K, =68 kgf/mm?+ mm
K, =2.5 kgf/mm?v mm

v=0.310
m=23.40

C=1.750x10"*

R =0.5

w/2=10.0 mm
t=2.0 mm

20.
18.

10.

Stress o [ket/mf]

Crack length a [mm]

00
00

Design limit load is assumed

that ©11n=20kgf/ mn®

Fig. 9

Number of flight F

Simulated results of the fatigue crack growth.

.00 ¢ \
.00t k bN
.00
00 L i L 1 i 1 1 1
o 20 i 60 80 100
Number of cycles 2N
Fig. 8 An example of gust loading histories.
Center crack
1.50 " Valker’s law
1.00 F Initial length ag=1.5mm Vroman's model
0.50 | 0 ) 1n=20kgf/ um?
.00 1 1 | t 1 1 1 1 b
0 600 1200 1800 2400 3000
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Oum =20 kgf/mm?

As random loading histories for the input data, such loading histories as indicated
in Fig. 8 are applied, which were obtained by the simulation of the gust loads
subjected to the flight vehicle. Loading cycles in one flight are assumed for 100/2=
50 cycles.

The maximum value of the loading history is supposed to be around 60% of the
design limit stress of oy, =20 kgf/mm?2.

Figure 9 represents the simulated results with the aid of both the Walker’s crack
growth law and the Vroman’s retardation model. In this case, the initial crack length
assumes 5 different kinds of values such as

=15, 1.8, 2.0, 2.5 and 3.0 mm

From this figure, the crack growth proves to cease when the crack length becomes
around 3.2 mm, which satisfies the fracture condition such that K, = K¢ since the
design limit stress oym is set to be 20 kgf/mm?

4.2. Effect of design limit stress

Next, in order to examine the effect of the design limit stress, oim, such a case is
simulated as oyn=0.0 kgf/mm? and the initial crack length ¢,=3.0 mm. As can be
clearly seen in Fig. 10, the crack is observed to propagate to more than 6 mm in
length until fracture takes place. This fact may be an evidence for the satisfactory
processing of the present program.

4.3 Comparison between Paris-Erdogan’s and Walker’s growth law
Figure 11 represents the difference in simulated results between the Paris-

7.50
7.00}
8.50 |
=
% 6.00¢ O 1 1a=20kgt/ nn?
® 5.50}
=
2 500
[}
% 4.50 } O 1 1n=0kgf,” nn?
£ 4.00}
hnd Center crack
3.50 Falker’s law
3001 itiel length 8o=3.0 ma Vromen’s wodel
2-50 1 1 (] 1 [] 1 L () 1
0 300 800 900 1200 1500

Number of flight F
Fig. 10. Effect of design limit stress oyin.
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3.80
3.70} Center crack
Vroman's model
= O o a=20kst/ ue
S 8.50f
«
o 3.40f
s
§ 3.30f
- Walker’s 1
T a0} alker’s law
]
& 810 Paris-Erdogan’s law
3.00
2.90} Initial length a,=3.0 mm
2.80 N ) : ) A ‘ ) ' 1

0 80 160 240 320 400

Number of flight F

Fig. 11 Comparison between Paris-Erdogan’s law and Walker’s law.

3.80
Center crack
8.701 .| Walker's law
- 3.80} O 1 1n=20kgf/ nn®
= 3,50}
o3
= 3.40f
@ 3.30 | :
- No retardation Vroman’s model
= 3.20F )
s
St
& 3.10 Willenborg’s model
3.00
2.90) Initial length a,=3.0 um
2-80 1 1 1 1 1 ] 1 1 ]

0 50 100 150 200 250
Number of flight F

Fig. 12 Comparison between two retardation models.

Erdogan’s law and the Walker’s law. Such great difference as can be seen in this
figure may be due to the situation that the material constants m and C are
prescribed as really the same in both equations.

4.4. Comparison of retardation models

Figure 12 provides the effect of the retardation model on the simulated results. In
case of ignoring retardation, fatigue life is simulated to be shorter, that is, to a safer
side. On the other hand, in consideration of retardation, the Willenborg’s model
brings less safe results that the predicted life becomes longer than that by the
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Vroman’s model. Therefore, the Vroman’s model may be cormdered more desirable
than the Willenborg’s model in a practical sense.

As can be clearly observed from the above figures, the validity and applicability
of the present simulation program can be fully clarified.

5. Concluding Remarks

The present study develops the simulation program for the estimation of fatigue
life under random loading in consideration of the retardation effect, which undoubt-
edly plays a crucial role in the reliability-based fatigue-proof design. With the aid of
the program, the retardation effect can be clarified for given random loading cycles.
The present program is applicable to various practical engineering problems as-
sociated with crack propagation. With respect to the applicability of this program,
brief suggestions for future study are provided as follows:

(1) In such complex structures as aircraft and so forth, the shape of fatigue crack
to exist or to be initiated would vary widely and the loading conditions also have
a wide variety. Even for those cases, the present program can be easily extended
and modified as the occasion may demand. More specifically, it would be easy
to modify the present program to the case of crack shapes other than through-
the-thickness center and single edge, or the case of cracks which propagate from
rivet holes.

(2) By integrating the following crack growth law,

da/dn=f(AK, R, )

the crack growth curve and the fatigue life are obtained. It is often the case that
the calculation of the integration process is time-consuming and considerably
costly. Hence, it is of practical importance to study the method to shorten
execution time of the present program, for example, by transforming this
differential equation to the equation which can be directly integrated with the
aid of polynomial approximation. This method will enable many cases to be
simulated in a short time, and also enables reliability analysis by use of Monte
Carlo simulation technique.

(3) Since gust loads and so forth can be treated as stationary random processes, the
simulation for such loads can be performed comparatively easily. On the other
hand, flight loads are considered non-stationary random processes in the light of
their nature. Consequently, from the practical viewpoint, it ‘would be of vital
significance to construct the simulation method for random loading as a non-
stationary random process'®. :
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By the repetition of varying loads, fatigue damage is accumulated gradually and
fracture takes place finally through the initiation and propagation of cracks.
The residual strength might decrease according to the crack growth. Hence, it
becomes of much importance to clarify the probabilistic nature of the residual
strength and to develop the method for analyzing structural reliability in
relation to random loading.
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