

学術情報リポジトリ

An Extension of the Multi-dimensional Adaptive Robbins- Monro Procedure

メタデータ	言語: eng
	出版者:
	公開日: 2010-04-06
	キーワード (Ja):
	キーワード (En):
	作成者: Maeda, Yutaka, Kawamura, Yoshiaki
	メールアドレス:
	所属:
URL	https://doi.org/10.24729/00008454

An Extension of the Multi-dimensional Adaptive Robbins-Monro Procedure

Yutaka MAEDA*, Yoshiaki KAWAMURA**

(Received June 16, 1990)

The multi-dimensional adaptive Robbins-Monro stochastic approximation procedure is extended. The adaptive Robbins-Monro procedure consists of two algorithms. The first algorithm estimates the optimal parameter. The second algorithm gives the gain matrix which determines the magnitude of the revision of the parameter given by the first algorithm. In this paper, an extension of the second algorithm for the gain matrix is proposed. We clarify the conditions which ensure the convergence of the gain matrix to the optimal matrix.

1. Introduction

This paper presents an extended procedure for the multi-dimensional adaptive Robbins-Monro procedure (ARM procedure). The ARM procedure was proposed to improve the asymptotic convergence rate of the Robbins-Monro stochastic approximation procedure¹⁾ (RM procedure). This procedure was proposed by Venter²⁾, and extended to multi-dimensional case by Nevel'son and Khas'minskii³⁾. Some applications of ARM procedure were reported by the authors^{4),5)}.

Now, let $J(\mathbf{x})$ be a smooth real-valued evaluational function of an adjustable parameter vector \mathbf{x} . Our problem is to find the optimal value \mathbf{x}_* which minimizes $J(\mathbf{x})$. Under the assumption that we only observe the gradient vector of $J(\mathbf{x})$ with noise, we can apply the ARM procedure to this stochastic optimization problem.

The ARM procedure consists of two recursive algorithms. The first algorithm directly revises the estimated value of the optimal parameter x_* . The other algorithm gives the gain matrix which determines the magnitude of the above revision.

It is known that the asymptotic convergence rate of the first algorithm is optimal, when this gain matrix is equal to the Hessian $H(x_*)$ of evaluational function J(x) at $x_*^{(2),3)}$. Therefore, the purpose of the latter is to estimate the Hessian of J(x).

** Department of Electronics, College of Engineering

^{*} Department of Electrical Engineering, Faculty of Engineering, Kansai University

Usually, the Hessian of J(x) varies with respect to parameter x. However, in the ordinary ARM procedure, the estimated value of $H(x_*)$ is the time average of each observed value of H(x) at each operating point. Since the operation point x changes at each step, it is important to make much of the recent estimation for the Hessian. From this point of view, more feasible ARM procedure is required.

The authors have proposed an extended one-dimensional ARM procedure, and demonstrated its convergence for this extended procedure⁶⁾. In this paper, we extend this procedure to multi-dimensional case.

2. Extended Multi-dimensional ARM Procedure

Let $J(\mathbf{x})$ be an evaluational function of real-valued *n*-dimensional parameter vector \mathbf{x} . We consider the problem to find the optimal parameter \mathbf{x}_{*} which minimizes the evaluational function $J(\mathbf{x})$. Suppose that we can only observe the gradient vector $f(\mathbf{x})$ of $J(\mathbf{x})$ with noise. \mathbf{x}_{t} denotes the estimated value of \mathbf{x}_{*} at the *t*-th step. Let $\pm c_{t}$ be perturbations to each component of the vector \mathbf{x}_{t} . We observe $f(\cdot) 2n$ times for each step at $\mathbf{x}_{t} \pm e^{i}c_{t}$, where e^{i} is the *n*-dimensional fundamental vector all of whose components are 0 except that the *i*-th component is 1. Let ψ_{t}^{+i} , ψ_{t}^{-i} be the observation noises. The observation vectors \mathbf{z}_{t}^{+i} , \mathbf{z}_{t}^{-i} and the observation matrices \mathbf{Z}_{t}^{+} , \mathbf{Z}_{t}^{-} are defined as follows:

$$z_{t}^{+i} = f(x_{t} + e^{i}c_{t}) + \Psi_{t}^{+i}$$

$$z_{t}^{-i} = f(x_{t} - e^{i}c_{t}) + \Psi_{t}^{-i} \qquad (i = 1, \dots, n)$$

$$Z_{t}^{+} = (z_{t}^{+1}, \dots, z_{t}^{+n})$$

$$Z_{t}^{-} = (z_{t}^{-1}, \dots, z_{t}^{-n})$$
(2)

From Eq. (2), the observation matrices Z_t^+ and Z_t^- consist of these 2n observations of $f(\cdot)$.

We propose the following extended multi-dimensional ARM procedure:

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \alpha_t \mathbf{K}_t^{-1} - \frac{\sum_{i=1}^{n} (\mathbf{z}_t^{+i} + \mathbf{z}_t^{-i})}{2n}$$
(3)

$$K_{t} = \begin{cases} H_{t} & \text{if } H_{t} > K_{\min} \\ K_{\min} & \text{if else} \end{cases}$$
$$H_{t+1} = b_{t}H_{t} + a_{t} \frac{Z_{t}^{+} - Z_{t}^{-}}{2c_{t}}$$

(4)

where H_t is an $n \times n$ matrix. K_{\min} is a sufficiently small positive definite $n \times n$ matrix. For matrices A and B, we express $A > B(A \ge B)$ if A - B is positive definite (positive semi-definite). k_{\min} denotes the minimum eigenvalue of matrix K_{\min} .

If we know a prior information about $H(x_*)$, we use this value for an initial value H_1 of Eq. (4). We have to guarantee that the matrix H_1 is positive definite in any case.

In algorithms (3) and (4), 2n observations of $f(\cdot)$ are made at each step. The observation vectors z_t^{+i} and z_t^{-i} are given by these observations. On the basis of the average of these observation vectors z_t^{+i} and z_t^{-i} , Eq. (3) changes x_t . Simultaneously, on the basis of the difference of the observation matrices, we estimate the Hessian and Eq. (4) changes the estimated value H_t .

The first algorithm (3) is a kind of usual RM procedure. The magnitude of the revision at each step depends on not only the coefficient α_t but also the matrix K_t^{-1} . If we take $a_t = t/(t+1)$, $b_t = 1/(t+1)$ in the second algorithm (4), this procedure becomes the usual ARM procedure. In our procedure, under certain conditions described below, we can arbitrarily choose the coefficients a_t , b_t and c_t .

The algorithms (3) and (4) are not simple extension of the algorithms in Reference 6). In Reference 6), we could not separately prove the convergence of the parameter and the convergence of the estimation of the Hessian. However, we can separately discuss the convergence of the parameter and the convergence of the estimation of the Hessian, in this procedure.

As we state below, H_t converges to $H(x_*)$ with probability 1 as $t \to \infty$. Therefore, if $H(x_*) \ge K_{\min}$ for large t, H_t are used as K_t in the algorithm (3).

3. The Convergence Theorem

First of all, we state the conditions which we use below. The conditions (A1) \sim (C1) are also required in the usual RM procedure or ARM procedure. On the other hand, the conditions (C2) \sim (C8) are fundamental conditions to ensure the convergence of matrix H_t in the proposed procedure. It is natural to require the condition (A2) regarding the shape of the evalutional function. If we want to guarantee the convergence of x_t only, it is allowed that the set D, which is defined in (A2), is a simply-connected compact set. If we use the algorithms (3) and (4) under this condition, we can not ensure the asymptotically optimal convergence rate of x_t but the convergence of x_t to x_s .

Condition

- (A1) The evalutional function J(x) is 2 times continuously differentiable and bounded from below.
- (A2) The set $D = \{x \mid f(x)=0\}$ consists of a unique point.

- (A3) There exist positive numbers h_{\min} and h_{\max} such that $h_{\min}I \leq H(x) \leq h_{\max}I$ where I denotes the identity matrix. H(x) satisfies the Lipschitz condition.
- (A4) $J(\mathbf{x}) \to \infty$ as $\| \mathbf{x} \| \to \infty$.
- $(A5) \quad H(x_*) \ge K_{\min}.$

(B1) The observation noise has the following properties: $E(\boldsymbol{y}_{t}^{\pm i})=0,$ $E\{(\boldsymbol{y}_{t}^{\pm i})(\boldsymbol{y}_{t}^{\pm i})^{T}\} \leq S, \parallel S \parallel < \infty.$

 $\boldsymbol{\overline{\varphi}}_{t}^{\pm i}$ are independent for each observation.

 $E(\cdot)$ denotes the expectation. S is a positive definite matrix. The super script T means transpose. The norm of a matrix is Euclidean.

(C1)
$$\alpha_t = 1/t$$
.

- (C2) $\sum_{t=1}^{\infty} \alpha_t c_t < \infty$.
- (C3) $a_t, c_t > 0, 1 \ge b_t > 0.$
- (C4) $\sum_{t=1}^{\infty} (1-b_t)^2 < \infty.$
- (C5) $\sum_{\substack{t=1\\ t=1}}^{\infty} (a_t/c_t)^2 < \infty.$
- (C6) $\sum_{\substack{t=1\\ \infty}}^{\infty} |a_t-1+b_t| < \infty.$
- (C7) $\sum_{t=1}^{\infty} a_t = \infty$.
- (C8) There exist positive numbers C_1 , C_2 , λ , ε , γ , k_{\max} and k_{\min} such that $(\gamma/2) + \lambda > 1$ for $a_t \leq C_1 t^{-\lambda}, c_t \leq C_2 t^{-\epsilon}, \gamma < \min(2\varepsilon, 2(k_{\min}/k_{\max}), 1)).$

In the ARM procedure, we have to consider the two kind of convergence. One is the convergence of estimated value of x_* . The other is the convergence of the estimated value for the matrix $H(x_*)$. The convergence of the usual RM procedure is studied in many papers^{1),7)}. Generally, it is important that the gain matrix K_t is not only positive definite but also bounded, since we have to demonstrate the convergence of estimated value x_t . In this procedure, algorithm (3) ensures that K_t is positive definite. However, it is not obvious wether K_t bounded or not. On the other hand, we need boundedness of H_t to prove the convergence of the estimated value H_t to $H(x_*)$. There is no restriction about the range of H_t in algorithm (4). Therefore, in order to ensure the convergences of x_t and H_t , we must demonstrate the following assertion (*) for this procedure. If the assertion (*) for the estimated value H_t is satisfied, the matrix K_t also satisfies a similar condition from the algorithm (3). We prove the assertion (*) in the following lemma.

- (*) There exsists a positive number k_{\max} such that
 - $|| H_t || \leq k_{\max}$, with probability 1 as $t \to \infty$.

50

Lemma 1

We assume the conditions (A1) \sim (A4), (B1), (C3), (C5) and (C6). Then (*) holds for the algorithm (4).

Proof

We obtain the following equation from the algorithm (4).

$$H_{t+1} = \beta_0 H_1 + \beta_1 a_1 Z_1 + \dots + \beta_{t-k-1} a_{t-k-1} Z_{t-k-1} + \dots + \beta_t a_t Z_t$$

= $\beta_0 H_1 + \beta_1 a_1 Y_1 + \dots + \beta_{t-k-1} a_{t-k-1} Y_{t-k-1} + \dots + \beta_t a_t Y_t$ (5)
+ $\beta_1 a_1 \overline{\Psi}_1 / c_1 + \dots + \beta_{t-k-1} a_{t-k-1} \overline{\Psi}_{t-k-1} / c_{t-k-1} + \dots + \beta_t a_t \overline{\Psi}_t / c_t$

where

$$\beta_{i} \equiv \begin{cases} \prod_{j=i+1}^{t} b_{j} & \text{if } i+1 \leq t \\ 1 & \text{if } i+1 > t \end{cases}$$

$$Z_{t} \equiv \frac{Z_{t}^{+} - Z_{t}^{-}}{2c_{t}}$$

$$\Psi_{t} \equiv ((\Psi_{t}^{+1}, \dots, \Psi_{t}^{+n}) - (\Psi_{t}^{-1}, \dots, \Psi_{t}^{-n}))/2$$

$$Y_{t} \equiv E(Z_{t})$$
(6)
(7)

Therefore, from Eq. (5), we have the following inequality.

$$\| H_{t+1} \| \leq \| \beta_0 H_1 + \sum_{i=1}^t \beta_i a_i Y_i \| + \| \sum_{i=1}^t \beta_i a_i \overline{\Psi}_i / c_i \|$$
(8)

We consider the first term of the right hand side of Eq. (8). We define $\gamma_t = a_t - 1 + b_t$. Then, from (C3), we have

$$\sum_{i=1}^{t} \beta_{i}a_{i} = b_{t} \cdots b_{2}a_{1} + \dots + b_{t} \cdots b_{t-k}a_{t-k-1} + \dots + b_{t}a_{t-1} + a_{t}$$

$$= b_{t} \cdots b_{2}(1-b_{1}) + \dots + b_{t} \cdots b_{t-k}(1-b_{t-k-1}) + \dots$$

$$+ b_{t}(1-b_{t-1}) + 1 - b_{t}$$

$$+ b_{t} \cdots b_{2}\gamma_{1} + \dots + b_{t} \cdots b_{t-k}\gamma_{t-k-1} + \dots + b_{t}\gamma_{t-1} + \gamma_{t}$$

$$\leq b_{t} \cdots b_{2} - b_{t} \cdots b_{1} + \dots + b_{t} \cdots b_{t-k} - b_{t} \cdots b_{t-k-1} + \dots + b_{t}$$

$$- b_{t}b_{t-1} + 1 - b_{t} + |\gamma_{1}| + \dots + |\gamma_{t}|$$

$$= -b_{t} \cdots b_{1} + 1 + |\gamma_{1}| + \dots + |\gamma_{t}|$$
(9)

Therefore, using the conditions (C3) and (C6), we can obtain the following inequality.

$$0 \le \sum_{i=1}^{\infty} \beta_i a_i < \infty \tag{10}$$

From the definition, Y_i denotes the Hessian of the evalutional function at a certain point. So, from the conditions (A1) and (A3), there is a positive number M_1 such that

$$\| Y_i \| \le M_1 \tag{11}$$

Equations (10), (11) and the boundedness of H_1 and this result guarantee the boundness of the first term of the right hand side of Eq. (8).

We consider the noise term of the right hand side of Eq. (8). The conditions (C3), (C5) and (B1) imply

$$\|\sum_{i=1}^{\infty} E((\beta_{i}a_{i} \swarrow c_{i})^{2} \boldsymbol{\mathcal{Y}}_{i} \boldsymbol{\mathcal{Y}}_{i}^{T})\|$$

$$< \|\sum_{i=1}^{\infty} (a_{i} / c_{i})^{2} E(\boldsymbol{\mathcal{Y}}_{i} \boldsymbol{\mathcal{Y}}_{i}^{T})\| < \infty$$
(12)

Accordingly, the Kolmogorov's theorem guarantees the convergence of $\|\sum_{i=1}^{\infty} (\beta_i a_i \boldsymbol{\overline{\psi}}_i / c_i)\|$ with probability 1. Therefore, the assertion of this lemma is proved. (Q.E.D)

This lemma also ensures that $|| K_t || \leq k_{\max}$.

Main theorem

We assume the conditions (A1) \sim (A5), (B1), (C1) \sim (C8). Then, for the algorithms (3) and (4),

$$\begin{array}{l} x_t \to x_*, \\ J(x_t) \to J_{\min}, \\ K_t \to H(x_*) \quad \text{with probability 1 } (t \to \infty) \end{array}$$

where J_{\min} denotes the minimum value of $J(\mathbf{x})$.

Proof

According to the previous lemma, the assumptions of this theorem imply the condition (*). Hence, the matrix K_t satisfies the same condition. That is, for an arbitrary $\delta > 0$, there exist a number t_1 such that

$$P \{(\sup_{t>t_i} \| K_t \|) \leq k_{\max}\} > 1 - \delta$$

The algorithm (3) guarantees that the matrix K_t is positive definite. From the

52

prevdious equation, we have the boundedness of K_t with probability 1. As we described in Reference 6), we can easily apply the convergence theorem of Reference 7) to our algorithm (3). Hence, the convergence theorem of Reference 7) induces the first and second assertions of the main theorem (see Reference 6) and 7) in datail).

Now, let us consider the convergence of the matrix K_i . This proof is basically an extension of the theorem of Reference 6) to the multi-dimensional case. However, the condition (*) is different.

Let $\tilde{H}_t \equiv H_t - H(x_*)$. Then, let us consider $\tilde{H}_t \tilde{H}_t^T$. The algorithm (4) yields

$$\tilde{H}_{t+1}\tilde{H}_{t+1}^{T} = \tilde{H}_{t}\tilde{H}_{t}^{T} + Q_{t} + N_{t}$$
(13)

where

$$Q_{t} \equiv \tilde{H}_{t} \{ (b_{t}-1)H_{t} + a_{t} \frac{Z_{t}^{+} - Z_{t}^{-}}{2c_{t}} \}^{T} \\ + \{ (b_{t}-1)H_{t} + a_{t} \frac{Z_{t}^{+} - Z_{t}^{-}}{2c_{t}} \} \tilde{H}_{t}^{T} \\ N_{t} \equiv (b_{t}-1)^{2}H_{t}H_{t}^{T} + (\frac{a_{t}}{2c_{t}})^{2}(Z_{t}^{+} - Z_{t}^{-})(Z_{t}^{+} - Z_{t}^{-})^{T} \\ + (b_{t}-1)a_{t}\{H_{t}(\frac{Z_{t}^{+} - Z_{t}^{-}}{2c_{t}})^{T} + H_{t}^{T}(\frac{Z_{t}^{+} - Z_{t}^{-}}{2c_{t}}) \}$$

This equation corresponds to Eq. (8) of Reference 6). The algorithm (4) does not explicitly restrict the range of the matrix H_t . If we compare Eq. (13) with Eq. (8) of Reference 6), Eq. (13) does not contain the term which is derived from this restriction.

We define $Y_t^+ \equiv E(Z_t^+)$ and $Y_t^- \equiv E(Z_t^-)$. There exists a point x_s such that $(Y_t^+ - Y_t^-)/2c_t = H(x_s)$. Accordingly, we have

$$\frac{Y_t - Y_t^{-}}{2c_t} = H(x_*) + \{H(x_t) - H(x_*)\} + \{H(x_s) - H(x_t)\}$$
(14)

Let Θ_t be the second and third terms of the right hand side of Eq. (14). From the condition (A3), there exist positive numbers M_2 and M_3 such that

$$\frac{Y_t^+ - Y_t^-}{2c_t} = H(\mathbf{x}_*) + \Theta_t \tag{15}$$

 $\| \Theta_t \| \leq M_2 \| \mathbf{x}_t - \mathbf{x}_\star \| + M_3 c_t$

Now, we define Φ_t as follows:

Yutaka MAEDA and Yoshiaki KAWAMURA

$$\Phi_{t} = (a_{t} + b_{t} - 1)(\tilde{H}_{t}H_{t}^{T} + H_{t}\tilde{H}_{t}^{T}) + (b_{t} - 1)^{2}H_{t}H_{t}^{T} + a_{t}\Theta_{t}\tilde{H}_{t}^{T} + a_{t}\Theta_{t}^{T}\tilde{H}_{t} + (a_{t}/c_{t})^{2}(Y_{t}^{+} - Y_{t}^{-})(Y_{t}^{+} - Y_{t}^{-})^{T} + (a_{t}/2c_{t})^{2}S + \frac{(b_{t} - 1)a_{t}}{c_{t}} \{H_{t}(Y_{t}^{+} - Y_{t}^{-})^{T} + (Y_{t}^{+} - Y_{t}^{-})H_{t}^{T}\}$$
(16)

Let us consider the quantity Φ_t . First of all, we consider the term containing Θ_t of Eq. (16). We know the following result (see APPENDIX).

$$\lim_{t \to \infty} t^{\gamma} \| x_t - x_* \|^2 = 0 \tag{17}$$

This result and the condition (C8) yield

$$\sum_{t=1}^{\infty} a_t \parallel \mathbf{x}_t - \mathbf{x}_* \parallel < \infty \tag{18}$$

We have $\varepsilon + \lambda > 1$ from the condition (C8). From (C8), we have

$$\sum_{t=1}^{\infty} a_t c_t < \infty \tag{19}$$

We can obtain the relation (20) from Eqs. (15), (18) and (19).

$$\sum_{t=1}^{\infty} \| a_t \Theta_t \| < \infty$$
⁽²⁰⁾

 Φ_t has the following property from Eq. (20), conditions (B1), (C4)~(C6) and the boundedness of \tilde{H}_t , K_t , Y_t^+ , Y_t^- :

$$\sum_{t=1}^{\infty} \| \Phi_t \| < \infty \tag{21}$$

On the other hand, using Eq. (16) and condition (B1), we have

$$\mathbb{E}(\tilde{H}_{t+1}\tilde{H}_{t+1}^{T} \mid H_{t}) \leq \tilde{H}_{t}\tilde{H}_{t}^{T} - 2a_{t}\tilde{H}_{t}\tilde{H}_{t}^{T} + \Phi_{t}$$
(22)

Now, let \boldsymbol{v} be an arbitrary vector except 0. We define $w_t = \boldsymbol{v}^T \tilde{\boldsymbol{H}}_t \tilde{\boldsymbol{H}}_t^T \boldsymbol{v} \mid \boldsymbol{v}^T \boldsymbol{v} + \sum_{t=1}^{\infty} \boldsymbol{v}^T \Phi_t$ $\boldsymbol{v}/\boldsymbol{v}^T \boldsymbol{v}$. Using Eq. (22) and the definition of w_t , we obtain

$$E(w_{t+1} \mid \boldsymbol{H}_t) = w_t - 2a_t \boldsymbol{v}^T \tilde{\boldsymbol{H}}_t \tilde{\boldsymbol{H}}_t^T \boldsymbol{v} / \boldsymbol{v}^T \boldsymbol{v}$$
⁽²³⁾

Since $\tilde{H}_t \tilde{H}_t^T \ge 0$, w_t has the property of the supermartingale⁷. Using the martingale convergence theorem⁷ and condition (C7), we have the following assertion.

54

An Extention of the Multi-dimensional Adaptive Robbins-Monro Procedure

$$H_t \to H(\mathbf{x}_{\star})$$
 with probability 1 $(t \to \infty)$ (24)

All assertions of the theorem were proved. (Q.E.D)

4. Conclusion

An extended ARM procedure is proposed. The convergence of this procedure is proved. We clarify the conditions which guarantee the convergence of x_t , $J(x_t)$ and K_t . In this procedure, there are several coefficients which we can arbitrarily choose. Accordingly, we can choose an adequate values for these coefficients. Especially, it becomes possible that this procedure improves the convergence rate of x_t in the transit period.

Appendix

Similar results are found in References 3) and 6). However, the procedure and the conditions are different from our procedure. We briefly prove this result (See References 3) and 6) in detail).

Lemma 2

If the conditions (A1) \sim (A5), (B1), (C1) \sim (C3) and (C8) hold, we have the following result:

For $\gamma < \min(2\varepsilon, 2k_{min}/k_{max}, 1)$,

$$\lim_{t \to \infty} t^{\gamma} \parallel x_t - x_* \parallel^2 = 0.$$
(A.1)

Proof

Without loss of generality, we assume $x_*=0$. Define V_t and the operator \mathcal{D} as follows:

$$V_t = t^{\gamma} \parallel \mathbf{x}_t \parallel^2$$

$$\mathcal{D} V_t = \mathbf{E}(V_{t+1} \mid V_t) - V_t.$$
(A.2)

Since $\gamma < 1$, (A.2) implies that

$$\mathcal{D} V_{t} \leq (t+1)^{\gamma} \| \mathbf{x}_{t} \|^{2} + \gamma t^{\gamma - 1} \| \mathbf{x}_{t} \|^{2}$$
(A.3)

On the other hand, from Eqs. (1) and (A.3), there exist x_{si}^+ and $x_{si}^ (i=1, \dots, d)$ such that

$$\| \frac{\mathbf{E} \sum_{t=1}^{\infty} (\mathbf{z}_{t}^{+i} + \mathbf{z}_{t}^{-i})}{2n} - f(\mathbf{x}_{t}) \|$$

$$= \frac{c_{t}}{2n} \| \{ H(\mathbf{x}_{s1}^{+}) - H(\mathbf{x}_{s1}^{-}) \} + \dots + \{ H(\mathbf{x}_{sd}^{+}) - H(\mathbf{x}_{sd}^{-}) \} \|$$

$$\leq \frac{c_{t}}{2n} \{ L_{1} \| \mathbf{x}_{s1}^{+} - \mathbf{x}_{s1}^{-} \| + \dots + L_{d} \| \mathbf{x}_{sd}^{+} - \mathbf{x}_{sd}^{-} \| \}$$

$$\leq \frac{c_{t}}{n} \{ L_{1}c_{t} + \dots + L_{d}c_{t} \} \leq M_{4}c_{t}^{2}$$
(A.4)

where $L_i(i=1, \dots, d)$ and M_4 denote positive numbers. Henceforth, $M_i(i=5, \dots)$ are also positive numbers.

From the algorithms (3), (4), Eq. (A.4), the conditions (A1), (A3), (A5), (C8), the inequality $|| f(x) || < M_5(1+|| x ||)$ and $|| x || < 1+|| x ||^2$, we obtain the following result for sufficiently large t.

$$\mathcal{D} \parallel \mathbf{x}_{t} \parallel^{2} = -\frac{2}{t} \mathbf{x}_{t}^{T} \mathbf{K}_{t^{-1}} \frac{\mathbb{E} \sum_{i=1}^{n} (\mathbf{z}_{t}^{+i} + \mathbf{z}_{t}^{-i})}{2n} + \frac{1}{t^{2}} \parallel \frac{\mathbb{E} \{\mathbf{K}_{t^{-1}} \sum_{i=1}^{n} (\mathbf{z}_{t}^{+i} + \mathbf{z}_{t^{-i}})\}}{2n} \parallel^{2} \leq -\frac{2(k_{\min}/k_{\max})}{t} \parallel \mathbf{x}_{t} \parallel^{2} + \frac{M_{6}}{t} \parallel \mathbf{x}_{t} \parallel^{3} + M_{7}g(t)(1 + \parallel \mathbf{x}_{t} \parallel^{2})$$
(A.5)

where $g(t) = c_t^2/t + 1/t^2$

Substituting Eq. (A.5) into Eq. (A.3), we have

$$\mathcal{D} V_{t} \leq \frac{\left\{ \begin{array}{c} \gamma - 2 \frac{k_{\min}}{k_{\max}} (1 + \frac{1}{t})^{\gamma} + M_{8} \parallel x_{t} \parallel \right\}}{t} V_{t} + M_{7}g(t)(t+1)^{\gamma}(1 + \parallel x_{t} \parallel^{2}) \end{array}$$
(A.6)

 $\gamma < 2\varepsilon$ and $\gamma < 1$ ensure the convergence of $\sum_{i=1}^{\infty} g(t)(t+1)^{\gamma}$. Moreover, since $\gamma < 2(k_{\min}/k_{\max})$, $\gamma - 2(k_{\min}/k_{\max})(1+1/t)^{\gamma}$ is less than a certain negative number. $x_t \to x_* = 0$ with probability 1, from the lemma 1. Applying these results to Eq. (A.6), there exist T_0 and $P \ge 0$. The following relation hold for $t \ge T_0$.

$$E(V_{t+1} \mid V_t) \leq (1-P) V_t + \xi_t$$

$$\leq V_t + \xi_t$$
(A.7)

 ζ_t denotes the second term of the left-hand side of Eq. (A.6).

If we define $w'_t = V_t + \sum_{i=t}^{\infty} \zeta_i$, w'_t is supermartingale. Therefore, w'_t converges with

probability 1. From the convergence of $\sum_{i=1}^{\infty} \zeta_i$, we have (A.1).

References

- 1) H. Robbins and S. Monro, Ann. Math. Statist., 22, (1), 400 (1951).
- J.H. Venter, An Extension of the Robbins-Monro Procedure, Ann. Math. Statist., 38, (1), 181 (1967).
- M.B. Nevel'son and R.Z.Khas'minskii, Automation and Remote control, 34, (10), 1594 (1973).
- 4) Y. Maeda and Y. Kawamura, Trans. IEICE, J73-A, (3), 626 (1990).
- 5) Y. Maeda and Y. Kawamura, Trans. IEICE, J73-A, (4), 783 (1990).
- Y. Maeda, Y. Kawamura, S. Minamoto and Y. Kojima, Trans. SICE, 23, (11), 1186 (1987).
- 7) H.J. Kushner, IEEE Trans. Automatic Control, AC-17, (5), 646 (1972).

(Q.E.D)