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An Extension of the Multi-dimensional Adaptive
                              Procedure
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  The multi-dimensional adaptive Robbins-Monro stochastic approximation
procedure is extended. The adaptive Robbins-Monro procedure consists of
two algorithms. The first algorithm estimates the optimai parameter. The
second algorithm gives the gain matrix which determines'the magnitude of the

revision of the parameter given by the first algorithm. In this paper, an
extension of the second algorithm for the gain matrix is proposed. We clarify

the conditions which ensure the convergence of the gain matrix to the optimal

matrix.

1. Introduction

  This paper presents an extended procedure for the multi-dimensional adaptive

Robbins-Monro procedure (ARM procedure). The ARM procedure was proposed to

improve the asymptotic convergence rate of the Robbins-Monro stochastic approxi-

mation procedure') (RM procedure). This procedure was proposed by Venter2), and

extended to multi-dimensional case by Nevel'son and Khas'minskii3). Some applica-

tions of ARM procedure were reported by the authors`),5).

  Now, let 1(x) be a smooth real-valued evalutional function of an adjustable

parameter vector x. Our problem is to find the optimal value x, which minimizes

1<x). Under the assumption that we only observe the gradient vector of 1(x) with

noise, we can apply the ARM procedure to this stochastic optimization problem.

  The ARM procedure consists of two recursive algorithms. The first algorithm

directly revises the estimated value of the optimal parameter x.. The other algorith-

m gives the gain matrix which determines the magnitude of the above revision.

  It is known that the asymptotic convergence rate of the first algorithm is optimal,

when this gain matrix is equal to the Hessian H(x.) of evalutional function 1(x) at

x, 2)･3}. Therefore, the purpose of the latter is to estimate the Hessian of J(x).
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Usually, the Hessian of f(x) varies with respect to parameter x. However, in the

ordinary ARM prdcedure, the estimated value of H(x.) is the time average of each

observed value of H(x) at each operating point. Since the operation point x changes

at each step, it is important to make much of the recent estimation for the Hessian.

From this point of view, more feasible ARM procedure is required.

  The authors have proposed an extended one-dimensional ARM procedure, and

demonstrated its convergence for this extended procedure6). In this paper, we extend

this procedure to multi-dimensional case.

2. Extended Multi-dimensional ARM Procedure

  Let 1(x) be an evalutional function of real-valued n-dimensional parameter vector

x. We consider the problem to find the optimal parameter x, which minimizes the

evalutional function 1(x). Suppose that we can only observe the gradient vector f(x)

of 1(x) with noise. xt denotes the estimated value of x. at the t-th step. Let ±ct be

perturbations to each component of the vector xt. We observe f( . ) 2n times for each

step at xt±eict, where e' is the n-dimensional fundamental vector all of whose
components are O except that the i-th component is 1. Let tht'`, tht-' be the observa-

tion noises. The observation vectors zt"i, zii and the observation matrices Zt', Zt-

are defined as follows:

zt' i --f(xt + e ict) + M+ i

zi'=f(xt- eic,)+ pt-i (i=1,･･･,n)
(1)

Zt+=(zt+1,･.･,zt+n)

Zt-=(zil,･..,zt-n)
(2)

From Eq. (2), the observation matrices Zt" and Zt- consist of these 2n observations

of f(')'

  We propose the following extended multi-dimensional ARM procedure:

xt+i = xt - atKt-i

n
2(zt"'+z,-i)
i=1

2n
(3)

Kt:

Ht+1

{ lkin

== btH} + at

  if H}>Kinin

  if else

z,+-a-
2ct

(4)
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where K is an nXn matrix. Kh,i. is a sufficiently small positive definite nXn

matrix. For matrices A and B, we express A>B(AlB) if A-B is positive definite

(positive semi-definite). kintn denotes the minimum eigenvalue of matrix Kinin.

  If we know a prior information about ll(x,), we use this value for an initial value

Hl of Eq. (4). We have to guarantee that the matrix Hi is positive definite in any

case.

  In algorithms (3) and (4), 2n observations of f(.) are made at each step. The

observation vectors zt"' and zt-i are given by these observations. On the basis of the

average of these observation vectors zt'i and zt-', Eq. (3) changes xt. Simultaneously,

on the basis of the difference of the observation matrices, we estimate the Hessian

and Eq. (4) changes the estimated value Ht.

  The first algorithm (3) is a kind of usual RM procedure. The magnitude of the

revision at each step depends on not only the coefficient at but also the matrix Kt-i.

If we take at= t/(t+1), bt=1/(t+1) in the second algorithm (4), this procedure

becomes the usual ARM procedure. In our procedure,' under certain conditions

described below, we can arbitrarily choose the coefficients at, bt and ct.

  The algorithms (3) and (4) are not simple extension of the algorithms in Reference

6). In Reference 6), we could not separately prove the convergence of the parameter

and the convergence of the estimation of the Hessian. However, we can separately

discuss the convergence of the parameter and the convergence of the estimation of

the Hessian, in this procedUre.

  As we state below, H} converges to H(x,) with probability 1 as t .oo.

Therefore, if H(x,)4Kl.i. for large 4 H} are used as Kt in the algorithm (3).

3. The Conyergence Theorem

  First of all, we state the conditions which we use below. The conditions (Al)'v(Cl)

are also required in the usual RM procedure or ARM procedure. On the other hand,

the conditions (C2)'v(C8) are fundamental conditions to ensure the convergence of

matrix Ht in the proposed procedure. It is natural to require the condition (A2)

regarding the shape of the evalutional function. If we want to guarantee the conver-

gence of xt only, it is allowed that the set D, which is defined in (A2), is a simply-

connected compact set. If we use the algorithms (3) and (4) under this condition, we

can not ensure the asymptotically optimal convergence rate of xt but the conver-

gence of xt to x,.

                               Condition

(Al) The evalutional function 1(x) is 2 times continuously differentiable and

     bounded from below.

(A2) The setD= {xlf(x)=O} consists ofauniquepoint.
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(A3)

(A4)

(A5)

(Bl)

(Cl)

(C2)

(C3)

(C4)

(C5)

(C6)

(C7)

(C8)

There exsit positive numbers hnin and hnax such that ]4ninlSH(x)$hmexl

where I denotes the identity matrix.

Hr(x) satisfies the Lipschitz condition.

1(x)--e-oo as ll x ll -oo.

H(X.)IKInin･

The observation noise has the following properties:

E(pt±i)=O,

E{(n±D(q±i)T}$s, Il s 11 <oo.

  za±' are independent for each observation.
E( . ) denotes the expectation. S is a positive definite matrix. The super script

T means transpose. The norm of a matrix is Euclidean.

at=1/t.

co

2 atct<co･
t=1

at, ct>O, 1)bt>O.

co

2<1-b,)2<oo.
t=1

co
2 (at/c,)2 < oo.

t 1i

2lfa-1+b,1<oo.
t::1

2 at=oo･
t=1

There exsist positive numbers Ci, Ca, 1, E, y; k}nax and whin such that

(712)+a>1 for
atSCit'X,ct$ Clit-t,7<min (2e, 2(leini.lkin..), 1).

  In the ARM procedure, we have to consider the two kind of convergence. One is

the convergence of estimated value of x.. The other is the convergence of the

estimated value for the matrix H(x.). The convergence of the usual RM procedure

is studied in many papersi)"). Generally, it is important that the gain matrix Kt is not

only positive definite but also bounded, since we have to demonstrate the conver-

gence of estimated value xt. In this procedure, algorithm (3) ensures that Kt is

positive definite. However, it is not obvious wether Kt bounded or not. On the other

hand, we need boundedness of H} 'to prov.e the convergence of the estimated value 17}

to H(x,). There is no restriction about the range of H} in algorithm (4). Therefore,

in order to ensure the convergences of xt and H}, we must dqmonstrate the foilowing

assertion (*) for this procedure. If the assertion (*) for the estimated value H} is

satisfied, the matrix Kt also satisfies a similar condition from the algorithm (3). We

prove the assertion (.) in the following lemma.

(*) There exsists a positive number' k}n

  ll H} 11 $klr,.., with probability l as

ax such that

t-co'
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Lemma 1

 We assume the conditions (Al)'Nt(A4), (Bl), (C3), (C5) and (C6). Then (.) holds for

the algorithni (4).

Proof

 We obtain the following equation from the algorithm (4).

      Ht+i=ftHl+6iaiZl+･･･+Pt-k-iat-k--iZt-k-i+"'+PtatZ}

         :Ii") Hl +Pi ai M+･･･+Pt-k-iat-k-i L-k-i+･･･+PtatL (5)

          +BiaiM1ci+･･･+Pt-k-iat-h-ipt-k-i/ct-.k-i+･･･+I3tatpt/ct

where

     p,-= Ii.t,l., bi if i+lst

         k 1 if i+1>t
       L ZI+-Zt-                                                      (6)     Zt== 2ct
      q,i((th,+i,･･･,V,+n)-(thii"･･,th,-n))12

Therefore, from Eq. (5), we have the following inequality.

                                                 '                    tt      II H}+i ll $ Il ftHl+2 I3iai Y} ll + II 2 ,Biai qi/ci ll (8)
                   i=1 ･i=1

 We consider the first term of the right hand side of Eq. (8). We define M=at-1+

a. Then, from (C3), we have

      t      2 piai -- bt･･･aa, +･･･+bt･･･bt-kat-k-i+･"+ btat-i+at
     i--1
          =b,･･･b,(1-b,)+･･･+b,･･･b,-.,(1-b,-,-,)+･･･

           + b,(1- b,-,)+1- b,
                                                      (9)           +b,･･･b,M+･･･+b,･･･b,-,y,m,., +･･･+b,7t-i+7t

          S- b,･･･ b, - b,･･･ b, +･･･+ bi･･･ b,-,- b,･･･ b,",-.,+･･･+ b,

           -b,b,-,+1- b,+ 1 7, 1 +･･･+ 1 7, 1

          = -b,-･b,+1+ l 7, l +･･･-l- 1 if, I

Therefore, using the conditions (C3) and (C6), we can obtain the following inequality.
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          co       OS,?, IBiai<co (lo)
From the definition, Y} denotes the Hessian of the evalutional function at a certain

point. So, from the conditions (Al) and (A3), there is a positive number Mi such that

Equations (10), (11) and the boundedness of Hi and this result guarantee the bound-

ness of the first term of the right hand side of Eq. (8).

  We consider the noise term of the right hand side of Eq. (8). The conditions (C3),

(C5) and (Bl) imply

         co        Il 2 E( (]eiai/ci)2 eri zaT) ll

        < Ii 2(a,/c,)2E(qqT) ll <co
           i=1

                                                               coAccordingly, the Kolmogorov's theorem guarantees the convergence of 11 2 (J6iai Ti/
                                                               i= 1
ci) il with probability 1. Therefore, the assertion of this lemma is proved.

                                                               (Q.E.D)

  This lemma also ensures that ll Kt ll $khiax.

Main theorem

  We assume the conditions (Al)-v(A5), (Bl), (Cl)--(C8). Then, for the algorithms (3)

and (4),

       xt- x*,

       Jr(xt)- lintn,

       Kt- H(x.) with probability 1 (t -co)

where j;ntn denotes the minimum value of 1(x).

Proof

  According to the previous lemma, the assumptions of this theorem .imply the

condition (*). Hence, the matrix Kt satisfies the same condition. That is, for an

arbitrary 6>O, there exist a number tt such that

       P {(sup Ii Kt 11 )5whax}>1-6
           t>t'

  The algorithm (3) guarantees that the matrix Kt is positive definite. From the
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prevdious equation, we have the boundedness of Kt with probability 1. As we

described in Reference 6), we can easily apply the convergence theorem of Reference

7) to our algorithm (3). Hence, the convergence theorem of Reference 7) induces the

first and second assertions of the main theorem (see Reference 6) and 7) in datail).

  Now, let us consider the convergence of the matrix Kt. This proof is basically an

extension of the theorem of Reference 6) to the multi-dimensional case. However, the

condition (*) is different.

  Let JEiti! H}-H(x,). Then, let us consider lillii2'. The algorithm (4) yields

       jv lv -r jv       H,.,H,.,T= H}H,T+ e,+N, (13)
where

       e,E! Iii}{(b,-1)H}+a, Zt'i,Zt- }T

            '          + {(bt - 1) H} + at Zt 'ic,Zt- } ,Ei}'

       N,Ei(b,-1)2H}]elT+( 2ai, )2(Z,+-Z,--)(Z}+-Zi)T

          +(bt - 1>a,{ H}( Zt"2iZS!t- )T+ H}'( Z}'2-,,Zt- )}

This equation corresponds to Eq. (8) of Reference 6). The algorithm (4) does not

explicitly restrict the range of the matrix H}. If we compare Eq. (13) with Eg. (8) of

Reference 6), Eq. (13) does not contain the term which is derived from this restriction.

  We define Y}"E E(Zt') and Y}-f E(Zt-). There exists a point x, such that (Y}'-

L-)/2ct= El(xs). Accordingly, we have

       Y`'ic,Yt"' ==H(x,)+ {H(xt)-H(x.)}+ {H(x,)-H(xt)}

Let @t be the second and third terms of the right hand side of Eq.

condition (A3), there exist positive numbers Mh and ua such that

       Y' "2Mc, L- - H(x*)+@t

(14)

(14). From the

(15)

Il e, ll SMI, 11 x,-x,

 Now, we define ¢t

H +Mhct

as follows:



54 Yutaka MAEDA and Yoshiaki KAWAMURA

      ¢,=(a,+b,-1)(rttH}'+H}a')+(b,-1)2H}Er}T+a,e,,EilT+a,e,ilti1

      '          +(a,lc,)2( y}'- Yl-)( Y}'- Y}'-)'+(at12ct)2S a6)

          +(bt-1)at {H}(y}+. yl--)T+(y}+- y}-)}y}'}

              ct

Let us consider the quantity ¢t. First of all, we consider the term containing et of

Eq. (16>. We know the following result (see APPENDIX).

      Iim t'Hxt-x, 11 2=O (17)       t-eo,

This result and the condition (C8) yield

       oo       2at ll xt-x. ll <co (18)      t=1

We have E +X >1 from the condition (C8). From (C8), we have

       co

       t=1

We can obtain the relation (20) from Eqs. (15), (18) and (19).

       co       ,;, ll atet ll <co (2o)
Ot has the following property from Eq. (20), conditions (Bl), (C4)･'v(C6) and the

boundedness of fi1, Kt, Y}', Y}-:

       co

       211 ¢, ll <co (21)       t=1

  On the other hand, using Eq. (16) and coridition (Bl), we have

       E(fi,.,a.,rl")$aar-2a,aaT+¢, (22)

  Now, let v be an arbitrary vector except O. We define wt=vTaaTv 1 vTv+ S v'¢,

                                                            t,=1
vlv'b. Using Eq. (22) and the definition of wt, we obtain

       E(wt.iiH})= wt-2atiflila'blv'v (23)

Since lii}fit')O, wt has the property of the supermartingale'). Using the.martingale

convergence theorem'> and condition (C7), we have the following assertion.
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H}- H(x.) with probability 1 (t .oo) (24)

All assertions of the theorem were proved. (Q.E.D)

                             4. Conclusion

  An extended ARM procedure is proposed. The convergence of this procedure is

proved. We clarify the conditions which guarantee the convergence of xt, 1(xt) and

Kt. In this procedure, there are several coefficients which we can arbitrarily choose.

Accordingly, we can choose an adequate values for these coefficients. Especially, it

becomes possible that this procedure improves the convergence rate of xt in the

transit period.

                               Appendix

  Similar results are found in References 3) and 6). However, the procedure and the

conditions are different from our procedure. We briefly prove this result (See

References 3) and 6) in detail).

Lemma 2
  If the conditions (Al)'N･(A5), (Bl), (Cl)'v(C3) and (C8) hold, we have the following

result:

For 7<min(2e,2kminllemax,1),

       limtr ll xt-x.H2=O. (A.1)
       t-'co
                                 Proof

  Without Ioss of generality, we assume x, =O. Define K and the operator g as

             '

        Vl,==tr Il x, ll2
                                                                    (A.2)
       g T･1==E(V}., l li})- Vi.

Since 7<1, (A.2) implies that

       `SD VI$(t+1)' ll xt ll 2+7tr-i Il xt ll2 (A.3)

On the other hand, from Eqs. (1) and (A.3), there exist x,i' and x,i- (i=1, ･･･, d) such

that
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           n         E 2 (zt"`+zt-b
       11 '=i 2. f(Xt) 11

       == ih ll {H(xsi')-H(xsi-)}+"'+ {H(xsd')-H(xsd-")} Il (A.4)

       S 2Ch {Li Il x.i'-x,i- ll +･･･+Ld 11 x,d'-x.d-' 11 }

       s Ct {L,c,+･･･+L,c,}$uac,2
         n

where Li(i=1, ･･･, d) and Ml denote positive numbers. Henceforth, Mi(i--5, ･･･) are

also positive numbers.

  From the algorithrns (3), (4), Eq. (A.4), the conditions (Al), (A3), (A5), (C8), the

inequality ll f(x) ii <Mk(1+ 11 x 11) and 11 x 11 <1+ 11 x Il 2, we obtain the follow-

ing result for sufficiently large t.

                           n                         E 2(zt"+z,-i)
      .sD 11 xt il 2= -3 xt'Kt -'i i--' 2n

                           n                     E {Kt-i2(zt'i+zt-D}
               +÷, 11 '=>n 112

                                                         '      s- 2 wh intl kla ax u x, " 2+4 11 x, " 3+ Mirg(t)(1+ ll xt il 2) (A･5)

where g(e=ct21t+1/t2

Substituting Eq. (A.5) into Eq. (A.3), we have

             { ot-2 de.t". (1+-l')'+Mb E xt ll }

      g¢s                                        V} ,, (A.6)                         t

             +AGg(t)(t+1)'(1+ 11 xt 11 2)

                                co7<2E and 7<1 ensure the convergence of 2 g(t)(t+1)r. Moreover, since 7<2(kini./
)4}nax), r2(kthtn/IZnax)(1+11t)' is less thanhtE6rtain negative number. x,. x. =o with

probability 1, from the lemma 1. Applying these results to Eq. (A.6), there exist lb

and P)O. The following relation hold for t4 7h.

      E(V}., 1 K)S(1-P)X+g,
                                                           (A.7)
              SU+k
gt denotes the second ter.m of the left-hand side of Eq. (A.6).

 If we define w't = V}+ 2 gi, w't is supermartingale. Therefore, w't converges with
                  i=t
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                                 coprobability 1. From the convergence of 2 gi, we have (A.1).
                                 i=1                                                       (Q.E.D)
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