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1. Introduction

  Walsh functions have attracted, recently, increasing interests over a wide variety

of engineering applications such as function approximation, signal composition/

decomposition, image processing and so on. Van et al.') used Walsh functions for the

solution of linear differential equations. Subsequently, Walsh analysis of power-law

memoryless systems was discussed by Maqusi2). Most physical systems, however,

generally have memory and involve some kinds of nonlinearities. So extension of

their results to nonlinear systems having memory -nonlinear dynamical systems-

has been strongly desired. The aim of this paper is to extend foregoing results to

nonlinear dynamical systems. To this end, we first introduce a multiplication

operator by which the Walsh coefficients of a function a(t) are transformed into the

coefficients of the product of two functions a(t) and b(t). Then we use it to develop

solutions for nonlinear integrodifferential equations including power-law or

product-type nonlinearities.

2. Walsh Iimctions and Walsh Transform

  Walsh functions: Walsh functions3) form a complete orthnomal set of rectangular

waveforms taking only two values +1 and -1. The common notation for Walsh
function is Wal(i, t), where i is a nonnegative integer and t is a real number over (O,

1) . Three major ordering conventions are in common use. They. are (1) sequency or

Walsh ordering, (2) dyadic or Paley ordering, and (3) natural or Hadamard ordering.

Any one of them can be used for our present purpose, but we shall use Walsh's in this

paper, so that the functions are ordered in terms of the number of zero crossings.

The flrst eight of the Walsh functions are illustrated in Fig. 1.
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First eight of Walsh functions Wal(i,

 1 1 1 -1 -1 -1

 1 -1 -1 -1 -1 1

 1 -1 -1 1 1 -1

-1 -1 1 1 -1 -1

-1 -1･ 1 -1 1 1

-1 1 -1 -1 1 -1

-1 1 -1 1 -1 1
    '
Fig. 2. Walsh Matrix of size 8×8.
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  Sampling of the Walsh functions of order m, m=O, 1, ･･･, n-1, at n equidistant

points results in a set of n-length'discrete Walsh functions`}; n is here an integral

power of 2. The discrete Walsh functions of length eight are shown collectively in a

matrix form in Fig. 2. We call, hereafter, this matrix as "Walsh matrix".

  Useful properties5) of the Walsh functions are their addition relationship,

       Wal(zi)Wal(s,7')=Wal(rOs,i (1)
and symmetry relationship,

       Wal(i,i)=Walai), ' (2)
in which Wal(i, 7') denotes the ith argument of the ith discrete Walsh function and

(D indicates dyadic addition, i.e., addition modulo 2.

Walsh series and Walsh transform: For a 2"-length real sequence f(lr), 7'=O, 1, ･･･,

2N-1, the finite Walsh transform is defined as

       F(i)=Iki,tLi,'f(i)wai(i,i'), i=o,i,･･･,2"-i. (3)

Similarly, we can express fij) as the inverse Walsh transforni of F(i)

            2N-1
       f(i) :2 F(i)Wal(i,i 1'=O,1,･･･,2"-1. (4)
            i=e

Equation (4) is a finite Walsh series representation for the function f(t). Equations

(3) and (4) can also be expressed in matrix forms as

                                                                 '

where

and

   f=

   F=

M and

U(O)f(1),･･･f(2N-1))T,

 (F(O),F(1),･･･,F(2N-1))T,

W"i are the Walsh matrix and its inverse, respectively.

3. Integral and Differential Operators

Assume a function f(t) integrable on (O, 1) and its integral g(t),
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g(t)= f ,` f(x)dt+g(O), OSt51, (6)

where g(O) is the integration constant. Using Eq. (4) we can approximate f(t) in the

above equation in terms of Walsh functions, then we obtain

           2N-1       g(t)=2 F(i)f,' Wal(i,x)dx+g(O). (7)
            i=o

Again approximate f,t Wal(i,x)dx in the above equation in terms of the Walsh

functions,

                    2N-l       f,t Wal(i,x)dx= ,tL, "EiiWalat). (8)
                                                            '
Substitution of Eq. (8) into Eq. (7) leads to

            2N-1 2N-1       g(t>=2 (2 EiiF(i)) Wal(Lt)+g(O), (9)
            j=e t=o

Thus the Walsh transform of g(t) is

            2N-1       Gij)=2 EiiF(i)+g(O)ole, (10)
            i=o

where i･o designates the Kropecker delta function.

  Equation (10) can be written in a matrix form as

in which

       G= (G(O),G(1),･･･,G(2N-1))T,

       F== (F(O),F(1),･･･,F(2N-1))T,

       C= (g(o),o,o,･･･,o)T,

       E= (jE,,) , Li--O,1,2,･･･,2N-1,

where

       El,,=f,' (f,' Wal(i,x)dr) Walat)dt. (12)

The matrix E in Eq. (11) is referred to as an integral operator in the sense that it

converts the Walsh transform df a function f(t) into the transform of its integral

within a integration constant g(O). The integral operator has been calculated for the

practical purpose using Eq. (12) and is illustrated in Fig. 3 for the case N=3.

  The integral matrix E has an inverse, then we obtain from Eq. (11)
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Fig. 3. Integral operator (N=3).
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Fig. 4. Differential operator (N=3).

The matrix E-i is a differential operator in the Walsh transform domain in the sense

that it permits one to calculate the transform coefficient F, given G and C. The

differential operator is shown in Fig. 4 for the case N=3.

  Transforms of higher order derivatives can be derived by the use of Eq. (13). Let

y{O(t) be the ith derivative of y(t) and Y(`) be its Walsh transform. Then we have,

from Eq (13)

y{i+1}=E -, ( y(i}- C,), (14)
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where Ci is the Walsh transform of the initial value of y(O(t),

       Ci= (y(O(o),o,･･･,o)T.

Equation (14) leads to ,
       y(i)= E-i(Y- Ch),

       Y(2)=:E--i( Y(i)- C,)=E-i {E-i(Y- Cb)- C, }=E-2Y-(E-2(b+E-iC,),

       I

                  i
       Y(i)FE-iY-2 E-iCi-j.
                 i=1

(15)

                     4. Multiplication Operator

 Consider two functions a(t) and b(t) square integrable on (O, 1) and their product

c(t)=a(t) . b(t). Approximate a(t) and b(t) by 2"-length Walsh series as

           2N-1
      a(t)= 2 A(i)Wal(i,t),

           2H-1
       b(t)= 2 B(i)Wal(lt).
           j=o

Then the product c(t) is

           2--1 2N-1

       c(t)= 2 £ A(i)B ij)Wal(i, t)Wal(L t). (17)
           i=o j=o

Using the addition relationship of Walsh functions given in Eq. (1), we can rewrite

Eq. (17) as

           2N-1 2N-1       c(t)=22A(i)Bij)Wal(ieit). (18)
           ,i=e j=o

The function c(t) can also be representbd in a series of the form

       ,(t) =2"2'i c(k)wal(k, t), (19)
           k=O

in which the coefficients C(k)'s are given by

       C(k)= f8 c(t)Wal(le, t)d t. (20)
         'Substituting Eq. (18) into Eq. (20) and interchanging the order of the integration and

the summation, we obtain



                                               '             '
            Wblsh Analysis of A CIass of Albnlinear Lb,namical System 65

                         '
        '                           '           2N-12N-1      C(k) == 22 A(i)Bij)f,i Wal(iel'ek, t)d t. (21)
           i:oj=e
Remembering the property of the Walsh functions that '

                                                  '
       f,i wai(i ({DiO le･ t)dt=(gl iiSl,ii,le,',, (22)

                                                     '
                                 '
we finally obtain

      C(k)== E, A(i)Bif), (23)
in which the summation is over all possible pairs of i and 7' satisfying the relation i

<{D 7'=k, (i,7;fe ==O,1,･･･,2"-1). Equation (23) can also be written in a matrix form as

      C == M(A)B,

where

      C== (C(O),C(1),･･･,C(2N-1))T,

      B= (B(O),B(1)"･･,B(2N-1))T,

      Mr(A)= (Mi,･), '
and
      Mi,-= A(ie.i), i,i=O,1,･･･,2N-1.

           A(O) A(1) A(2) A(3) A(4) A(5)

           A(1) A(O) A(3) A(2) 'A(5) A(4)

           A(2) A(3) A(O) A(1) A(6) A(7)

                                    A(7)                                          A(6)                              A(O)                       A(1)                 A(2)           A(3)

   M(A)= '           A(4) A(5) A(6) A(7) A(O) A(1)

           A(5) A(4) A(7) A(6) A(1) A(O)

           A(6) A(7) A(4) A(5) A(2) A(3)

           A{7) A(6) A(5) A(4) A(3) A(2)

                  Fig. 5. Multiplication operator (N==3).
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The matrix M(A) in Eq. (24) can be considered as a multiplication operator in the

sense that it operates into the Walsh transform of b(t) and gives the transform of the

product c(t)=a(t) . b(t). Figure 5 illustrates the multiplication operator for the case

N= 3.

               5. Analysis of Nonlinear Dynamical Systems

  A good variety of nonlinear devices have been used over a spreading area of

practical systems. So we have a very difficulty to cover all pos$ible cases. Therefore,

we only give an example to show the solution.

                                   .                            R=Ro+Pl(t)

                         r-d-1

                         L--.-j

                                             C+

L

q(O)

             Fig. 6. Series L-C-R circuit with power-law nonlinearity.

  Consider the nonlinear series L-C-R circuit shown in Fig. 6. The inductor and the

capacitor are linear; while the resistor is nonlinear, varying in proportional to the

current through it,

The nonlinear integro-differential equation for this circuit is

       L ddt i(t)+Roi(t)+pi2(t')+-i}-f.i(t)dt+-il}-q(O) :O, ' (26)

where q(O) is the initial charge of the capacitor. Equation (26) is a class of nonlinear

integro-differential equations having power-law nonlinearity.

  Taking the Walsh transform of the both sides of Eq. (26), we obtain

       LD(J-J(O))+ReJ+RM(J)J+'2}rEJ=--3e(O), . (27)

where D designates E-i. The symbols J and J(O) are the Walsh transform of i(t) and
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its initial value, respectively, and e(O) is the Walsh transform of initial charge q(O)

of the capacitor.C,

                     '
       J= U(O)J(1),･･･,.1'(2N-1))T,

       J(O)= (i(O),O,O,･･･,o)T,

       2(O)= (q(o),o,o,･･･,o)T,

and
                        '
       R,=diag(R(O),R(O),･･･,R(O)) ,

      R=diag(p,p,･･･,p) ,

      -2i =diag(i･-2s･"'･"ZF') ･

Equation (27) leads to

                                '      J=- (LD+R,+RM(J)-Lii E) -i･ (-illF 2(o)-LDJ(o)) . ' (2s)

                              '                                              '                        '

To solve Eq. (28), let ' ･
      L==' (LD+Ro+RM(Jb)+'ilir E) -' ' ('2F 2(O)-LDJ(O)) . (29)

                                               '                                      '
and assume the first approximation to the result %･ Substitute % into Eq. (29) and

 Table 1. Comparison of 8-term Walsh solution
         with Runge-Kutta solution for the cir-

         cuit shown in Fig. 6.

RANGE
 THIs
METHOD

 RuNG[-KuTTA
  SOLUTION
{MID-1NTERVAL}
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   o

Fig. 7.

       O.5 1.0
                  t

Solution for i(t) for

the circuit shown in Fig. 6.
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find the second approximation L. Substitute L so obtained into Eq. (29) again and

find a new result. This process is repeated until the result is as accurate as desired.

  Figure 7 shows the computed solution via 8-term Walsh transform with parame-

ters Ro == 1.0, p=1.0, L=O.5, C= O.5, i(O)==O and q(O)== -O.5. The first approxiomation

used was Jb= (O,O,O,O,O,O,O,O)', and computation was repeated 7 times until the

computed result J;, becames equal, down to the 4th decimal point, to the last result

Jh-i. If a smooth curve is drawn through the mid-point of each horizontal step, it will

be very close to the correct curve. Table 1 compares the 8-term Walsh solution to

Runge-Kutta solution at each mid-interval. The Runge-Kutta solution was calculated

using 4th order formula with step size 11100. Both results agree within an error less

than 1%. The accuracy is very good considering that the series was truncated after

the 8th term.

6. Conclusions

  Walsh analysis was applied to the dynamical systems having power-law or

product-type nonlinearity. Nonlinear integro-differential equation representing the

system dynamics was solved as an algebraic equation by the use of Walsh transforrn

with the aid of integral, differential, and multiplication operators through iterative

calculations. Example showed that a good accuracy was obtained via small number

of iterations using a limited length Walsh transform.
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