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 This paper is concerned with jackknife statistics of eigenvector of a covar-

iance matrix. We shall give the limiting distributions of jackknife statistics

uncler a general population, which results are useful in principal component

analysis.

1. Introduction

  Jackknife statistic has been defined by Quenouillei) to reduce a bias of estimator.

Also, Tukey2) proposed some method to get confidence interval and testing hypothe-

sis by applying pseudo-values in jackknife statistic. Miller3) has written a nice review

and given some guides which we should proceed in future. Frangos`) has written

recent references on jackknife method. One of many problems treated so far was to

ask for the limiting distribution of jackknife statistic. The statistics treated so far

were analytic function in neighbourhood of unknown parameter. But the eigenvalues

and eigenvectors of a covariance matrix are not analytic function. So Nagao5) has

dealt with the problem of eigenvalues. The main purpose of the note is to give the

Iimiting distribution of jackknife statistic of eigenvector by using implicit function

theorem for several variables.

2. LimitingDistribution

  Let P × 1 vectors Xl,･･･,.X}v be a random sample from a P-variate distribution with

mean " and covariance matrix 2. Let Xi)･･･)Ap>O be eigenvalues of a covariance

matrix 2 and let P×1 vector 4 stand for eigenvector corresponding to li. In a
previous paper5) we have derived the limiting distributions of jackknife statistics of

eigenvalues of a covariance matrix.

  Let li (S/n) ) ･･･ l h(S/n) be eigenvalues of a sample covariance matrix Sln, where
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   NS= 2(Xl,-X)(XL-.Xr)' with n=N-1 and let Pxl vector hj=(hij,･･･,hpj)' be an
   a=1
eigenvector corresponding to the 7'-th eigenvalue 4(Sln), where the norm of ig is 1.

At first we shall give the limiting distribution of the jackknife statistics of the

component of la. A vector Iej7= (hi},･･･,I .)' stands for an eigenvector corresponding to

4･(S-.1(n-1)), where

       S-.-S- NN-1(XL-X)(XL-X)･. (2.!)
Then the pseudo-values and the jackknife statistic of the B-th component Ibu are

given by

       h'.a.= ig,+(N-1)(1th･-hS.), (a=1,･･･,N) (2.2)
and

       izin･ = i)l7 .il.i, h-."･. (2.3)

Let y.=lyi.,"',",.)'==Tk (a=1,"',N), then ig=71h:･, where h} is an eigenvector

                                        NNcorresponding to 4(S'ln)(= 4(S/n)) with S'=2ly.-y-)tv.-y")' and y-=N-i2 y.,

                                       cr=1 a=1
where T is an orthogonal matrix such that T'2T=diag(Xi,･･t,Ap) with Ail･･･)Ap>

o. Also h;, a= (hi;",･･･,IL .")' denotes an eigenvector of 4･(Sr.1(n-1)), where S:. is a P ×

p matrix corresponding to S-..

Thus we have

 ,, h'.a=ipof' +(N-1)( tii;l4'-4ge" "), (2.4)

where oj is the P-th row vector of the orthogonal matrix 7: Accordingly we shall

show that since 4 is a fixed vector,

         312 N       "lv .1,(Lof'-nj ""O in probability. (2.s)

In order to prove the above, first of all, XMe need the following lemma, which plays

a key role in this note.

  Lemma, 2.1. Let a PXP matrix A be a real symmetric and put

       A= [ISJii.,a,P], (2.6)
where Aii is a square matrix of order (P-1). We suppose that the rank of (Aii-AI)

is (P-1), where A is an eigenvalue of A. Then a necessary and sufficient condition

for =(xilxb)' with lp-1)×1 vector xi to be an eigenvector corresponding to the
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eigenvalue X is (Aii-XI)xi+qpxp=O and iotO.

  Proof. The necessary condition is obvious. For the sufficient condition, we have

only to show that as ti +(app-X) cp=O. Then we obtain a5)ui +(app-k)Alp == {-aKAii'

AI)"'ap+(app-A)} xp. Bt{tO= l A-AI l == i Aii-II l {(appha)-a5<AiimXI)-'ap} .

Therefore we obtain the desired conclusion.

  iior the sake of simplicity, we shall only prove the case of 7'=P, that is,

        312 N       "N .i,(Il-Iti a"o in probability. ' (2.7)

To prove it, we shall use the implicit function theorem for several variables. Let us

consider the following equation by Lerr}ma 2.1.

                                                   *,       F(Sr./(n-1),xi)==(Sin1(n-1)-h(Sr./(n-1))I)xi +-riS:ftfr-l alp= O, (2.8)

where a matrix S,',,. and a vector s;,. are submatrix and subvector of Sr. panitioned

by the same manner as (2.6). By Lemma 2.1 we can take h =(hl;',xb)' as the

eigenvector corresponding to 4(S'1n). That is, we can choose the same value for the

p-th component of two eigenvectors lg and wf ". Then we shall show that the solution

of equation (2.8) on xi are analytic around (S"/n, hi;). At first we have F(S'/n, hl;)

=O. The partial derivative of F(S'/n, hl),) with respect to hl; is given by

        aahil F(S'/n, I")=(Sfi/n-6(S'/n)I), (2.9)

where S,', is a submatrix of S' : ts,l.) corresponding to S,',,.. Since S,',ln.diag(As,･･･,

Ap.i) and op(S'/n)-Ap in probability, the matrix (2.9) converges to diag(Xi-Ap,-･･,

Ap.i-Xp) in probability. Hence if Xp is a simple root, this diagonal matrix is a

nonsingular.

  By the implicit function theorem, we have

       hi;"=h",+A,cr<t,",>+-III-[ <<tti,'>> cC/l-,<t<"k't>j>,] (2 io)

where

       A,a=-(oahrB F(S"ln, hil))-'( a(,?/1.) F(S"/n, hB)) ' (2･ii)

         /
and s,', is a (le,l)-element of the matrix S" and each matrix Ci with order Plp+1)12

is derivatives of the i-th row of A,a at some point. By the simil' ar argument as in the

previous paper5>, we can get the formula (2.7). Thus we obtain thatV'=ii(]Zij-4;h:･)

converges to zero in probability.

  By the perturbation method, if lj is a simple root, we have
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       h:･=-(sr,!n(1,-Zj),･･･,1,･･･,s;./n(ap- Aj) )'+o,(n-i), (2.12)

where h:･ is p×1 vector and the position of one is at the 7'-th component. Thus the
limiting distribution of V'ii7(4i;h:･-ts) is a normal distribution with mean O and

variance T?ij･= 2 oki,･4ptip and

           hlti

       Otstu`=(Ah-XJ')-i(At-A･j)--iCOV((Jtak-Elyah)(Ytrim]Elyof), (Mri-EIYai)(Yof-Elyai))･ (2･13)

  Theorem 2.!. Let hi=(h!ti･･,hpj)' (hij>O) be an eigenvector of the length one

corresponding to the ith eigenvalue 4･(S/n) of Sln. If the i-th eigenvalue Zj of a

covariance matrix 2 is a simple root, then we have

       Vii(iiin･-tshN(O,Tlv･), (2.14)

where 7h･= 2 ojt,i4pep and q,,･ is given by (2.13). Also T=(ti,･) with tii>O (i=1,･･･,p)

         k,lti
is an orthogonal matrix such that T'2T=diag(Ai,"',lp) for Zil"')lp>O.

  We note that though ts is unique value because of the simplicity of Aj, other terms

Cn contained in Tlv･ may depend on the determination of an orthogonal matrix 7: As

we can see later, it turns out that the limiting distribution of our problem does not

depend on T
  Anderson6) has considered the testing hypothesis on an eigenvector in a multivar-

iate normal case under the assumption that A,･ is a simple root.

  Next we shall shov,' that

                      '       tN,       2(h'.",-,(4ij)21(IV-IHts in probability. (2.15)
       a=1

As in (2.7), we show the case of 7'=P. Then we have only to show that

                                          '             N       (IV-1)2(lzi, ct-fi,1,)(h;"- h-,"Hq･,. in probability, (2.16)
            a:1

where h-,;=IV-i E h$. a. Since A,cr-bj in probability, where

            a=1

       D=diag((Zi-Zp)'i,'･･,(Ap-i-Ap)-i) (2.17)
and

       .,T ,. [o l(iiP) (21P)l:(P li 'P)] , (2.ls)
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            '
that is, the e!ements of (P -1) ×P(P +1)/2 matrixJ are 1 at the i-th component of the

(i,P) column, (i=1,･･･,P-1) and zero otherwise. By the similar calculation as section

3 in the previous paper5) and tedious argument, we can get (2.15). Hence we can

obtain

  Theorem 2.2. Under the same assumption as Theorem 2.1, for h-m" and iZly･ defined

by (2.2) and (2.3), we have

       N       2(hA".cr.-il,i)2/(N-IH Th,･ in probability. (2.19)
       a=1

Hence we have

  Theorem 2.3. Let Ioj･=(hij,･'･,hpj)' (hj,･>O) be the eigenvector with the length one

corresponding to an eigenvalue 4(Sln) of S/n. If the ]'-th eigenvalue Xi of 2 is a

simple root, then we have ･

          n(iZ,i ' ts')

                      -N(O,1), (2.20)          N          E (h-.a - nu.)2

          a=1

where ts is the B-th element of eigenvector corresponding to X,･ (4i>O).

  finally we shall give the limiting distribution of the jackknife statistic with respect

to an eigenvector hj corresponding to an eigenvalue 4･(S/n). Let us define the

pseudo-values hA'f (a=1,･･･,IV) and jackknife statistic h-,･ as follows:

                                                    '                          '                   '
       h",f =hJ+(N-1)(ig---if), (a=1,･･･,N) (2.21)
and
       i"%'･==X7.E,h-'Jf･

After some tedious calculation, we have

  Theorem 2.4. Let lzj and 4･ be the jackknife statistics defined by (2.21) and an

eigenvector corresponding to an eigenvalue 1,･ of £. If X,･ is a simple root, then we

have

         - '.. . .. in law
       n(h,,･'4･)'U-n'(him4･) '-mm---.x2{,-i), (2.22)

        '
where (p - 1)× 1 vectors its, 4 and h-;ij) obtaining by omitting the j-th compgnents h,

                N
ig and ¢and Uh== 2(¢ij)-a)(¢(i)-a)'1(N-1). x2lv-o stands for a chi-square
                a=1
distribution with lp-1) degrees of freedom.
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