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On Jackknife Statistics of Eigenvectors of a Covariance Matrix
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This paper is concerned with jackknife statistics of eigenvector of a covar-
iance matrix. We shall give the limiting distributions of jackknife statistics
under a general population, which results are useful in principal component
analysis. .

1. Introduction

Jackknife statistic has been defined by Quenouille? to reduce a bias of estimator.
Also, Tukey? proposed some method to get confidence interval and testing hypothe-
sis by applying pseudo-values in jackknife statistic. Miller® has written a nice review
and given some guides which we should proceed in future. Frangos® has written
recent references on jackknife method. One of many problems treated so far was to
ask for the limiting distribution of jackknife statistic. The statistics treated so far
were analytic function in neighbourhood of unknown parameter. But the eigenvalues
and eigenvectors of a covariance matrix are not analytic function. So Nagao® has
dealt with the problem of eigenvalues. The main purpose of the note is to give the
limiting distribution of jackknife statistic of eigenvector by using implicit function
theorem for several variables.

2. Limiting Distribution

" Let p X1 vectors X, +,Xy be a random sample from a p-variate distribution with
mean u and covariance matrix =. Let A, 2---21,>0 be eigenvalues of a covariance
matrix 2 and let p X1 vector # stand for eigenvector corresponding to 4; In a
previous paper® we have derived the limiting distributions of jackknife statistics of
eigenvalues of a covariance matrix.

Let §,(S/n)=---2 ,(S/n) be eigenvalues of a sample covariance matrix S/#, where
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N
S=3(X,—X)X,—-X) with n=N—1 and let px1 vector h;=(hy, -, hy;) be an
a=1

eigenvector corresponding to the j-th eigenvalue /(S/n), where the norm of 4; is 1.
At first we shall give the limiting distribution of the jackknife statistics of the
component of ;. A vector K =(/, -, k) stands for an eigenvector corresponding to
I{S_,/(n—1)), where

_ N _ Py
S'”_S_N—I(X“ XX, -Xy. 2.1)

Then the pseudo-values and the jackknife statistic of the 8-th component %, are
. given by

o= hy+(N —1)hy—h), (@=1,N) (2.2)
and

h=L% i 2.3

5 =N 2 e 2.3)

Let 5, =001, 3. =T%, (a=1,+-,N), then h;=Th}, where h} is an eigenvector
N N

corresponding to 4(S*/n){=1I{S/n)} with S*= El(y,— 9)Yy.—7) and y=N"'2Z y,,
a= a=1

where T is an orthogonal matrix such that 7"S T =diag(a,,*",A,) with 1, 2---221,>

0. Also # *= (k" by denotes an eigenvector of L(S”,/(n—1)), where S_, isa p X

p matrix corresponding to S_,.
Thus we have

By =tk +(N = 1)(Gh — R ), 2.4)

where 4 is the §-th row vector of the orthogonal matrix 7. Accordingly we shall
show that since 4, is a fixed vector,

N
S (b —h; “—0 in probability. 2.5)

In order to prove the above, first of all, we need the following lemma, which plays
a key role in this note.

Lemma, 2.1. Let a p X p matrix A be a real symmetric and put

A= I:Au aﬁ] , 2.6)

ap app

where A, is a square matrix of order (p —1). We suppose that the rank of (4,,—A[)
is (p—1), where A is an eigenvalue of A. Then a necessary and sufficient condition
for =(xx,) with (p—1)X1 vector x to be an eigenvector corresponding to the
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eigenvalue A is (4;,— A)x +apx,=0 and x,+£0.

Proof. The necessary condition is obvious. For the sufficient condition, we have
only to show that agx, +(@,,— 1)x,=0. Then we obtain @ +(2p— A)2= {—as(An—
AD " apt(app—2A)} %p. But 0= | A= AL | = | A=Al | {(app— A)—aglAn— A1) "ap} .
Therefore we obtain the desired conclusion.

For the sake of simplicity, we shall only prove the case of j=p, that is,

n3/2

N
~ .,%,(h: —h, “y—0 in probability. @.7

To prove it, we shall use the implicit function theorem for several variables. Let us
consider the following equation by Lemma 2.1.

F(S" /(n=1)5)=(S}./(n= 1" /n= D)D) 42 3,=0, 28)

... and a vector s,, are submatrix and subvector of S*, partitioned
by the same manner as (2.6). By Lemma 2.1 we can take %, =(h{:,xp)’ as the
eigenvector corresponding to 1,(S*/n). That is, we can choose the same value for the
p-th component of two eigenvectors h; and h; . Then we shall show that the solution
of equation (2.8) on x, are analytic around (S*/=, k). At first we have F(S"/n, )
=0. The partial derivative of F(S*/#, hl'p) with respect to h; is given by

where a matrix S

3
ah,’;

F(S"/n, h)=(Sy/n—1(S" /), (2.9)

where S, is a submatrix of S”=(s}) corresponding to S, ,. Since S},/n—>diag(ds,",
Ap—1) and ,(S*/ny—> 4, in probability, the matrix (2.9) converges to diag(l;—2,,",
A, —A,) in probability. Hence if A, is a simple root, this diagonal matrix is a
nonsingular. '

By the implicit function theorem, we have

o L[ Crcny
,%azhﬁA:(t;H?[ it ] 2.10)
By Cpy <8
where
po= 2 . NP - e . ‘
F= = FS /m )Y ey F(S™/m ) @11)

and s, is a (k,{)-element of the matrix S” and each matrix C; with order p(p+1)/2
is derivatives of the i-th row of A: at some point. By the similar argument as in the
previous paper®, we can get the formula (2.7). Thus we obtain that v/ n(h,—153)

converges to zero in probability.
By the perturbation method, if A; is a simple root, we have
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h; = _(S;/n(ll - A-.;')1“'rlyn'yS;;/n(A'P— A'.i) )’+ op(n_l): (212)

where &% is p X1 vector and the position of one is at the j-th component. Thus the
limiting distribution of +/#n(445—14,;) is a normal distribution with mean 0 and

variance ;= 2 Oyyhals and
ki*j

O = (La— A7 (A= A7 covV((Ys — EVat) i — By Oui— EY) 30— Ev)). (2.13)

Theorem 2.1. Let h;=(hy, ", hp;) (h;>0) be an eigenvector of the length one
corresponding to the j-th eigenvalue [{S/») of S/=. If the j-th eigenvalue 4; of a
covariance matrix I is a simple root, then we have

\/n—(ﬁpj_ t,y—N(0,7y), (2.14)

where 7,= 3 6w bty and a.y is given by (2.13). Also T'=(¢,) with £,>0 (i=1,--,p)
ki®]

is an orthogonal matrix such that 7°2 T =diag(4,,*:*,A,) for A, =--221,>0.

We note that though #; is unique value because of the simplicity of A;, other terms
t,, contained in 7,; may depend on the determination of an orthogonal matrix 7. As
we can see later, it turns out that the limiting distribution of our problem does not
depend on T.

Anderson® has considered the testing hypothesis on an eigenvector in a multivar-
iate normal case under the assumption that A; is a simple root.

Next we shall show that

N

3 (k= hyP/(N —1)— 1, in probability. (2.15)
a=]

As in (2.7), we show the case of j=p. Then we have only to show that

. ,
(N —1) 2 (k" =k, )k, “— By }—> 04, in probability, (2.16)
a=]
N
where A, =N"'3 h,". Since A;—> D/ in probability, where
a=1
D=diag((A,— 1), (Ap-1— A5)7Y) 2.17)

and

(1) @.2)-(p=10)
J= [o;l L ] , (2.18)

1
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that is, the elements of (p —1)X p(p +1)/2 matrix J are 1 at the i-th component of the
(z,p) column, (=1,---,p—1) and zero otherwise. By the similar calculation as section
3 in the previous paper® and tedious argument, we can get (2.15). Hence we can
obtain

Theorem 2.2. Under the same assumption as Theorem 2.1, for ﬁ;,. and hy; defined
by (2.2) and (2.3), we have

N A~ —_—
2 (hy—hy)?/(N —1)—> 14 in probability. (2.19)
a=1

Hence we have

Theorem 2.3. Let hy=(lyj, "+, k)" (h;;>0) be the eigenvector with the length one
corresponding to an eigenvalue L(S/#n) of S/n. If the j-th eigenvalue A; of 2 is a
simple root, then we have

n(h—ﬁf— 1)

il a ja
/gl(hﬂi - hpi)z

where £; is the §-th element of eigenvector corresponding to 1, (£;>0).

—N(0,1), (2.20)

Finally we shall give the limiting distribution of the jackknife statistic with respect
to an eigenvector k; corresponding to an eigenvalue [{(S/%). Let us define the

pseudo-values ﬁ;’ (¢=1,+-,N) and jackknife statistic %, as follows:

= byt (N =1)(h—FK), (@ =1,+N) @.21)

and

After some tedious calculation, we have

Theorem 2.4. Let &; and ¢ be the jackknife statistics defined by (2.21) and an
eigenvector corresponding to an eigenvalue 4; of =. If A; is a simple root, then we
have

. . . inlaw
n(h;— Y U “Nh;—8) —x%,_q, (2.22)
where (p —1) X 1 vectors %, f; and ﬁ}'(j) obtaining by omitting the j-th components /%,

N
t;, and K and U,= 2 (FG)— XK G)—hY/(N—1). 2%, stands for a chi-square
a=1

distribution with (p —1) degrees of freedom.
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