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This paper presents a modified version of Siskos’ methodology for multicriteria
decision-making. A modification we propose is based on non-additive measures in
fuzzy systems theory. Substitutive and non-substitutive decision models are proposed.
The rank reversal of actions when powerful dependent criteria are introduced is hard to
occur by our proposed modification of Siskos’ multicriteria decision-problem using
fuzzy outranking relations.

For a comparative study a numerical example of the evaluation of radiological
protection system in nuclear power plants is quoted.

1. Introduction

Multicriteria decision-making problems are very complex systems, especially when
the decision-making criteria give rise to uncertainty and ambiguity. A multicriteria deci-
sion-making methodology which allows the analyst to integrate fuzzy outranking rela-
tions into a domination structure has been proposed by Siskos er al.1).

The procedure is divided into two phases!): in the first phase, a method of assess-
ing fuzzy outranking relations is established using partial fuzzy relations, where each is
considered as a model of monocriterion uncertainty. In the second phase, the fuzzy
outranking relation established in the first phase is used to define the fuzzy set of non-
dominated actions. In the first phase the weights of criteria are assumed to be given. But
the assessment of weights of criteria is also an important issue in the decision problems.
The Analytic Hierarchy Process by Saaty?) is a very convenient method for this purpose
and various applications in the real world decision problems are reported in the liter-
ature. Hence we assume to adopt Saaty’s ratio (proportional) scale as weights of criteria
for multicriteria decision problems using fuzzy outranking relations.

In Siskos’ methodology, however, under the assumption of ratio scale the rank
reversal may occur by introducing an additional powerful dependent criterion. Thus, in
this paper, we propose to use lower probability3) P, and upper probability® p* gener-
ated from the possibility measure m which is a non-additive measure proposed by
Zadeh™. By our proposed approach we have the appearance of rank reversal only in
comparatively few cases. ‘ ’

In Section 2 we briefly survey Siskos’ methodology using fuzzy outranking rela-
tions. In Section 3 we present the modified methods. The theoretical background for
applying non-additive measures is given and we point out the critical point in Siskos’
methodology. The validity of the modified method is shown by examples. Lastly, in
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Table 1l Performance of actions on the n criteria

Action Multicriteria eva!uatlon
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Section 4 we compare Siskos’ methodology and the modified methods by quoting the
problem in the evaluation of radiological protection system in nuclear power plants.

2. Siskos’ Methodology

The general multicriteria choice problem is formulated as follows. If A= {a, b,c, }
is.a finite set of actions evaluated according to » criteria, noted as 81,82, .-» &n, the
problem consists in choosing the best action in A. The real number g; (a) represents the
performance of action a for the i-th criterion. It is assumed that the higher the number
8; (a), the more this action satisfies the preferences of the decision-maker. The multi-
criteria evaluation of an action ¢ €4 is defined by the vector g(@) = (g, (@), g: (a),
..., 8n(@)] which is comprised of the performances of this action on the n criteria (see
Table 1). Each decision-making criterion is given a weighting factor p;- These factors
~sum to one, i.e.

n
2 pi=1 1)

where p; represents the relative importance which the decision-maker gives to i-th
criterion. The fuzzy outranking relation in A X A is represented by a membership func-
tion d : A X A~ [0, 1] in which the different values d(a, b) denote the strength of the
relationship between any two actions ¢ and b in A. Thus,d (g, b) is the degree of credi-
bility of the outranking of the action b by the action a. The fuzzy outranking relation is
reflexive [d(a,a)=1, V a € A] and

a is preferred to b © d (g, b) > d (b, a), ()
a is indifferent to b+ d (a, b)=d (b, a) >0, 3)
a is incomparable to b ¢ d (a, b)=d (b,a) = 0. ; 4)

d(a, b)is based on g(a),a €A. It can be written for any pairin 4 X A:

d(@b)=dlg@)~-g®)] |
= d [gl (a) - gl (b)’ ""’ gn(a) —gn (b)] . . (5)
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da(a,b) D;(a,b)

Partial fuzzy outranking Fuzzy discordance

relation relation
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Fig. 1  Partial fuzzy outranking relation d;(e, b) and fuzzy discordance relation
Dy(a, b) for fixed gi(a) and variable g;(b), beA, for the i-th criterion.

To obtain an explicit form for d(a, b), (a, b) € A X A, n pairs of partial fuzzy rela-
tions [d; (a, b) and Dy(g, b),i =1, 2, ..., n] are defined. The first fuzzy relation d;(g, b)
is the partial fuzzy outranking relation of b by & for the i-th criterion. The second fuzzy
relation D;(a, b), called discordance, is designed to take into account the degree of in-
comparability of these two actions due to i-th criterion. These two fuzzy relations,
shown in Fig. 1, depend directly on the sign and amplitude of the difference g;(a)-
g;(b) for each pair in A X A. Let s; denote the maximum non-significant threshold,
beyond which the comparison can be made with certainty.

For any pair in 4 X 4 the partial fuzzy outranking relation is given by the follow-
ing membership function:

1;ifg; (b) — 81 (@) <0
di(a, b)=10;ifg; (b) —g; (@) =s; : (6)

between 0 and 1; otherwise.

For g;(b)—g;(a) € [0, s;] the decrease of d;(a, b) can be determined by linear interpola-
tion as

&) - 5@

1

di(a, b)=1

v; denotes the veto threshold beyond which @ can in no case outrank b. D;(a, b)
designates the discordance degree of criterion i for pair(a, b) according to the following
definition: '
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1, ifg; (b)—gi(@)=>v;
Di@@b)=10; ifg;(b)—g@<s; Y]
between 0 and 1; otherwise.

For g;(b)—g;(a) € [s;, vi] the precise values of D;(g, b) can be determined by linear
interpolation as '

2 (b) — 8 (@ — st

D;(a,b)= —
1

Having obtained n partial fuzzy outranking relations and taking into account the
weights of criteria p;, we have a fuzzy concordance relationC : 4 X 4 — [0, 1] such as

C@b= 2 pd;(@b). ®)

Thus, for each pair (2, b) € A X 4, C(a, b) indicates the criteria concordance degree
for the outranking of bby a.

To obtain the fuzzy outranking relation d(a, b), the fuzzy concordance relation
C(a, b) and the n fuzzy discordance relations D;(a, b) are linked. The fuzzy outranking
relation is given by the membership function d : A X A - [0, 1] such as

C(ab);ifC(@ b)=D;(a b),Vi

C,b o s . i
d(a b)= 1_—((;1([1’)7) II;I[I—D,-*(a,b)]w1th1*€{z]D,-(a,b)>C(a,b)}
; otherwise ©®)

with dy(a, b), D{a, b) and C(a, b} defined, respectively, by Egs. (6), (7) and (8).

Given the global outranking structure that synthesizes situation of preference, indi-
fference and incomparability, the fuzzy domination relation is given as a membership
functiondP : A X A - [0, 1] such as

d(a,b)—d(b,a); ifd(a b)>d (b, a)
dP (a, b) =

0 ; otherwise. (10)
Thus, for a fixed b €A action, the membership function d” (b,a) is the fuzzy set of
actions @ €4 that are dominated by b. It is now easy to obtain the non-domination
structure by using the complementation operation in the fuzzy set theory, d"P: AX A
- [0, 1] such as

d"P @, b)=1-dP @, b). ‘ (11)

Similarly, for a fixed b € 4, d¥P (b,a) is the fuzzy set of actions in A4 that are not
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dominated by b. This fuzzy set, called the fuzzy set of non-dominated actions, u™V? :
A = {0, 1], is determined by the intersection operation between fuzzy sets in the fol-
lowing way:

WP @=1-pax [d (b, D-d (@ b)] | (12)

where uND (a) represents the non-domination degree of action a4 simultaneously by all
the other actions. This induces the following decision-making rule: choose a* € 4 with

P @ =1 —min max [d(6,4) —d @ b) ]. (13)

3. Modified Methods Using Non-additive Measures
3.1. Possibilistic weights and expectations

In a conventional decision method such as the simple additive weighting method,
the grade of importance of each decision-making criterion is represented by the additive
weights. Hence the

n
weights py, P2, ---, Pn are normalized as i§1 P,=1.

In this paper we assume that the relative importance of each criterion is given as
non-additive possibilistic weights, i.e. a possibility measurq"‘)‘ denoted as my, my, ..., m,.
And, the weights are normalized as max m; = 1.

As was shown by Dubois and Prade®, the distribution ; simply relates to the
underlying basic probability assignment in the theory of evidence®. Let Q denote finite
universe set and, A and B be subsets of . m(A4) denotes the possibility measure of a
subset A.

A lower probability is a mapping P, from 2% to [0, 1]. A lower probability is
uniquely defined through the specification of basic probability assignment m, satisfying;

m () = O,Bgnm B=1 ] - (4
and we have
P4 =B§A m(B),VACQ. | (15

A set A such that m(4) > 0 is called a focal element. The upper probability P*(4)
=1 — Py(A4) is also defined as

Pr ()=, 2 m (B). (16)

Assuming, without loss of generality, the n;’s are decreasingly ordered (m, =1 > 7,

> .2, > Tpyy = 0) and nis the density of Q. Defining 4,={ ¢ |e€Q, n() > }
and
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m4)=0 ifA#A;foralli

mA)=m —myqy fori=1,..n, - ¢¥))
we have

P*(4) = 11 (4) for any 4 C'Q. 18)

The class of upper probability measures includes possibility measures as a specml case.
This property was shown by Banon?. The concept of expectation is basic, and useful in
the conventional probability theory. Dempster’s®) framework enables it to be carried
over to upper probability measures which include Zadeh’s possibility measures. Let ghe
a real valued function over §2. From the knowledge of upper probability, an upper dis-
tribution function of g can be defined by

F (¥)2 P* (g<v). (19)

The expectation E (g) with respect to upper probability is the Lebesque-Stieljes
integral,

E@®=["_vdF(@)
$

=2 8 F ) —F(g-1)] (20)

where it is assumed that 0 = g, < g, <g, < ... < g, and F (go) = 0. Let B;’s be the
nested sequence of the sets such that B;= { el gle)<g, e .Q} and¢=B,CRB, CB,
C ...CB,. A;’s are also nested sequence as 4, C4, C...CA n by the definition.
[Proposition 1] The lower expectation £, of the function g © > R! with respect
to possibility can be written as

Ec@= £ L= ) o0 21, @1

Though we can readily see Eq. (21) from the property shown by Smets®), we will
show a direct proof.

(Proof)
. Since P*(4)=m(4) forall4 C Q.

B)= T m(4), 22
" );,w,fzw]A,-)r:; 7 @2)

E(g)= .ﬁ g [1(B)—7(B1)]

A-): A)] - g
[z;m(,) nzz])g%;)]_g
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Fig.2 Nested sequences of 4;’sand B;’s.

_z i m(4)]. .
2 [(B?\’A-#«» ’} &-
Bi_1NA4~¢

Subsets B;’s and A4’s are the nested sequence as shown in Fig. 2. Hence,
E@=% [m@): min 2(0)]
@)= 2 m) - min €1
n
=% L - mm)- e’é“;{‘,-g(e) I

[Corollary 1] When the possibilistic weights are givenas 7, =m, = ... =

E(g) = min g (¢) = min g;.
Similarly, we have the following formula for the upper expectation £*.

B @z £ [ —ms) maxz@].

3.2. Moadified methods

147
(23)
(24)
m, =1, then
(25)
(26)

We call Siskos’ method S-model, and the modified versions using upper probability

and lower probability are called U-model and L-model, respectively.

As the method by Siskos et al.1), our modified version is divided into two phases.
The first phase consists in assessing the fuzzy outranking relation from the fuzzy partial
relation d; (a, b) and Dy(a, b). The proposed fuzzy outranking relation represents the
non-compensatory effect, i.e. non-substitutive evaluation of alternatives, taking into
account the weights of attributes. The second phase is the same as Siskos’ method.
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The first phase is as follows. Let us assume that we have n criteria for a decision
problem. And we have n partial fuzzy outranking relations. We can aggregate these
fuzzy relations into a single one taking into account the grade of possibilistic impor-
tance of criteria by adopting possibility theory and Dempster’s expectation with respect
to upper probability. We propose to use Eq. (21) as an aggregation formula instead of
Eq. (8) by Siskos ez al.V). Let I 4, denote the index set such as

L= 7€ {1, on}  >m ) @

where m; denotes the possibilistic weight of i-th criterion. di(a, b) is the partial fuzzy
outranking relation. Replacing g(¢) of E(g) in proposition 1 by di(a, b), the aggregation
formula proposed by Siskos is modified as

C @)= & (=) -jmjn d@ b)), @28)

For each pair (a,. b) EA X A, C' (g, b) indicates the complementary (non-substitutive)
degree of criteria concordance for the outranking of b by a, taking into account the
weights of criteria. The fuzzy outranking relation is defined as

C'(a, b); if C' (a, b)) >D; (a, b), Vi

d(a, b) = C' (@, b)

—ap B U-Dr@n)]

with i*€{i|D;(a,5)>C" @ b)}.  (29)
In the case of L-model, i.e. the model using lower probability P, we define
C"@v)= & [(n—mn1) o di@5)], (30)

C"(a,b); if C"(a,b)>D;(a b),Vi

d@b)=| 1-C" (ab) N [1-D*@b)]

Other procedures are the same as in the case of upper probability P*.
In the second phase, given the outranking structure d(g, b) we define the fuzzy
domination relation as

d(a,b)—d (b, a); ifd (s b)>d (b, a)
d® (a, b) ={ (32)

0 ; otherwise.

We obtain the non-domination structure VP such as
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dP (@, b)=1—dP (a, b). (33)

The fuzzy set of non-dominated actions p.N D s determined by

WP @=1-pax[dG,0)-d@b)], (34)
2P (@)= @) = 1 - i ax [46,0) — 4 B)]. Gs)

3.3. Hlustrative examples of Siskos’ methodology and the modified versions

The concordance index of Eq.(8) can be thought assuming additivity of the
weight of criteria. Hence the dependent criterion has undesirable influence to the
decision. We show it by a numerical example. '

A decision maker has to choose among three alternatives A, B and C. The choice is
based on information related to two criteria. Evaluations of these criteria are the result
of psychological tests and vary between 0 and 10. 10 denotes the optimal solution (see
Table 2). The maximum non-significant threshold s; is equal to 2 for the two criteria,
i.e.s; =s, = 2. The veto threshold v; is equal to 5 for the two criteria, i.e. vy =v,=35.
The weights are given asp; = 0.4 and p2 = 0.6.

By Siskos” methodology we have u™? (2) = {o.ss/A, 0.73/B, 1.00/c} . The optimal
solution is alternative C.

To examine the occurrence of rank reversal by assuming ratio scale in assessing the
weight p;, we introduce an additional criteria which is powerfully dependent to criterion
1 (see Table 3). Here we assume ratio scale®). The maximum non-significant thresholds
5; are all equal to 2 for the three criteria, i.e. s; =5, =s; = 2. The veto thresholds v; are
equal to 5 for three criteria, i.e. vy =v, =v3; =5. The weights p; are p, = 0.285, p,
=0.430 and p; = 0.285.

By Siskos’ methodology, we have u™? @) = { 0.69/A, 1.00/B, 0.86/C } The

Table 2 Values of evaluation for two criteria

Multicriteria evaluation

Alternative 1 2
A 5.2 5.6
B 71 4.5
C 3.8 8.0

Table 3 Values of evaluation for three criteria

Multicriteria evaluation

Alternative 1 2 3
A 5.2 5.6 5.2
B 7.1 4.5 7.1

C 3.8 8.0 3.8
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optimal solution is alternative B. Thus, the rank reversal appeared when introduced the
additional dependent criterion.. :

Let us now solve the problem using the modified methodology. In case of two
criteria we have VP (4) = { 0.47/A, 0.71/B, 1.00/C } by U-model and 1P (a) = { 0.67/
A, 0.67/B, 1.00/C } by L-model, respectively. The optimal solutions is alternative C in
both cases. )

Introducing an additional criterion, we have uV° (g) = {0.46/A, 0.83/B, 1.00/C } by
U-model and p¥P (@) = { 0.66/A,.0.66/B, 1.00/C } by L-model, respectively. The
optimal solution is alternative C. ,

As shown above, by using fuzzy concordance relations with non-additive measures,
the rank reversal is hard to appear.

4. A Comparative Study in the Choice of a Radiation Protective System

We here quote the data from the paper by Siskos’ et al.1) to compare the computa-
- tional results between their methodology and ours (see Table 4).

Choosing a protective system for a nuclear power plant is a problem of choosing a
treatment option for each effluent pathway. Since there are several possible options for
each of the six categories of effluents (PT, DR, LV, TEG, BR and BAN), there will be
as many systems or actions as there are combinations. In fact we have 3 X4 X 2X 4

. X 2 X 2 =384 actions. We shall choose the best combination from 384 actions.

Decision making criteria are as follows:

(1) investment cost (in 10® francs);

(2) annual operating cost (in 10° francs);

(3) short-term public health impact indicator (in man-Sieverts);

(4) long-term public health impact indicator (in man-Sieverts);

(5) health impact indicator for critical group (in man-Sieverts);

(6) occupational health impact indicator (in man-Sieverts);

(7) adaptability of the system to abnormal operation of the reactor (qualitative
criterion).

As shown in Table 5, the best options by S-model and by U-model are the same
(110311). But, as to the second to the best in S-model the inpreferable options in the
seventh criterion (12 and 13 is small compared with 16) were chosen, because in other
criterion the evaluated values are relatively better. Whereas, the option (130311) which
has no specific defect was chosen by U-model. Hence, these results show the non-
substitituve decision in U-model.

In the case of L-model, three options were chosen as the best, since they were
evaluated as the best in the seventh criterion (the evaluated value is 16) which is the
most important one. This implies the substitutive decision by L-model.

'5. Conclusion
Siskos’ methodology requires sufficient attention if we determine the ratio scale
weights of criteria when some criteria are dependent each other. We have demonstrated
that the rank reversal may occur by introducing a powerful dependent criterion when
the weights are estimated as a ratio scale. ' '
The advantage of our modification is that we have substitutive and non-substitutive
evaluations of the altérnatives, which are apart from those of additive utility ap-
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Table 4 Data base for the problem of choosing a protective system for a French
nuclear power plant of the PWR-1300 MW (e) type. Quoted from Siskos

etall ).
Annual ﬁ‘é‘gltlﬁ E:;g]{l}i E“e;:'t; ggcn:{)a- gfil;zt-y
Effluent Tregtment Treatment Investment operating impact impact indicator health rion
pathways ?ptlons characteristics cost cost indicator ;ndlcato; on impact (quali-
» symbols) 103F) 103F) in short in long _ critical indicator tative)
. term term group (M-Sv)
(M-Sv) (M-Sv) (Sievert)
Tritium purge PT0 no treatment 0 0 0.036 1.3%x107* 1.9%1078 0 0
PT-1 St (10 days) 698 28 0.027 1.6+107% 1.5+10° 0.0 2
PT-2 St (10 days)+Dem [DF=5] 1459 142 0.0054 3.3+107°  3.0=107° 0.30 2
Drains DR-0 no treatment 0 0 15 26+%107%  78x10° o 0
DR-1 St (5 days)+Fi+Ev [DF=100] 8330 400 012 29:10% 60%10° 020 2
DR-2 St (5 days)+Fi+Ev+Dem [DF=1000] 8711 456 0012 29#107° -6.0%107° 035 2
DR-3 St (10 days)+Fi+Ev+Dem [DF=1000] 10412 524 0.0093 3.2¢107°  4.9%x1077 065 3
Laundry LV-0 no treatment 0 0 0.009 16+10° 45+107° o 0
LV-1 St (30 days)+Fi 431 51 0.0033  2.9+107°  20%107° 0.5 0
Steam generator blomdown GV-0 no treatment 0 0 0.021 5.1%1075 1.1%107% 0 0
Turbine building’s floor drains | FPE-0 no treatment 0 0 0.0069 1.3+1075  3.6+*107° 0 0
TEG-0 no treatment 0 0 84 4435107 2.5%1073 0 0
Gaseous effluents TEG-1 St (20 days) 2058 82 3.6 4.6%107* 1.1%1074 0.20 1
TEG2 | St (40 days) 2235 89 1.6 46%10™  4.8+107° 025 2
TEG-3 | St (60 days) 2413 96 15 4.6¥107%  45+1075 030 3
Reactor building ventilation | BR-0 no treatment 0 0 0.9 50%10°  25+10° 0 0
BR-1 Fi {DF=10) 86 24 0.75 48+10°  22+107°  0.10 4
Auxiliary building ventilation | BAN-O | no treatment 0 0 0.51 27107 15+%107° 0 0
BAN-1 |Fi [DF=10} 320 58 0.48 2.7+10% 141075 0.10 4
Condenser air ejector EX-0 no treatment 0 0 0.57 3.0%107¢ 1641075 0 0
Turbine building steam leakage} EVPE-Q | no treatment 0 0 00045 O 9.7+10% 0 0
Average criteria weights 0.130 0.110  0.150  0.050 0.090 0.230 0.240
Criteria evaluation scales for the protective systems from 0 0 34 0.00062 0.0001 0 0
to 15121 895 100 0.027 0.0026 15 16
Maxima non-significant thresholds 100 10 50% 100% 30% 100% 3
~ Veto thresholds 15000 1000 75 0.02 0.003 0.5 10

Notes: St=storage; Fi=filtration; Ev=evaporation; Dem=demineralization; DF=decontamination factor
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Table 5 Results obtained by using three methods
Protective system Non- Multicriteria consequences of actions
Rank proposed domination| 1 2 3 4 5 6 7
PT DR LV TEG BR BAN| degree [(10°F) (10°F) (M-Sv) (M-Sv) (Sv) (M-Sv) (Qual
o 11 1 0 3 1 1 0.876 |11847 606 3.5 0.00093 0.000081 0.80 15
Siskos 210 1 0 2 1 0.874 [1097t 571 3.6  0.00090 0.000084 0.65 12
methodology
210 1 0 3 1 1 0.874 |11149 578 3.5 0.00090 0.000081 0.70 13
Themethodby] t |2 3 0 3 1 1 1.000 |14690 844 2.8  0.00055 0.000081 145 16
using lower tjr 3 01 3 1 1 1.000 |14360 781 2.8 0.00069 0.000081 1.30 16
probability 112 3 1 3 1 1 1.000 [15121 895 2.7 0.00056 0.000081 1.50 16
Themethodby| 1 |1 1 o0 3 1 1 1000 |[11847 606 3.5 0.00093 0.000081 0.80 15
using upper 21t 3 0 3 1 1 0.988 (13929 730 2.8 0.00068 0.000081 125 16
probability 3 {1 3 1 3 1 1] 0965 |14360 781 2.8 0.00069 0.000081 130 16
The weights of criteria 0.130 0.110 0.150 0.050 0.090 0230 0.240

proach?). Especially in the decision problems such as choosing protective systems for
the nuclear power plants, even if a system is the very best for public health, it is nota
best seletion if the system sacrifices the occupational health for instance. Hence the
non-substitutive decision seems necessary, since the _problem is concerned with the lives
of human beings.

1

2)
3)
4)
5)
6)
7
8)
9
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