75 ABRLIAT 4tE® Y R b

Osaka Metropolitan University

Semi-Automatic Program Generation with the aids
of Reusable Modules

&&2: English

HARE

~BH: 2010-04-06

F—7— K (Ja):

F—7— K (En):

{ERZE: Nishida, Fujio, Takamatsu, Shinobu, Fujita,
Yoneharu

A—=ILT7 KL R:

FilE:

https://doi.org/10.24729/00008492

Semi-Automatic Program Generation with the aids of Reusable Modules

Fujio NISHIDA *, Shinobu TAKAMATSU* and Yoneharu FUJITA**

(Received June 16, 1988)

This paper describes a method of semi-automatic specification refinement and
program construction using library modules. Users write their specifications, modifies
and rearranges them so that the specifications can be refined with the aids of the
library modules. Given specifications, a refinement system called MAPS searches for
library modules applicable to the given specifications, refines them by linking several
modules or by replacing them by a more detailed description in the operation part of
the module and expands the refined specifications into a programming language
designated in the user’s option,

1. Introduction

In recent years high productivity and flexibility of computerization have been re-
cognized in every field and the need of program generation has been rapidly increasing.

Correspondingly, various production methods of software have been proposed by
many researchers'™12), The research of the requirement techniques' = proposed a
powerful means of costructing a big system by division and abstraction of the system as
well as the various specification languages. The study of reusability of program

15

modules®~11) suggests not only an efficient method of reliable system development but

also feasibility of automation in software engineering. The reuse of software com-
ponents allows the software developer to write fewer total symbols in less time with
fewer mistakes in the development of a system.

Furthermore, recent development of problem solving techniques seems to drive the
study of the automatic programming into practical application®~8:12: 13)

Along these trends, the authors also have been studying a semi-automatic program
construction by using library modules and established an experimental system called
the library-Module Aided Program construction System abbreviated to MAPS. Com-
pared with the associated studies’ 11, the focus of this paper is placed on 1) the intro-
duction of a powerful unification technique into application of the knowledge of the
library modules and 2) refinement by linking modules with the aids of the input-output
assertion.

The module library consists of fundamental program modules constructed hier-
archically in some specific fields such as symbol manipulations and language processing
as well as in the general fields. '

" In MAPS each user describes program specifications by referring to a heading list of
available library modules. The expressions of user’s specifications are restricted to the

*

Department of Electrical Engineering, College of Engmeermg
sk

Faculty of Engineering, Oita University

16 - Fujio NISHIDA, Shinobu TAKAMATSU and Yoneharu FUHTA

same form as those of library modules. They take a limited form of a natural language
like Japanese or the corresponding formal expression except for arithmetic expressions
and type expressions. The system searches for library modules applicable to the given
specification using the heading expressions for every block of specifications.

If MAPS succeeds in search, it begins to refine the specifications. MAPS replaces the .
unifiable part of the specifications by the instantiated operation part of the module
which provides a more detailed procedure, or it calls the instantiated operation part as
an auxiliary program. If a specification block is described in an input-output assertion, it
links several library modules to meet the assertion. If MAPS fails to find out available
modules, the user provides the system with a more refined specification or constructs a
new module to meet the specification block.

By repeating these operations, specifications can be refined to be completely re-
solved into primitive operations. Subsequently the refined specifications are trans-
formed into some programming languages such as Lisp and C language according to the
user’s designation.

2. Formal Expressions of Specifications and Library Modules

The formal expressions are classified into three kinds of expressions, namely, pro-
cedure expressions, input-output predicate expressions and control expressions. They
can be represented in a function form with a role indicator prefixed to each parameter
as follows:

heading-symbol _(Cl ity Gyl ty))

The heading symbol takes a structure name such as a procedure name and a predi-
cate symbol in this paper. The argument part consists of a sequence of several pairs of a
case label C; (i = 1, 2, ..., n) and a term ¢;, Some of case labels are shown as follows:

OBJECT: the object to be processed

SOURCE: a set or a collection of data including the processed object
PARTICIPANT: an auxiliary or complementary object
CONDITION: a condition of the processing

GOAL: a memory location storing the processed results
LOCATION: alocation of the object

COMPARISON: a thing compared with the object

KEY: akey item used for data processing

FORMAT: a representation format of the object

MODE: a processing mode designated by an algorithm name

In the following, a string consisting of small letters, in many cases, denotes a
variable for which a constant or another variable can be substituted while a string con-
sisting of large letters denotes a constant. The input or the output variable in specifica-
tions is processed as a constant in unilateral unification with library modules (or substi-
tution for them) and is written in a string consisting of large letters.

2.1 Procedure expressions

The procedure expression is useful for designating various macro operations and

Semi-Automatic Program Generation with the Aids of Reusable Modules 17

takes a form of Expr.(1). The heading symbol represents a procedure name and forms
the principal part of a key available for retrieving modules in the library. It consists of a
verb word or a noun word such as ‘retrieve’ and ‘sum’. In the argument, the GOAL case
denotes the location or the variable in which the result is stored. It is assumed that an
expression without the GOAL case stands for a function or represents the result itself.

2.2 Input-output predicate expressions

The input-output predicate expression or assertion is a kind' of problem-oriented
descriptions or requirement-defining descriptions and useful for finding an applicable
module sequence to a given specification as mentioned in section 3.2. It is also useful
for checking the validity of specifications by examining whether or not the 1nput condi-
tion is satisfied at every stage.

An input-output assertion consists of a pair of an input predicate and an output
predicate. Both expressions consist of a conjunction of clauses and each clause is a dis-
junction of literals. Each literal has a form of Expr. (1) or the negation form where the
heading symbol stands for a predicate,

Let us consider the following input-output expression:

IN: GIVEN (OBJECT: x, LOCATION: loc), P (OBJECT: x), :
OUT:H z Q (OBJECT: z, PARTICIPANT: x))

The above expression means that when any input x is GIVEN at a location loc and
has a property P, there exists an output z which satisfies a relation Q(z, x) to the input
X, ‘

The output part can be also written in a form

GIVEN (OBJECT: q(x)) (22)
using the Skohlem function for iV x H z Q(z, x). The input-output expressions (2) and
(2a) are useful for finding a sequence of modules which satisfies a given specification.

2.3. Control expressions

The control expressions are classified into those of branching and iteration. They
have a procedure expression and an input-output expression as described in the
following.

(1) Conditional branching
The fundamental branch type is the IF-THEN type. The procedure expression and
the input-output expression are described respectively as follows:

PROC: IF-THEN (CONDITION:: t(x), OBJECT: q(x), GOAL: z) 3)

IN: GIVEN (x)
OUT:"7 t(x)\/ GIVEN (OBJECT: q(x), LOCATION: z) (32)

Similarly, the binary branch expressions are given as follows:

18 bFujio NISHIDA, Shinobu TAKAMATSU and Yoneharu FUJITA

PROC: IF-THEN-ELSE (CONDITIONI: t1 (x), OBJECTI : q1 (x),
CONDITIONZ: t2(x), OBJECT2: q2(x), GOAL: z)

@)
IN: GIVEN (x)
OUT: "/ t1(x)\/GIVEN (OBJECT: q1 (x), LOCATION: z),
7 12(¢)\/ GIVEN (OBJECT: q2(x), LOCATION.: 2) (4a)

where £](x) and £2(x) are complementary to each other.
If the procedure g1 (x) has no effect on £2(x), it can be shown that the procedure
of IF-THEN-ELSE is equivalent to the following procedures:

IF-THEN (CONDITION: t1(x), OBJECT: q1(x), GOAL: z);
IF-THEN (CONDITION: t2(x), OBJECT: q2(x), GOAL: z);

(2) Iteration »
Iteration is classified into the parallel type and the serial type.

(2.1) Parallel type

Parallel type iteration repeatedly applies the same operation to each element of an
object as seen in retrieving of elements with a specified attribute value. In this type, the
result of processing in the i-th stage of iteration does not affect that in the j(Xi)-th one.
The procedure expression and the input-output expression are given respectively as
follows:

PROC: FOR (INDEX: i, FROM: m, TO: n,
OBJECT: proc (OBJECT: x1 (i),
PARTICIPANT: x2(i), GOAL: z (i))) 5)

IN: GIVEN (OBJECT: x1(m..n), x2(m..n))
OUT: FORALLi(/m<Lign
\/GIVEN (OBJECT: proc (OBJECT: x1(i), PARTICIPANT: x2(), .
GOAL: z())))), (5a)

where the output expression means that the relation in the OBJECT case holds for all

the INDEX value i of m i< n.

(2.2) Serial type ,
The serial type iteration processes data for every stage of iteration based on the

results of data processing in the preceding stage.
The procedure expression and the input-output expression are given as follows:

PROC: FOR (INDEX: i, FROM: m, TO: n,
‘ OBJECT: proc (OBJECT: x(i),

Semi-Automatic Program Generation with the Aids of Reusable Modules 19

PARTICIPANT: y,
GOAL:y), GOAL: z) ©)

IN: GIVEN (OBJECT: x (m..n), y)
OUT: GIVEN (OBJECT: FOR (INDEX: i, FROM: m, TO: n,
OBJECT: proc (OBJECT: x (i),
PARTICIPANT: y,
GOAL: y), GOAL:z)) (6a)

where the initial value of y requested in the input expression depends on the property
of the repeated procedure. :
2.4. Library modules

Each module has a heading consisting of both the PROCedure and the INput-
OUTput expressions followed by data TYPE part of entities and an OPeration part.
The operation part describes the details of a procedure by using the headings of hier-
archically lower library modules. Table 1 shows an example of library modules.

Table1 An example of “SORT” module

PROC:SORT(OBJECT:array(ml .. n1,m2 .. n2),

KEY_COLUMN:j ,MODE:DESCENDING_ORDER),
IN:GIVEN(OBJECT:array,j), _
OUT:GIVEN(OBJECT:SORT(OBJECT:array(m1 .. nt,m2 .. n2),

‘ KEY_COLUMN:j ,MODE: DESCENDING_ORDER) ,
TYPE:
array (REGION:REAL,STRUCTURE:ARRAY(m1 .. nt,m2 .. n2),
VARIABLEROLE: INOUT),
OP:FOR(INDEX:i,FROM: m1,TO:n1,
OBJECT:FOR(INDEX:k,FROM:+(i,1),TO:n1,
OBJECT: IF-THEN(
CONDITION:GREATER_THAN(
OBJECT:array(k,3),
COMPARISON:array(i,j)),
OBJECT : EXCHANGE_VECTOR (
OBJECT:array(i,m2 .. n2),
PARTICIPANT:array(k,m2 .. n2)

1))

20 Fujio NISHIDA, Shinobu TAKAMATSU and Yoneharu FUJITA
2.5. Specifications

Users of the system MAPS describe specifications in a formal expression mentioned
above or in a natural language-like expressions by referring to program modules con-
tained in the library. The specifications can be written using a mixed form of prdcedure
expressions input-output expressions and programming language-like expresswns in a
similar way to descnptlons in an operation part of a library module.

Example 1
Let us consider a sorting program for a table of examinees’ grades. The specifica-
tions written in a certain kind of limited English are given as follows:

TYPE: MARK-TABLE: ARRAY [1..1000, 0..6]

(1) FOR I FROM 1 TO 1000
READ MARK-FILE IN ARRAY FORM AND
STORE THE RESULT IN MARK-TABLE [, 1 .. 5]
(2) FOR I FROM 1 TO 1000
FIND THE SUM OF MARK-TABLE [I, 1 .. 5] AND
STORE THE RESULT IN MARK-TABLE [I, 6]
(3) SORT MARK-TABLE [1 .. 1000,0 .. 6] IN DESCENDING ORDER BY TAKING
THE 6-TH COLUMN AS THE KEY
(4) FOR I FROM 1 TO 1000
STORE I IN MARK-TABLE [I, 0]
(5) WRITE MARK-TABLE [1 .. 1000, 0 .. 6] ON MARK-FILE IN ARRAY FORM

The corresponding formal specifications are given as follows:

. (1) FOR (INDEX: I, FROM: 1, TO: 1000,
OBJECT: READ-IN-ARRAY (OBJECT: MARK-FILE,
GOAL: MARK-TABLE (1,1 ..5)))

(2) FOR (INDEX: I, FROM: 1, TO: 1000,

OBJECT: SUM (OBJECT: MARK-TABLE (], 1 .. 5),

' GOAL: MARK-TABLE (I, 6)))
(3) SORT (OBJECT: MARK-TABLE (1 .. 1000, 0 .. 6),
KEY_COLUMN: 6, MODE: DESCENDING_ORDER)
(4) FOR (INDEX: I, FROM: 1, TO: 1000, OBJECT: : = (MARK-TABLE (I, 0),1))
(5) WRITE-IN-ARRAY (OBJECT: MARK-TABLE (1 ..1000,0 .. 6),
GOAL: MARK-FILE)

3. Refinement of Specifications and Conversion to Programs

The given specifications are refined for every block by MAPS using applicable pro-
gram modules. If they are given by informal expressions like limited natural language
expressions, MAPS first transforms them to the formal expressions!®).

The formal specification contains various heading expressions of library modules. If
the heading expression is a procedure expression, MAPS searches for a library module
which has a unifiable procedure name with that of the specification block and checks
whether or not the argument part is also unifiable. Subsequently, if unifiable, it refines

Semi-Automatic Program Generation with the Aids of Reusable Modules 21

the heading expression by using the instantiated operation part of the unified module. If
the heading expression is an input-output expression, MAPS searches for a link of
several library modules which satifies the input-output assertion as a whole and then
refines the procedures of the link. At each refinement, if an operation part has several
selections, MAPS asks user’s selection and makes refinement according to user’s option.
When nonprimitive expressions such as heading expressions of the modules can not be
found any more after refinement, MAPS converts the refined specification to a program
written in a programming language designated by the user.

3.1. Refinement of pr(')cedureleXpressions

When MAPS finds a unifiable procedure expression of a library module for a given
procedure block contained in a specification, it refines the procedure expression by
using the instantiated operation part of the unifiable procedure expression.

There are two methods of realizing the refined expression. One of them is the direct
replacement of the original specification by the instantiated operation part. The other is
modularization of the refined expression and call of the modularized expression as a
subroutine from the block of the specification. MAPS asks the user the selection of the
two methods or semi-automatically selects one of them according to the set conditions
of switches at the beginning of refinement.

(1) Direct replacement method

Though the method is liable to generate a larger and complicated program, the
generated program has high running speed. In many casés, the body part in a repetition
can be refined by direct replacement by the operation part of the unifiable procedure of
a module.
(2) Procedure call method

This method has the advantage of bringing compactness and readability of the con-
structed procedure. If the procedure has not been registered yet as a program module in

a module table, MAPS constructs the procedure module as follows:
(1) MAPS constructs the heading of the program module and the declaration of vari-

ables by referring to both the procedure expression of the heading part and the type
part of the library module. They are generated in a programming language designated by
the user’s option. Then MAPS constructs the body part by putting the instantiated
operation part of the module and then records the procedure name in a program module
table, .

(2) If MAPS finds some non-primitive procedure expressions in the body part of the
program module, it refines them by applying the above mentioned refining method
respectively. :

Example 2
The formal specification given in Example 1 can be first refined by using library
modules like a vector-sort module shown in Table 1 as follows:

FOR (INDEX: I, FROM: 1, TO: 1000,
OBJECT: FOR (INDEX: I1, FROM: 1, TO: 5,
OBJECT: READ (OBJECT: MARK-FILE,
GOAL: MARK-TABLE (1, 11))));

22 Fujio NISHIDA, Shinobu TAKAMATSU and Yoneharu FUJITA

FOR (INDEX: I, FROM: 1, TO: 1000,
OBJECT: : = (MARK-TABLE (I, 6), 0);
FOR (INDEX: 14, FROM: 1, TO: 5,
OBJECT: : = (MARK-TABLE (I, 6), :
+ (MARK-TABLE (I, 6), MARK-TABLE (I, 14)))));
FOR (INDEX: IS, FROM: 1, TO: 1000,
OBJECT: FOR (INDEX: K5, FROM: + (I5, 1), TO: 1000,
OBJECT: IF-THEN (
CONDITION: GREATER_THAN (
OBJECT: MARK-TABLE (K5, 6),
COMPARISON: MARK-TABLE (I3, 6)),
OBJECT: EXCHANGE_ VECTOR (
OBJECT: MARK-TABLE (K5, 0 .. 6),
PARTICIPANT:
MARK:TABLE (15,0 ..6)))));
FOR (INDEX: I, FROM: 1, TO: 1000, OBJECT: : = (MARK-TABLE (I, 0), I));
FOR (INDEX: 118, FROM: 1, TO: 1000,
: OBJECT: FOR (INDEX: 128, FROM: 0, TO: 6,
OBJECT: WRITE (OBJECT: MARK-TABLE (118, 128),
‘ GOAL: MARK-FILE)))

The above expressions are further refined and finally transformed into a program
written in C language as shown in appendix 1 by using transformation to programming
languages mentioned in section 3.4.

3.2. Refinement of input-output expressions

Linking of modules is performed based on clause forms of the input-output pre-
dicate expressions. The two expressions in Expr. (2) are put together to form a clause
form as follows: o

GIVEN (q(x)) \/ 7GIVEN (x)\/ ;7 P(x))]

where q(x) is a Skohlem function for z defined by Vx Hd zQ (x, z). !
The operation which leads to the above input-output relation is written as follows:

OP:2.q:=qo(x) ®

‘where go (x) stands for a concrete operation part corresponding to the Skohlem func-
tion ¢ (x).

The refinement of specifications by linking modules is based on the following
principle. Let us assume that the given specification has the following input-output
relation in a clause form:

GIVEN (Q(A))\ 7 GIVEN (Q; (A))\/ ..\, 7GIVEN (U (4)) ©)

Semi-Automatic Program Generation with the Aids of Reusable Modules 23

The expansion result in C:

main()
(int 1121; int }111; int k51;
int 14]1; int 1; int i51; int 11113

int mark-table (1001} (7);
int wk51(2) (T

..........................

mark=table (i) (8) = 0;
for(idl = 1; i41 <= 5; ++ i4l)
1 .
mark—-table (i) (B) =
mark=table (§) (6) + mark—-table (i) (i41));

| IH
) . *
for(isSl = 1; i51 <= 1000; ++ iS51)

{
for (k51 = (151 + 1); k51 <= 1000; ++ k5D

{
if(mark—table (k51) (6) > mark—table (151 (6))

{
for (1101 = 0; 1101 <= 6; ++ 1101)

{
wk51 (1) (1101) = mark=table (i51) (1101);

b

for(llll = 0; 1111 <= 6; ++ 111D

{
mark=table (151) (1111} = mark—table (k51) (1111);

13K
for(l121 = 0; 1121 <= 6; ++ 112D
{
mark-table (k51) (11210 = wk§1(1) (1121);

.................................

Appendix 1

Assumption that the above specification is not feasible or cannot hold leads to the
negation of the above, '

“7GIVEN (Q(4)), GIVEN (@1 (4)), ..., GIVEN (@ (4)) (10

If there is a refutation from Expr. (10) and a clause set of library modules that
support Expr:(9), refinement of the specification can be constructed by calling pro-
cedures that are made of the instantiated procedure expressions of the library modules
that contribute to the refutation or by direct replacement by the instantiated operation
parts of the library modules. :

(1) Cascade connection
Cascade connection of library modules is a fundamental method of specification

refinement obtained by linking several library modules. The refined specification is
constructed by serial or parallel linking of the instantiated operation parts of the
modules that contribute to the refutation. ~

24 Fujio NISHIDA, Shinobu TAKAMATSU and Yoneharu FUJITA

Qy(3)

0, (a) 0;(A)

! l

CQy(A) Q,(a)

Fig. 1 A data-flow of a sequential link

In Fig. 1, suppose that a specification requires an output data Q,(A) for a given
input data (Qo(A)=)A, where Q; (i = 0, 1, 2, ...) denotes a function symbol. For the
specification, the input refutation can be obtained in the choice of the negation of
GIVEN (Q5(A)) as the top clause by using Prolog. From the refutation a refined specifi-
cation can be constructed by the aids of library modules used in the refutation.

When a datum A is needed to evaluate a datum B, the ordered pair of 4 and B is

. called a parent-child order. By using this definition, the procedure of the cascade con-
nection is described as follows:

(1) Transform into clause forms the input-output expressions of both the specification
and library modules associated with the refutation.

) Carry out the input refutation. Choose as the top clause of refutation the negation
of the output predicate of the specification.

(3) Instantiate the procedure expression or the operation part of the module used for
refutation by the unification substitution corresponding to the procedure call or the
direct replacement by the instantiated operation part.

(4) Arrange the instantiated operation parts of the modules that contribute to refuta-
tion so that the corresponding unified input and output data satisfy a parent-child
order.] .
(5) If some functions are involved in the argument part of a function, replace them by
intermediate variables to improve efficiency. Be careful no collision of variable names
occurs in the program block by the aids of the list of variables. '

Example 3
Suppose that there are two modules both of which have the clause forms of the
input-output expressions and the operation parts as follows:

GIVEN (OBJECT: F(x), LOCATION: y)\/ 7GIVEN (OBJECT: x)
OBy = B () oo o)
GIVEN (OBJECT: H(x, y2), LOCATION: y1)
\/ 77 GIVEN (OBJECT: F(x), LOCATION: y2)
OP: yl = HO (x’ y2) ... @

The specification is given in English as follows:
‘GIVEN U, H(U, F(U)) IS OBTAINED AT Z’,

Semi-Automatic Program Generation with the Aids of Reusable Modules

or in a clause form as follows:

GIVEN (OBJECT: H(U, F(U)), LOCATION: Z)\/ "/ GIVEN (OBJECT: U)

The negation of the above is

v ~1GIVEN(OBJECT:F(x) ,LOCATION:y2)

/(—U,y‘](—Z,YZ(—F(U)

-~ GIVEN(OBJECT:F(U),LOCATION:F(U))
@ GIVEN{OBJECT:F(x),LOCATION:y)
VIGTVEN(OBJECT:x)

"7GIVEN (OBJECT: H(U, F(U)), LOCATION: Z) ..ccvsmmrnrrrertoricesssreeeeecns ®
and GIVEN (OBJECT: U) rvceeinnenienssiasmssnesessssecesssssssmssssssssssesssnnnsseseessanes @
® ﬂGIVEN(OBJECT:H(U,F(U)),LOCATION:.Z)
Q GIVEN(OBJECT:H(x,y2),LOCATION:y1)

X ¢ U, y « F(U)
~ GIVEN(OBJECT:U)
@ GIVEN(OBJECT:U)
/

{1

Fig. 2 Arefutation process

Fig. 2 shows a refutation by Prolog in which clause @ is taken as the top clause.
By rearranging the operation parts of the modules in the parent-child order of data, the
refined specification is obtained as follows: "

y2:=F(U); Z: = H(U, y2);

(2) Linking modules which include control expressions

It is not so difficult to link some modules by the above mentioned cascade connec-
tion so that the given specification of the input-output expression is satisfied. Each
module in the cascade connection can be dealt with as a procedure from a global point
of view. and it does not matter whether some of the modules contain control expres-
sions or not. For example, the maximum finding function can be dealt with a procedure
and can be easily linked to another modules by a cascade connection. On the other
hand, it is difficult to refine a given specification or to construct a program at a con-
stituent level of control statements flexibly.

This section describes a method of reducing a refining problem of a control specifi-
cation mentioned in chapter 2 to that in the OBJECT case in the control expression.

(2.1) Linking in a conditional branching
If a conditional branch is specified by a form

IF-THEN (CONDITION: (x), OBJECT: q(x), GOAL: z) 6))

or by the input-output predicate form, the refinement problem of the above can be re-

25

2 Fujio NISHIDA, Shinobu TAKAMATSU and Yoneharu FUJ ITA

duced to a link problem of the input-output expression within the OBJECT case as
follows:

IF-THEN (CONDITION: t(x),
OBJECT: (IN: GIVEN (x), t(x),
OUT: GIVEN (q(x))), GOAL: z) @an

Expr. (4) can be also reduced to the same type problem as the above by replacing
OBJECTi case (i=1, 2) by .

(IN: GIVEN (x), ti (x), OUT: GIVEN (qi (x))) (11a)

In other words, the refinement of a specification of a conditional branching like
Expr. (4) can be replaced by refining the OBJECT case of each branch through an input-
output expression like Expr. (11a) reconstructed from the specification.

(2.2) Linking in an iteration frame

In a similar manner to the conditional branching, refinement of iterative spe-
cifications can be reduced to a link problem within the OBJECT case of an iterative
procedure. :

The operation part in a parallel iteration module of heading Expr. (5) is given as
follows:

OP: FOR (INDEX: i, FROM: m, TO: n,
OBJECT: (IN: GIVEN (x1 (), x2()),
OUT: GIVEN (proc (OBJECT: x1(i),
PARTICIPANT: x2(i), GOAL: z(i))))) (12)

Similarly, the operation part in a serial iteration module of Expr. (6) is given as
follows:

OP: FOR (INDEX: i, FROM: m, TO: n,
OBJECT: (IN: GIVEN (x(i), »),
OUT: GIVEN (proc (OBJECT: x(i),
PARTICIPANT: y, GOAL: y))), GOAL: z) (12a)

The operation part of a WHILE type module is the same as that of the above serial
FOR type except for the conditional case of 1(x(7), y).

3.3. Fusion of iterative loops

Fundamental library modules are generally constructed so as to have a single out-
put. Accordingly, specification refinement performed by these library modules often
brings a concatenation of several loops which have the same iteration number as each
other. Hence it is desired to improve the efficiency of the generated program by fusing

Semi-Automatic Program Generation with the Aids of Reusable Modules 27

these loops globally.
. Let us suppose that two FOR-type iterative expressions are generated after specifi-
cation refinement by using library modules as follows:

Z1:=710;
FOR (INDEX: I, FROM: M, TO: N,
OBJECT: Z1: = Q1 (X1(I), Z1));
Z2:=1720;
FOR (INDEX: J, FROM: M, TO: N,
- OBJECT: Z2: = Q2 (X2()), Z2));

In the above, each index variable of the iterative expression has the same range of
repetition as the other and each iteration does not require the output of the other. The
former can be checked by a unification technique and the latter can be examined
through the input-output expressions corresponding to the respective procedure
expressions.

Under these conditions, the above two iterations are put together to form a smgle
iterative expression as follows:

Z1:=2710;722:=720;
FOR (INDEX: I, FROM: M, TO: N,
OBJECT: (Z1: = Q1 (X1 (), Z1);
7Z2:=Q2(X2 (M), 22)));

Thereby the running time and the memory for the program module can be reduced.

Similarly several WHILE-type iterative expressions can be fused to a single WHILE-
type expression if they have the same test conditions of iteration and do not require the
output of each other as the input data.

3.4. Transformation to programming languages

When non-primitive expressions cannot be found any more after refinement, MAPS
transforms the refined specification into a programming language like C or LISP chosen
in the user’s option. The chosen programming language, however, must satisfy various
conditions in order to realize the given refined specifications. For example, it needs to
be able to process the data of some types given in a specification. After confirming the
fulfilment of these conditions by the aids of a knowledge base of programming lan-
guages or a user’s suggestions, MAPS transforms the type part into declaration state-
ments of the chosen language. For example, MAPS transforms the record-type data
processing specifications into a LISP program by using an assoc1at1ve list and an as-
sociative function according to the user’s option.

MAPS also transforms the formal control expressions into a control statement of a
programming language by using a table such as Table 2 which has a structure similar to
that of a library module.

28 Fujio NISHIDA, Shinobu TAKAMATSU and Yoneharu FUJITA

PROC: FOR (INDEX: i, FROM:m, TO:n,OBJECT:s) ,
TYPE:'i,m,n'(REGION:INTEGER,VARIABLEROLE:INPUT),
OP:(LISP (SETQ i m)
(LOOP () s
(SETQ i (ADD1 i))
(COND ((GREATERP i n)
(EXIT-LOOP)))))

(C FOR(i=m;i¢=n;++i){s})

Table 2 The content of the “FOR” module

4, The Experimental System

An experimental system MAPS written in LISP has been constructed on the TSS of
our university computer center (ACOS 850) and on a workstation (CPU MC68000,
clock 10 MHz. memory 3.5 MB).

Fig. 3 shows an overview of the total system of MAPS. If specifications are written
in a limited natural language like Japanese, MAPS transforms them to the formal specifi-
cation. Then MAPS scans the formal specifications and notifies the users of various
errors and defaults or specification blocks which cannot be unifiable to any heading of
library module by referring to library modules. The user corrects the errors, comple-
ments the defaults by giving some newly built modules or giving some details to the
specification block and inputs the validated specifications. If the specifications involve
an input-output expression, MAPS tries to meet the specification block by linking some
library modules. Then MAPS refines every block of the specifications by using operation

Formal Informal
Spec. Spec.

The informal to formal
transformation system

R _.---Prolog
s
é{;;fi;g______ﬂThe formal to informal
o) _.-""transformation system
. / - .
] ‘ ;-
C - g~ -—r~7--¥Comments
/
----- ~------yComments
Expansion
Programs

Fig. 3 An overview of the total system

Semi-Automatic Program Generation with the Aids of Reusable Modules 29

parts of the unifiable modules, tries simple optimization such as fusion, and outputs a
natural language like expressions corresponding to the refined specifications by the
user’s option. After refinement, MAPS transforms the specifications to a progxammmg
language expressions designated by the user.

Some experiments of refinement and transformation have been carried out. The
average transformation time between Japanese-like expressions and the formal ones is
about 0.2 sec. per word on ACOS 850. The linking and refinement of a specification
block requires about 0.6 sec. on the average.

As for refining specifications in a somewhat specific field, a machine translation
system written in C and LISP was reconstructed on a library module basis by MAPS16),
The library modules were made by referring to the original machine translation system
written in LISP. At present, a new MAPS itself also is under reconstruction by referr-
ing to original one.

Example 4 shows some simple experimental results'®). The specification can be
given in a certain kind of limited Japanese or English. It is transformed into a formal
specification and refined. Then the limited Japanese or the limited English sentences
corresponding to the refined specification are generated as a more readable expression

. for every refinement.

Example 4

A user gives a program specification of graph representation for a given mathe-
matical function F(x). MAPS translates a Japanese input-output specification into a
formal expression, constructs a refined specification by linking the operation parts of
sevetal instantiated modules by the aids of Prolog in order to obtain the maximum value
of F(x) ‘as follows:
The English specification:

IN: X(0 .. 20) IS GIVEN

OUT: PRINT OF THE GRAPH OF ORDERED_SET (F(X(0)) .. F(X(20)))
FOR X(0 .. 20) IN THE GRAPH RANGE X_RANGE (100, 400),
Y_RANGE (100, 400) IN THE FORMAT OF STRIPE IS OBTAINED

The formal specification:
IN: GIVEN (OBJECT: X(0 .. 20));
OUT: GIVEN (OBJECT:
PRINTGRAPH (OBJECT: ORDERED_SET (F(X(0)) ..
F(X(20))),
PARTICIPANT: X(0 .. 20),
FORMAT: STRIPE,
GRAPH_RANGE: X_RANGE (100, 400);
Y_RANGE (100, 400)))

The refinement by linking of modules:
COMPUTE_FUNCTION (OBJECT: ORDERED_SET (F(X(0)) .. F(X(20))),

30 Fujio NISHIDA, Shinobu TAKAMATSU and Yoneharu FUJITA

GOAL: Y(0 .. 20));
MAX (OBJECT: Y(0 .. 20), GOAL: MAXY);
MIN (OBJECT: Y(0 .. 20), GOAL: MINY);
1= (MAXX, X(20));
1= (MINX, X(0));
PRINTGRAPH (OBJECT: ORDERED_SET (F(X(0)) .. F(X(20))),
'PARTICIPANT: X(0 .. 20), FORMAT: STRIPE,
GRAPH_RANGE: X_RANGE (100, 400);
Y_RANGE (100, 400)) (13)
The formal expression Expr.(13) is further refined by replacing non-primitive ex-
pressions by the instantiated operation parts of their unifiable modules as follows:
FOR (INDEX: i1, FROM: 0, TO: 20,
OBJECT: : = (Y(i1), F(X(i1))));
:=(MAXY, Y(0)); -
FOR (INDEX: i2, FROM: +(0,1), TO: 20,
OBJECT: IF-THEN (CONDITION: GREATER _THAN (OBJECT: Y (i2),
COMPARISON: MAXY),
OBJECT: : = (MAXY, Y(i2))));
: = (MINY, Y(0)); . -
FOR (INDEX: i3, FROM: + (0, 1), TO: 20, ’ :
OBJECT: IF-THEN (CONDITION: LESS_THAN (OBJECT: Y (i3),
COMPARISON: MINY),
OBIJECT: : = (MINY, Y(i3))));
1= (MAXX, X(20));

: = (MINX, X(0));
DRAW_XY_AXIS (FORMAT: STRIPE,

VALUE_RANGE: X_RANGE (MINX, MAXX);
Y_RANGE (MINY, MAXY),
GRAPH_RANGE: X_RANGE (100, 400);
Y_RANGE (100, 400));
FOR (INDEX: i6, FROM: 0, TO: 20,
OBJECT: PRINTGRAPHPT (OBJECT: Y(i6); X(i6),
FORMAT: STRIPE,
VALUE_RANGE: X_RANGE (MINX, MAXX);
Y_RANGE (MINY, MAXY),
GRAPH_RANGE: X_RANGE (100, 400);

Semi-Automatic Program Generation with the Aids of Reusable Modules 31

Y_RANGE (100, 400))),

_ The expansion results in Lisp are shown in appendix 2. These programs works
together with the function F(x) which is added to these programs as a function
subroutine.

The program in Lisp:

(array x t 21)
Carray y t 21
(defun printgraph (x)
(prog (maxy miny maxx minx i4l i11l i200)
(setq 111 O
(loop nil
(store (y ill) (f (x i113))
(setq ill Caddl i1l1))
(cond ((greaterp ill 20) (exit=loopll))
(setq maxy (y 0))
(setq i41 (plus 0 1))
(loop nil
(cond ((greaterp (y i41) maxy) (setq maxy (y i41))))

(setq i41 Caddl i41))

(cond ((greaterp 141 200 (exit—loopll))
(setq miny (y 0))
(setq il11]l (plus 0 1J)
(loop nil

(cond (Clessp Cy il111) miny) (setq miny (y i1113>3))

. (setq il111 C(addl it1l1))

(cond ((greaterp il11l 20) (exit—loopll))
(setq maxx (x 20))

(setq minx (x 0))
(draw_xy._axis 'stripe minx maxx miny maxy 100 400 100 400)

(setq i201 0O

(loop nil

(printgraphpt (y i201) (x i201) ‘'stripe

: minx maxx miny maxy 100 400 100 4000
‘(setq i201 C(addl i201)>

(cond ((greaterp (201 20) (exit—loopl)))))

(defun printgraphpt (yl xl format x_min x_max y.min y_max)
(prog (xy_pos! x.posl y_posl xy_pos2 x.pos2 y-_pos2)

(setq xy-posl

(find.xy_gposition yl xl format
X-min X_max y_min y_max
gx_min gx.max gy-min gy-max))

...

...

Appendix 2 '

5. Conclusion

The research has been done for several years. For practical use there remains several
problems to be refined. One of them is to develop library modules which are more
- flexible more modifiable and more applicable to various specific fields. The other is to
extend applicable natural-language like expressions and to introduce various mnemonic
expressions similar to the conventional notations. However, it is expected that the
method of refining specifications by using abstract program modules will bring fruitful
results to various software development.

32

1)
2)

4)

5)
6)

7
8)
9)
10)
11)
12)

13)

14)
15)

16)

17
18)

Fujio NISHIDA, Shinobu TAKAMATSU and Yoneharu FUJITA

References

D.L. Parnas, Commun. ACM, 15, (12), 1053 .(1972).

D. TeiBchroew and E.A. Hershey, IEEE Trans. Software Eng., SE-3-1, 41 (1977).

N. Wirth, Commun. ACM, 14, @), 221 (1971). U

C.L. Chang and R.C. Lee, “Symbolic Logic and Mechanical Theorem Proving”’, Academic Press
(1973).

T. Pietrzykowski, J. Ass. Comput. Mach., 20, (2), 333 (1973).

J.L. Darlington, “Automatic Synthesis of SNOBOL Programs,” in Computer Oriented Learning
Process, J.C. Simon Ed. Nordhoff-Leyden, pp. 443—-453 (1976).

D.R. Barstow, “Knowledge-Based Program Construction”, North Holland, (1979).

H. Partsch and R, Steinbruggen, Computing Surveys, 18§, (3), 199 (1983).

J.M. Neighbors, IEEE Trans, Software Eng., SE-10, (5), 564 (1984).

E. Horowitz and J.B. Munson, IEEE Trans. Software Eng., SE-10, (5), 477 (1984).

Y. Matsumoto, IEEE Trans, Software Eng,, SE-10, (5), 502 (1984). .

Z. Manna and R. Waldinger, “Studies in Automatic Programming Logic”, North-Holland, New
York (1977).

P.R. Cohen and E.A. Feigenbaum ed. “The handbook of artificial intelligence”, vol. 3, W.
Kaufmann (1982).

F. Nishida and Y. Fujita, Trans. of Inf. Proc. Soc. Japan, 25, (5), 785 (1984).

F. Nishida, Y. Fujita and S. Takamatsu, Simposium on Prototyping and Requirements Specifi-
cation, Inf, Proc. Soc. Japan, 111 (1986).

F. Nishida, Y. Fujita and S. Takamatsu, Proc. of 11th Inter. Conf. Comput. Linguist., 649
(1986).

F. Nishida, Y. Fujita and S. Takamatsu, Trans. of Inf. Proc. Soc. Japan, 28, (5), 489 (1987).

F. Nishida, S. Takamatsu and T. Tani, Trans. of Inf. Proc. Soc. Japan, 29, (4), 368 (1988).

