
Semi-Automatic Program Generation with the aids
of Reusable Modules

言語: English

出版者:

公開日: 2010-04-06

キーワード (Ja):

キーワード (En):

作成者: Nishida, Fujio, Takamatsu, Shinobu, Fujita,

Yoneharu

メールアドレス:

所属:

メタデータ

https://doi.org/10.24729/00008492URL

15

Semi-Automatic Pregram Generation with the aids of Reusable Modules

Fujio NtsHIDA*, Shinobu TAKAMATSU* and Yoneharu FUJrrA*"

(Received June 16, 1988)

 This paper describes a inethod of semieutomatic specification refinement and
program construction usipg library modules. Users write their specifications, modifies

and rearranges them so that the specifications can be refined with the aids of the

library modules. Given specifications, a refinement system called MAPS searches for

library modules applicable to the given specifications, refines them by linking several

moduies or by replacing them by a more detailed description in the operation part of

the module and expands the refined specifications into a programming language

designated in the user's option.

 1. Introduction

 in recent years high productivity and flexibility of computerization have been re-

cognized in every field and the need of program generation has been rapidly increasing.

 CoTrespondingly, various production methods of software have been p'roposed by

many researchersi-i2). The research of the requirement teclmiquesi-3) proposed a

powerfu1 means of costructing a big system by division and abstraction of the system as

well as the various specification languages. The study. of reusability of program

modules9-ii) suggests not only an efficient method of reliable system development but ,

also feasibility of automation in software engineering. The reuse of software com-

ponents allows the software developer to write fewer total symbols in less time with

fewer mistakes in the development of a system.

 Furtherrnore, recent development of problem solving techniques seems to drive the

study of the automatic programming into practical application6-8,i2,i 3).

 Along these trends, the authors also have been studying a semi-automatic program

construction by using library modules and established an experimental system called

the library-Module Aided Program construction System abbreviated to MAPS. Com-
pared with the associated studies7-ii), the focus of this paper is placed on 1) the intro-

duction of a powerfu1 unification technique into application of the knowledge of the

library modules and 2) refinement by linking modules with the aids of the input-output

assertion.

 The module library consists of fundamental program modules constructed hier-

archicady in somg spechic fields such as symbol manipulations and language processing

as well as in the general fields.

 ' In MAPS each user describes program specifications by referring to a heading list of

available library modules. The expressions of user's specifications are restricted to the

 *

**

Department of Elecuical Engineering, Coilege of Engineeiing

Faculty of Engineering, Oita University

i16 Fajio NISHIDA, Shinobu TAKAMATSU and Yoneharu FUJITA

same form as those of library modules. They take a limited form of a natural language

1ike Japanese or the corresponding formal expression except for aritlmietic expressions

and type expressions. The system searches fbr library modules applicable to the given

specification using the heading expressions for every block of specifications. ･

 If MAPS succeeds in search, it begins to refine the specifications. MAPS replaces the .

unifiable part of the specifications by the instantiated operation part of the module

which provides a more detailed procedur.e, or it calls the instantiated operation part as

an auxiliary program. If a specification block is described in an input-output assertion, it

1inks several library modules to meet the assertion. If MAPS fads to find out available

modules, the user provides the system with a more refined specification or constructs a

new module to meet the specification block.

 By repeating these operations, specifications can be refined to be completely re-

solved into primitive operations. Subsequentiy the refined specMcations are trans-

formed into some programming languages such as Lisp and C language according to the

user's designation.

 2. Formal Expressions of Specifications and Library Modules

 The formal expresstons are classified into three kinds of expressions, namely, pro-

cedure expressions, input-output predicate expresSions and control expressions. They

can be represented in a function form with a role indicator prefixed to each parameter

as follows :

 heudingsymbol (Ci:ti,... Ch:t.) (1)

 The heading symbol takes a structure name such as a procedure name and a predi-

cate symbol in this paper. The argument part consists ofa sequence ofseveral pairs of a

case label Clf (i --- 1, 2, ..., n) and a term ti. Some ofcase labels are shown as foilows:

 OBJECT: the object to be processed

 SOURCE: a set or a collection of data including the processed object

 ' PARTICPANT: an auxiliary or complementary object

 CONDITION: a condition of the processing

 GOAL: a memory location storing the processed results

 LocATION: a location of the object

 COMPARISON: a thng compared with the object

 KEY: a key item used for data processing

 FORMAT: a representation format of the object

 MODE: a processing modp designated by an algorithn name

 In the following, a string consisting of small letters, ･in many cases, denotes a

variable for which a constant or another variable can be substituted while a string con-

sisting of 1arge letters denotes a constant. The input or the oatput variable in specifica-

tions is processed as a constant in unilaterai unification with library modules (or substi-

tution for them) and is written in a string consisting of1arge letters.

2.1 Procedureexpressions

 The procedure expression is usefu1 for designating various macro operations and

Semivlutomatic jProg7am Generation with the Aids ofReusable MOdules 17

takes a form of Expr.(1). 'Ihe heading symbol represents a procedure name and forms

the principal part of a key available for retrieving modules in the library. It consists of a

verb word or a noun word such as `retrieve' and `sum'. In the argument, the GOAL case

denotes the location or the variable in which the result is stored. It is assumed that an

expression without the GOAL case stands for a function. or represents the result itself.

2.2 Input-outputpredicateexpressions

 . The input-output predicate expression or assertion is a kind'of problem-oriented

descriptions or requirement-deftning descriptions and usefu1 for finding an applicable

module sequence to a given specification as mentiened in section 3.2. It is also usefu1

for checking the validity of specifications by examining whether or not the input condi-

tion is satisfied at every stage. '
 An input-output assertion consists of a pair of an input predicate and an output

predicate. Both expressions consist of a corljunction of clauSes and each clause is'a dis-

junction of literals. Each literal has a form of Expr. (1) or the negation form where the

heading symbol stands fbr a predicate.

 het us consider the following input-output expression:

 llV: GLrViEiAl' (OIYECT: x, LOen TIOIV: loc), P (OIUEcr: x),

 OUT:aze(OaJEcr: z, RAR71CIPANT: x) (2)
 '
 The above expression means that when any inputx is GIVEN at a location loc and

has a property P, there exists an output z which satisfies a relation efa, x) to the input

x.

 The output part can be also writteni a form

GIVE7V (onJllCT: q (>c)) (2a)

using the Skohlem function fbrV x a z ek, x). The input-output expressions.(2) and

(2a) are usefu1 for finding a sequence of modules which satisfies a given specification.

2.3. Controlexpressions

 [[he control expressions are classified into thosie of branching and iteration. 'Ihey

have a procedure expression and an input-output expression as described in the

following,

(1) Conditionalbranclmg

 The fundamental branch type is the IF-THEN type. [he proceduTe expression and

the input-output expression are described respectively as follows:

,RROC: IF:-7:EIEiV (caNDI rlON: tix), OMLEZ]T: q tr), GonL : z) (3)

LIV: GIV]EN (x)

OUT: 7 t(x)V(llV]EN (osJEcr: q (x), LOon 7:rON: z) (3a)

Similarly, the binary branch expressions are given as fonows:

18 Fujio NISHIDA, Shinobu TAKAMATSU and Yoneharu FUJITA

RROC: llL7HevELsa (CaNM770M : tl pt), OIYZiC711 : ql tr),

 caIVDI7:IOIV2 : 2 <)c), OlmaC7 2 : q2 tr)s GonL : z)

 (4)
IZIV: GIVEIiV ix)

OUT: 7 tl (x)VGIVE?V (QIYECT: ql <>c), LOen 7:r(]N: z),

7 t2 (x)V GIVew (OIVEcr: q2(x), LOCA 7:ION: z)

where tl Cx) and 2(be) are cQmplementary to each other.

(4a)

if the procedure qlCx) has no effect on t2Crc), it can be shown that the procedure

of IF-THEN-ELSE is equivalent to the following procedures:

 LFL71HEAr (ConDImoN: tl ix), onJllCT: ql tr), GonL : z);

 IFL7:E{E?V (caIVDI71I6VV: t2 pt), onLnEcr: q2ix), G(]t4L : z);

(2) Iteration

 Iteration is classified into the parallel type and the serial type.

(2.1) Parallel type

 Parallel type iteration repeatedly applies the same operation to each element of an

object as seen in retrieving of elements with a specified attribute value. In this type, the

result of processing in the i-th stage,of iteration d6es not affect that in the i(A6D-th one.

'Ihe procedure expression and the input-output expression are given respectively as

follows :

PROC: jFOR Q:IV/DEX: i, ERevlf: m, 7D: n,

 OBLEICT: proc (OBZECT: xl e,

 R4R 7:ICILbPLt41VT: x2 (D, G(]t4L : z (D)) (5)

l7V: GIVZrAr (Omacr: xl (m..n), x2 (m..n))

OUT: roRALL i (7m SiSn

 V(rrvaN (OIV:Ecr: proc (OIMEcr: xl (D, PAR 7:rCZIi?Lt4NT: x2 (D, ,

 GonL:z(D))), (5a)

where the output expression means that the relation in the OBJECT case holds for ad

the INDEX value i ･of m $ i Sl n.

(2.2) Serial type
 The seriai tyPe iteration processes data for every stage of iteration based on th6

Tesults of data processing in the preceding stage.

 The procedure expression and the input-output expression are given as foilows:

RROC: roR evDlilX: i, ERon: m, ro: n,

 OIViEcr: proc (OlmeCT: x (D,

Semi:ttlutomatic]P?(rgtam Generatio'n wtth theAlds ofReusable Modutes 19

 enRncrPANT:y,

 GonL: y), GonL: z)

llV: (llV;EN (OIYEcr: x pt.n), y)

OUT: GIVIEN (OBJ)Ecr: roR (IZVI)EX: i, EROM: m, ro: n,

 OIYECT:proc(OBJECT:x(D,

 RAR7:rCZPAIVT:7, ,

 GonL:y), GonL:z))

(6)

(62)

 where the initial value ofy requested in the input expression depends on the property

 of the repeated procedure.

 2.4. Library modules

 Each module has a heading consisting of both the PROCedure and the INput-

 OUTput expressions foilowed by data TYPE part of entities and an OPeration part.

 The operation part describes the details of a procedure by using the headings of hier-

 archically lower library modules. Table 1 shows an example oflibrary modules.

 Table 1 An example of "SORT" module

' PROC:SORT(OBJECT:array(ra1 .. nl,rn2 .. n2)t

 KEY-COLUMN:)' ,MODE:DESCENDING-ORDER),

 rN:GXVEN(OBJECT:array,j)t

 OUT:GIVEN(OBJECT:SORT(OBJECT:array(ml .. nltrn2 .. n2)t
 ' ' ' KEY COLUMN:j,MODE:DESCENDING ORDER),
 - -- ' ' TYPE:

 array(REGION:REAL,STRUCTURE:ARRAY(ml .. nl,m2 .. n2),

 VARIABLEROLE:INOUT),

 OP:FOR{INDEX:itFROM: ml,TO:nlt

 OBJECT:FOR(rNDEX:k,FROM:+";1),TO:n1,

 OBJECT:IF-THEN(

 CONDITION:GREATER THAN(

 OBJECT:array(ktj),

 COMPARISON:array"tj)),

 OBJECT:EXCHANGE VECTOR{

 OBJECT:array"tm2 .. n2),

 PARTICIPANT:array(k,m2 .. n2}

)))}

2o Fiijio NISHIDA, Shinobu TAKAMATSU and Yoneharu FUJITA

 2.5. SpecMcations

 Users of the system MAPS describe specifications in a formal expression mentioned

 above or in a natural language-like expressions by referring to program modulgs con-

 tained in the library. The specifications can be written using a mixed form ofprocedure

 expressions inputeutput expressions and programming language-1ike expressions in a

 similar way to descriptions in an operation part of a library module.

 ' ' ' ' ' Example 1

 Let us consider a sorting program for a table of examinees' grades. [he specifica-

 tions written in a certain kind oflimited English are given as follows:

.

TYPE: MARK-TABLE: ARRAY [1..1000, O..6]

(1) FORIFROM 1 TO 1000
 READ MARK-FILE IN ARRAY FORM AND
 STORE TTHE RESULT IN MARK-TABLE [I, 1 .. 51

(2) FORIFROM 1 TO 1ooO
 FIND THE SUM OF MARK-TABLE [I, 1 .. 5] AND
 STORE THE RESULT IN MARK-TABLE [I, 6]
(3) SORT MARK-TABLE [1 .. 1000,O .. 6] IN DESCENDING ORDER BY TAKING

 THE 6-TH COLUMN AS THE KEY
(4) FORIFROM1TO 1ooO
 STORE I IN MARK-TABLE [I,Ol
(5) WRITE MARK-TABLE [1 .. 10oo,O ..6] ON MARK-FILE IN ARRAY FORM

The corresponding formal specifications are given as follows:

,(1) FOR aNDEX: I, FROM: 1, TO: 1000,

 OBJECT: READ-IN-ARR.AY (OBJECT: MARK-FILE,
 GOAL: MARK-TABLE a,1 .. 5)))
 (2) FOR aNDEX: I, FROM: 1, TO: 1OOO,

 OBJECT: SUM (OBJECT: MARK-TABLE a, 1 .. 5),

 GOAL: MARK-TABLE a, 6)))
 (3) SORfT (OBJECT: MARK-TABLE (1 .. 1000, O .. 6),

 KEY-COLUMN: 6, MODE: DESCENDING-ORDER)
 (4) FOR (INDEX: I, FROM: 1, TO: 1000, OBJECT: := (MARK-TABLE a, O), I))

 (5) WRITE-IN-ARRAY (OBJECT: MARK-TABLE (1 .. 1000, O .. 6),

 GOAL: MARK-FILE)

 3. RefinementofSpecficationsandConversiontoPrograms

 The given specifications are refined for every block by MAPS using applicable pro-

gram modules. If they are given by informal expressions like limited natural language

expressions, MAPS first transforms them to the formal expressionsi8).

 The formal speeification contains various heading expressions oflibrary modules. If

the heading expression is a procedure expression, MAPS searches for a library module

which has a unifiable procedure name with that of the specification block and checks

whether or not the argument part is also unifiable. Subsequently, ifunifiable, it refines

Semiit4utomatic P)rogram Genenxtioh wtrh the A-ids ofReusabte MOdules 21

the heading expression by using the instantiated operation paft of the unified modnle. If

the heading expression is an input-output･ expression,･MAPS searches for a link of

several library modules which satifies the input-output assertion as a whole and then

refines the procedures of the link. At each refinement, if an operation part has several

selections, MAPS asks useT's selection and makes refinement according to user's option.

When non'primitive expressions such as heading expressions of the modules can not be

found any more after refinement, MAPS converts the refined specification to a program

written in a programming language designated by the user.

3.1. Refinementofprocedureekpressions

 When MAPS finds a unifiable procedure expression of a library module for a given

procedure block contained in a specification, it refines the procedure expression, by

using the instantiated operation part of the unifiable procedure expression.

 There are two methods ofrealizing the refined expression. One of them is the direct

replacement of the original specification by the instantiated operation part. The other is

moduiarization of the refined expression and call of the modularized expression as a

subroutine from the block of the specification. MAPS asks the user the selection of the

two methods or semi-automaticdly selects one of them according to the set conditions

of switches at the beginning of refinement.

(1) Directreplacementmethod
 Though the method is liable to generate a-larger and complicated program, the

generated program has high running speed. In many case's, the body part in a repetition

can be' refined by direct replacement by the operation part of the unifiable procedure of

a module.

(2) Procedure call method

 This method has the advantage ofbringing compactness and readability of the con-

structed procedure. If the procedure has not been registered yet as a program module in

a module table, MAPS constTucts the prQcedure module as follows:

(1) MAPS constructs the heading of the program module and the declaration of vari-

ables by referring to both the procedure expression of the heading part and the type

part of the library module. They are generated in a programming language designated by

the user's option. Then MAPS constructs the body part by putting the instantiated

operation part of the module and then records the procedure name in a program module

(2) If MAPS finds sorne non-primitive procedure expressions in the body part of the

program module, it refines them by applying the above mentioned refining method

respectively.

Example 2
 [Ihe formal specification given in Example 1 can be first refined by using library

mQdules 1ike a vector-sort module shown in Table 1 as follows:

FOR (INDEX: I, FROM: 1, TO: 1OOO,

 OBJECT: FOR (INDEX: Il,FROM: 1, TO: 5,

 OBJECT: READ (OBJECT: MARK-FILE,
 GOAL: MARK-TABLE (I, Il))));

22 Fujio NISHIDA, Shinobu TAKAMATSU and Yoneharu FUJITA

FOR aNDEX: I, FROM: 1, TO: 1000,

 OBJECT: : = (MARK-TABLE a, 6), O);

 FOR(INDEX:I4,FROM:1,TO:5,
 OBJECT: : = (MARK-TABLE a, 6),
 + (MARK-TABLE a, 6), MARK-TABLE (I, I4)))));
FOR aNDEX: I5, FROM: 1, TO: 10oo,

 OBJECT: FOR (INDEX: K5, FROM: + (I5, 1), TO: 1000,

 OBJECT: IF-THEN (
 CONDITION: GREATER-THAN (
 OBJECT: moRK-TABLE (K5, 6),
 COMPARISON: MARK-TABLE (I5, 6)),
 OBJECT: EXCHANGE.VECTOR (
 OBJECT: MARK-TABLE (K5, O .. 6),
 PARTICPANT:
 MARK;TABLE a5,O .. 6)))));
FOR (INDEX: I, FROM: 1, TO: 1000, OBJECT: := (MARK-TABLE a, O), I));

FOR (INDEX: I18, FROM: 1, TO: 1OOO,

 OBJECTt: FOR aNDEX: I28, FROM: O, TO: 6,

 OBJECT: WRrrE (OBJECT: MARK-TABLE al8, I28),

 GOAL: MARK-FILE)))

 'IEhe above expressions are further refined and finally transformed into a prograrn

written in C 1anguage as shown in appendix 1 by using transformation to programming
languages mentioned in sectiori 3 .4.

3.2. Refinementofinput-outputexpressions

 Linking of modules is performed based on elause forms of the input-output pre-

dicate expressions. The two expressions in Expr. (2) are put together to form a clause

form as follows:

GIVEIV (q ix)) V 7(llVE7V ix) V 77 Pju) (7)

where q(x) is a Skohlem function forz defined by Vx gze Cx, z). :･
 The operation which leads to the above input-output relation is written as fbilows:

on: z.q: = qo pt) (8)

where qo (x) stands for a concrete operation part corTesponding to the Skohlem func-

tion qCx)･

 Tlie refinement of specifications by linking modules is based on the following

principle. Let us assume that the given specification has the foilowing input-output

felation in a clause form:

GIVEN (e (A))V 7 (IIPTIV (ei (A))v....V7GIVEAr (e. (A)) (9)

Semi:,4utomatic 1'togvam Generation with the A ids ofReuszrble Mbduies 23

The expansion result ln C:

maSn<)
 "nt 1121; int 1111;' int k51;
 int i41; Snt 1; int'i51; int
 ----------t-----i-･----t----
 int mark-table[1001) C7);
 int wk51 C2) C7)
 t--t---------i----t--t---t-
 fer(i = 1; S <= 1000; ++ D
 {
 mark"table(i) C6) = O;
 tor(141 = 1; .i41 <= 5; ++ i4D
 {
 matk-tabie ") C6) =
 mark-table ") (6) +
 };
 };
 for(i51 x 1; i5i <= 1000: ++
 (
 tor(k51 = "51 + 1); k51
 {
 it(matk-table Ck5i) (6) >
 {
 for(1101 = O; liOi <=
 {
 wk5iCl) CllOi) = mark-tabie
 };

 forCllll = O; illl <= 6;
 {
 mark`btable "51) ClllD
 };
 tor(1121 = O; i121 <= 6;
 {
 mark'table Ck5i) Ci121)
);
 };
 };
 - t t -,- - - - - - t - - - t - - - - - - - t t - t - - - - - - -
}

 1111;
- - - - -

mark'table ") Ci41));

 .
 i51)

<= 1000; ++ k5i)

 mark-tab1eU5i) C6))

 6; ++ 1101)

 "51) CllOl) ;

 ++ 1111)

= mark-table Ck51) ClllD ;

 ++ 1121)

= wk51Cl) Cl121);

Appendix 1

 Assumption that the above specification is not

negationofthe above,

feasible or cannot hold leads to the

 7G7vaIV (e(A)), (llPaEN (e, pt)), ". GIueAr (e. (A)) (10)
 '

 t. If there is a refutation from Expr. (10) and a clause set of library modules that

support Expr;(9), refinement of the specification can be constructed by calling pro-

cedures that are made of the instantiated procedure expressi6ns of the 1ibrary modules

that contribute to the refutation or by direct replacement by the instantiated operation

parts of the 1ibrary modules.

(1) Cascade connection

 Cascade connection of library modules is a fundamental rrlethod of specification

 'trefinement obtained by linking several library modules. The refined specification .is'

constructed by serial or parallel linking of the instantiated operation parts of the

modules that contribute to the refutation.

24 Fiijio NISHIDA, Shinobu TAKAMATSU and Yoneharu FUJ!TA

 Qo{A}

 /X
QI(A} Q3(A)

Q2(A) Q4(A)
 x/
 Qs(A)

 x
Q6(A)

Q7(A}

Fig. 1 A data-flow of a sequentia1 link

 In Fig. 1, suppose that a specification requires an output data Q7(A) for a given

input data (Qo(A)=)A, where Qi (i = O, 1, 2, ...) denotes a function symbol. For the

specification, the input refutation can be obtained in the choice of the negation of.

GIVEN (Q7(A)) as the top clause by using Prolog. From the refutation a refined specifi-

cation can be constructed by the aids of library modules used in the refutation.

 When a datum A is needed to evaluate a datum B, the ordered pair ofA and B is

caled a parent-child order. By using this definition, the procedure of the cascade con-

neCtion is described as follows:

(1) Transform into clause forms the input-output expressions ofboth the specification

and library modules associated with the refutation.

(2) Carry out the input refutation. Choose as the top clause ofrefutation the negation

of the output predicate of the specification.

(3) Instantiate the procedure expression or the operation part of the module used for

refutation by the unification substitution corresponding to the procedure call or the

direct replacement by the instantiated operation part.

(4) Arrange the instantiated operation parts of the modules that contribute to refuta-

tion so that the corresponding unified input and output data satisfy a parent-child

order.

(5) If some functions are involved in the argument part ofa function, replace them by

intermediate variables to improve efficiency. Be careful no collision of variable names

ocburs in the program block by the aids of the list of variables. '

Example 3

 Suppose that there are two modules both of which have the clause forms of the

input-output expressions and the operation parts as fonows:

 GIVEN (OBJECT: F(x), roCATION: y)V7GIVEN (OBJECT: x)
 OP: y: = F, (x) -･･-･---･--･----･---･･---･--･--･･---･･-----･･-･-----･･ (l) '

 ' ' GIVEN (OBJECT: H(x, y2), LOCATION: yl)

 V7GIVEN (OBJECT: FQc), LOCATION: y2)

 OP:yl:=Ho(x,y2) '""m'"'"'"'"""""'"""""'"'""'""'""'""""'"'"'"M-'@

The specification is given in English as foilows:

`GIVEN U, H(U, F(U)) rs OBTAINED AT Z',

Semi.4utomatic Ptogram Generation with theAids ofReushble Mbdules 25

or in a clause form as follows:

 GIVEN (OBJECT: H(U, F(U)), LOCATION: Z)V -7 GIVEN (QBJECT: U)

The negation of the above is

. 7GIVEN (OBJECT: H(U,F(U)), LocATION: Z)@

 and GIVEN (OBJECT: U) -･･･-------･--･･---･-･-･･--･･--･･･--･-･･-･･･-･--･@

o
e

o

@

 Fig. 2 shows a refutation by Prolog in which clause

By rearranging the operation parts of the modules in the parent-child order of data, the

refined specification is obtained as fbllows:

 y2: = F(U);Z: = H(U, y2);

(2) linking modules which include control ekpressions

 It is not so difficult to link some modules,by the above mentiQned gaseade connec-

tion so that the given specification of the input-output expression is satisfied. Each
module in the cascade connection can be dealt with as a procedure from a global point

of view. and it does not matter whether some of the modules contain control expres-

sions or not. For example, the maximum finding function can be dealt with a procedure

and can be easily linked to another modules by a cascade connection. On the other

hand, it is difficult to refine a given specification or to construct a program at a con-

stituent level of cpntrol statements flexibly.

 This section describes a method of reducing a refining problem of a control specifi-

cation mentioned in chapter 2 to that in the OBJECT case in the control expression.

(2.1) Linking in a conditional branchng

 If a conditional branch is specified by a fbrm

-1GrVEN(OBJECT:H(U,E(U}},LOCATION:Z)
 ptg!.`sg"fg:cs,klsf.iysl,Ls,-ccftiii¥i'ysi

-?GrVEN(OBJECT:F(U),LOCATION:F{U))
 L&iilgN/Y:gJfgs:tig.(sxocAT!oN,,,

-GIVEN{OBJECT:U)
 L/.GIvEN(oBJEcT:u)

 []

 Ftg.,2 Arefutationprocess

 @ is taken as the top clause.

 pt THEN (COIVDI7:rOAr: t(x), QBlliCT: q(x), GOAL: z) (3)

or by the input-output predicate form, the refinement problem of the above can be re-

26 ' Fujio NISHIDA, Shinobu TAKAMATSU and Yoneharu FUJITA

 duced to a link problem of the input-output expression within the OBJECT case as

 follows:

 ptME:Air (CQNblZ(]iV: ttr),

 OIVIECT: (l7V: (llvaLiV Cx), tCx),

 OUT': (llMEiLIV (tz (]x))), GQ,4L:z) (11)

 Expr. (4) can be also reduced to the same type problem as the above by replacing

 OBJECTi case (i = 1, 2) by

 (IZV: GIP]EN (x), ti (t),OUT: GIViEIN@(x))) (11a)

 in other words, the refinement of a specification of a conditional branchng 1ike

 Expr. (4) can be replaced by refining the OBJECT case of each branch through an input-

 output expression 1ike Expr. (1 la) reconstructed from the specification.

 (2.2) Linking in an iteration frame

 In a similar manner to the conditiona1 branching, refinement of iterative spe-

 cMcations can be reduced to a link problem within the OBJECT case of an iterative

 procedure.

 The operation part in a parallel iteration module of heading Expr. (5) is given as

 follows:

 (]P: ,FOR evDEX: i, ERcM: m, To: n,

 OjRJEcr: (llV: 67'VEiV (xl (i), x2 (i)),

 OUT: GIVEIV iproc (OIYEcr: xl (i),

 RAR7:ravA.NT: x2a), GonL : z (i))))) (1 2)

 Similarly, the operation part in a serial iteration module of Expr. (6) is given as

 follows :

 ew: roR (]ZVDEX: i, jF:RCmu: m, ro: n,

 OIV/Ecr: ev: GIvaIV (x(i),y),

 ourz': (]vrvE:lv iproc (olyEcr: x (i),

 RAR 71rC[PLAIVT: y, GCtaL : y))), GonL : z), ,(1 2a)

 t)
 'lhe operation part of a WHILE type module is the same as that of the above serial

 FOR type except for the conditional case of tCx(i),y).

 3.3. Fusion of iterative loops

 Fundamental library modules are generally constructed so as to have a single out-

 put. Accordingly, specification refinement performed by these library modules often

 brings a concatenation of several loops which have the same iteTation number as each

 other. Hence it is desired to improve the efficiency of the generated program by fusing

Semiutlutomatic h(rgram Generation wi,th theAlds ofReustxble Modules 27

these loops gldbally.

 . Let us suppose that two FOR-type iterative expressions.are generated after specifi-

cation refinement by using library modules as fo11ows:

 Zl : = ZIO;

 FOR (INDEX: I, FROM: M, TO: N,

 OBJECT: Zl:= Ql (Xl a), Zl));

 Z2: rc Z20;

 FOR aNDEX: J, FROM: M, TO: N,

 OBJECT: Z2:= Q2 (X2(J), Z2));

 in the above, each index variable of the iterative expression has the same range of

repetition as the other and each iteration does not require the output of the other. The

former can be checked by a unification technique and.the latter can be examined

through the input-output expressions corresponding to the respective procedure

 .expresslons.

 Under these conditions, the above two iterations are put together to form a single

iterative expression as follows:

Zl: --- ZIO; Z2: = Z20;

FOR (INDEX: I, FROM : M, ,TO: N,

 OBJECT: (Zl: --- Ql (Xl a), Zl);

 Z2: = Q2 (X2 a), Z2)));

 Thereby the running time and the memory for the program'module can be reduced.

 Similarly several WHILEtype iterative expressions can be fused to a single WHILE-

type expression if they have the same test conditions of iteration and do not require the

output of each other as the input data. -

3.4. Transformationtoprogramminglanguages

 When non-primitive expressions cannot be found any more after refinement, MAPS

･transforms the refined specification into a programming language like C or LISP chosen

in the user's option. The chosen programming language, however, must satisfy various

conditions in order to realize the given refined specfications. For example, it needs to

be able to process the data of some types given in a specification. After confirming the

fu1rument of these conditions by the aids of a knowledge base of programming 1an-

guages or a user's suggestions, MAPS transforms the type part into declaration state-

ments of the chosen language. For example, MAPS transforms the record-type data

processing specifications into a LISP program by using an associative list and an as-

sociative function according to the user's option. '
 MAPS also transforms the formal control expressions into a control statement of a

programming language by using a table such as Table 2 which has a structure similar to

that of a library module.

28 Fojio NISHIDA, Shinobu TAKAMATSU and Yoneharu FUJITA

PROC:FOR(INDEX:i,FROM:rn,TO:n,OBJECT:s},

TYPE:'i,m,n'(REGION:INTEGER-,VARIABLEROLE:INPUT),

OP:(LrSP {SETQ i m}

 (LOOP {) s

 {SETQ i {ADDI i))

 (COND ((GREATERP i n)

 (EXIT-LOOP)))))

 (C FOR(i=rn;i<=n;++i){s})

 ----------------- --------e---e

 ----------------et------e-----
 Table 2 The content ofthe "FOR" module

 4. TheExperimentaISystem

 An experimental system MAPS written in LISP has been constructed on the TSS of

our university computer center (ACOS 850) and on a workstation (CPU MC68000,

clock 10 MHz. memory 3.5 MB).

 Fig. 3 shows an overview of the total system ofMAPS. Ifspechications are written

in a limited natural language 1ike Japanese, MAPS transforms them to the formal specifi-

cation. Then MAPS scans the formal specfications and notifies the users of various

errors and defaults or specification blocks which cannot be unifiable to any heading of

library module' by referring to library modules. The user corrects the errors, comple-

ments the defaults by giving some newly built modules or giving some detads to the ,

specification block and inputs the validated specfications. If the specifications involve

an inputoutput expression, MAPS tries to meet the specification block by linking some

library'modules. Then MAPS refines every block of the specifications by using operation

Formal
Spec.

Informal
Spec.

Error
Check

Transf.

fl

The informal to
transforrnation

 formal
system

s

n'
 Are
IO expr.s
ontained7

Mnkage E{:

l
L.

 7- lt
tl

'- -' -h.-- - ->Comrnents
Refinement

1
･

NN
Ns

 Nss
 y .:Pibrary modules
 ･J'!
 /.'t ,/Prolog
.'.7il'/[11--..The forrnal to

 -r- . , z" transformation l. 1.' t ."v
r

informal
 system

.-.--L------7Comments
Expanslon

 Programs

 Ftg.3 Anoverviewofthetota1sYstem

Semi:t4utomatic nogram Generation with the Aids ofReusabte MOdules 29

 parts of the unifiable modules, tries simple optimization such as fusion, and outputs a

 natural language like expressions corresponding to the refined specifications by the

 user's option. After refinement, MAPS transforms the specifications to a programming

 language expressions designated by the user.

 Some experiments of refinement and transfbrmation have been carried out. The

 average transformation time between Japanese-1ike expressions and the formal ones is

 about O.2 sec. per word on ACOS 850. The linking and refinement of a specification

 block requires about O.6 sec. on the average.

 As for refining specdications in a somewhat specific field, a ma'chine translation

 system written in C and LISP was reconstructed on a library module basis by MAPSi6).

 The library modules were made by referring to the original machine translation system

 written in LISP. At present, a new MAPS itself also is under reconstruction by referr-

 ing to original one.

 Example 4 shows some simple experimental resultsi5). The specification can be

 given in a certain kind 6f limited Japanese or Ehglish. It is transformed into a formal

 specification and refined. Then the 1imited Japanese or the limited English sentences

 corresponding to the refined spechication are generated as a more readable expression

. for every refinement.

Example 4

 A user gives a program specification of graph representation for a given mathe-

 matical function F(×). MAPS translates a Japanese input-output specification into a

 fbrmal expression, constructs a refined specification by linking the operation parts of

 seveTal instantiated modules by the aids of Prolog in order to obtain the maximum value

 ofF(x) 'as follows:

 The English specification:

 IN: X(O .. 20) IS GIVEN

 OUT: PRINT OF THE GRAPH OF ORDEREDmuSET (F (X(O)) .. F(X(20)))

 FOR X(O .. 20) IN THE GRAPH RANGE X.RANGE (100, 400),

 Y-RANGE (1OO, 400) IN THE FORMAT OF STRIPE IS OBTAINED

The formal specification:

 IN: GIVEN (OBJECT: X(O .. 20));

 OUT: GIVEN (OBJECT:

 PRINTGRAPH (OBJECT: ORDERED-SET (F(X(O)) ..

 , F(X(20))),
 ･ PARTICIPANT: X(O .. 20),
 FORMAT: STRIPE,

 GRAPH-RANGE: XveRANGE (100, 400);

 Y-RtMNIGE (1OO, 400)))

The refinement by linking of modules :

 COMPUTE-FUNCTION (OBJECT: ORDER[ED-SET (F(X(O)) .. F(X(20))),

3e Fajio NISHIDA, Shnobu TAKAMATSU and Yoneharu FUJITA

 GOAL: Y(O .. 20));

MAIX (OBJECT: Y(O .. 20), GOAL: MAXY);

MIN (OBJECT: Y(O .. 20), GOAL: MINY);

:= (MAXX, X(20));

:= (MINX, X(O));

PRINTGRAPH (OBJECT; ORDERED-SET (F(X(O)) .. F(X(20))),

 PARTICIPANTL X(O .. 20), FORMAT: STRIPE,

 GRAPHntRANGE: X-RANGE (1OO, 400);

 Y-RANGE (1OO, 400)) (13)

The formal expression Expr.(13) is further refined by replacing non-primitive ex-

pressions by the instantiated operation parts of their unifiable modules as follows:

 FOR (INDEX: il,FROM:O, TO: 20,

 OBJECT: : = (Y(il), F(X(il))));

 := (MAXY, Y (O)); -- - -- ---- - -...t
 FOR (INDEX: i2, FROM: +, (O, 1), TOir20,

 OBJECT: IF-THEN (CONDITION: GREATER-THAN (OBJECT: Y(i2),

 COMPARISON : MAXY),
 OBJECT: :- (Mew. . ,¥(i2))));
 := (MINY, Y(o));

 FOR (INDEX: i3, FROM:+ (O, 1), TO: 20,

 OBJECT: IF-THEN (CONDITION: LESS-THAN (OBJECT: Y(i3),

 COMPARISON : MINY),
 OBJECT::= (MINY, Y(i3))));
 := (MAXX, X(20));

 := (MINX, X(O));

 DRAW-XY:AXIS (FORMAT: STRIPE,

 VALUEmRANGE: X-RANGE (MINX, MAXX);

 Y-RANGE (MINY, MAXY),
 GRAPH-RANGE: X-RANGE (1OO, 400);

 Y-RANGE (1 oo, 400));
 FOR (INDEX: i6, FROM: O, TO: 20,

 OBJECT: PRINTGRAPHPT (OBJECT: Y(i6); X(i6),

 FORMAT: STRIPE,

 VALUE-RANGE: X-RANGE (MINX, MAXX);

 Y-RANGE (MINY, MAXY),
 GRAPH-RANGE: X-RANGE (1oo, 400);

 Semitlutomatic ?tognxm Geneizition wtth theAids ofRettseble MbduleS 31

 Y.RANGE (1 OO, 400))),

 ' '
 , The'expansion resutts in Lisp are shown in appenaix 2. These programs works

together with the function F(x) which is added to these programs as a function

subroutine.

 The program in Lisp:

 (array x t･ 21)
 (array y t 21) '
 (detun printgraph (x)
･ (prog (maxy miny maxx minx i41 illl i201)
 (setq 111 O)
 (ioop r,il

 (store (y ill) (t (x ili))) ' (setq ill (addl ill))
 (cond ((greaterp ill 20) (exit-loop))))
 (setq rnaxy (y O))
 (setq i41 (plus O .1))
 (loop nil
 (cond ((greaterp (y i41) maxy) (setq maxy (y i41))))
 (setq i4i (addl S41))
 (cond (,(greaterp i41 20) (exit-leo'p))))
 <setq miny (y O))
 (setq ilil (plus O 1))
 (loop nSl
 (cond ((lessp (y il!1) miny) (setq miny (y Slli))))
 .･.(setq illi (addl illl))
 (cond ((greaterp illl 20) (exit-loop))))
 (setq maxx (x 20))
 (setq minx (x O))
 (draw-xy.-axis 'stripe minx maxx miny maxy 100 400 100 400)
 (setq i201 O)
 (loop nil
 (printgraphpt (y i20i) (x i201) 'stripe
 ' minx maxx miny maxy lO0 400 100 400)
 (setq i201 (addl i201)) .
 (cond ((greaterp S201 20) (exit-loop))))))

 (detun prSntgraphpt (yl xl format x-min x-max y-min y-max)
 (prog (xy-posl x..posl y.posl xy..pes2 x.pes2 y-pos2)

 (setq xy-posl
 (tind-xy-gpoSitSon yl xl format
 -- x-mun x.max y-.mln y..max
 . gx-min gx..max gy-min gy-max))

 -------"---ttt---tet---t--------------t------
 -------tt--t---------tt----rtt----------i----

 Appendix 2

 5. Conclusion

 'Ihe research has been done fbr several years. FoT practical use there remains several

 p;oblems to be refined. One of them is to develop library modples which are more

･ flexible more modifiable and more applicable to various specific fields. The other is to

 extend applicable natural-language like expressions and to introduce various mnemonic

 expressions similar to the conventional notations. However, it is expected that the

 method of refining specifications by using abstract program modules wil1 bring ftuitfu1

 results to various software development.. ,

32 Fejio NISHIDA, Shinobu TAKAMATSU and Yoneharu FUJITA

 References '
 1) D.L. Parnas, Commun. ACM, 15, (12), 1053･(1972).

 2) D. TeiBchroew and E.A. Hershey, IEEE [frans. Software Eng., SE-3-1, 41 (1977).

 3) N. Wirth, Cornmun. ACM, 14, (4), 221 (1971). , ,
 4) C.L. Chang and R.C. Lee, "Symbolic Logic and Mechanical Theorem ltoving", Acadernic Press

 (1973).
 5) T. fietrzykowski, J. Ass. Comput. Mach., 20, (2),333 (1973). ･
 6) J.L. Darlington, "Automatic Synthesis ofSNOBOL Programs," in ComPuter Oriented Learning

 lkocess, J.C. Simon Ed. NordhoffLLeyden, pp. 443-453 (1976).

 7) D.R. Barstow, "Knowledge-Based Program Construction", North Holland, (1979).

 8) H. Partsch and R. Steinbruggen, Cornputing Surveys, 15, (3), 199 (1983).

 9) J.M. Neighbors, IEEE Trans. Software Eng., SE-10, (5), 564 (1984).

10) E. Horowitz and J.B. Munson, IEEE ltans. Software Eng., SE-10, (5),477 (1984).

11) Y. Matsumoto, IEEE Tbeans, Software Eng,, SE-10, (5), 502 (1984). .
12) Z. Manna and R. Waldinger, "Studies in Automatic Programming Logic", North-Holland, New

 York (1977).
13) P.R, Cohen and E.A. Feigenbaum ed. "The handbook of artbicia1 inteligence", voL 3, W.

 Kauftnann (1982). .14) F. Nishida and Y. Fujita, Ttrans. of InL Proc. Soc. Japan, 25, (5), 785 (1984).

15) F. Nishida, Y. Fujita and S. Takamatsu, Simposium on kototyping and Requirements Specdi-
 cation, inf. Proc. Soc. Japan, 111 (1986).

16) F. Nishida, Y. Fejita and S. fakamatsu, Proc. of 11th Inter. ConL Comput. Linguist., 649

 (1986).

17) F. Nishida, Y.Fojita and, S. Takamatsu, Trans. ofInfL Proc. Soc. Japan, 28, (5),489 (1987),

18) F. Nishida, S. kkamatsu and T, fani, Trans, of lnf. Proc. Soc. Japan, 29, (4), 368 (1988).

