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  A CIass of fiecevvise-linear Basis Functions and

ptecewise-Linear Signal Decomposition and Synthesis

Kazuo NOHARA *

(Receiyed June 16, 1988)

   A set of piecewisetlinear basis functions fbr sigma1 decbmposition and synthesis is

introduced. These functicns span the space L2 [O, 1], the space of functions square

integrable on a finite interval [O, 1l. Any signa1 in L2 [O, 1l can be expanded in terms

of these functions with finite term approximations giving a piecewisediriear represen-

tation of the sigma1. The determination of the expansion coefficients is quite simple,

and no time domain multiplications or intQgrations are required. EffZeient algorithrns

for fast computation of the piecewise-linear signal decomposition and synthesis are also

presented,

                            1. Introduction

   Hecewise-1inear (abbreviated to PL) signal decompositionlsynthesis technique

pravides a usefu1 means for a wide variety of engineering applications including signal

processing, data compression, simulation, and control.

   Paul and Koch have proposedi) a set of basis functions fbr PL decomposition and

synthesls of continuous functions. The basis set is composed of a seqUence of subsets.

The kh subset contains2k-i functions. Paul's PL series should be truncated so the series

contains all the terms included in the same subset. Improper grouping causes an addi-

tional truncation error. This means that if the accuracy fbr the series truncated after the

Nth subset is not satisfactory, one must add 2N more terms to improve the accuracy.

  ' To cover this disadvantage, we introduce another class of PL basis functions derived

from Haar functions via integration and discuss some properties of the functions. Then

we discuss the PL signal decomposition/synthesis using these basis functions and

develop efficient computational algorithms.

            2. HaarFunctionsandCorrespondingPLBasisF"nctions

    Haar functions are a complete orthonormal basis ofrectangular waveform and were

propo{}ed originaby by Haar2) in 1910. The Haar functions have three possible states:

O, +A, and -A, where A is a constant which is a function of v5, and are defined for

tE [O, 1] by: .
har (O,O, D= l,

har (k} i, D=

2ik-i)2
'

.2(k-1)R
        '

.o,

O<t<1,
(2i - 2)/2k ( t ( (2i - 1)/2k,

(2i - l)/2k < t ( 2i/2k,

elsewhere,

(1)
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where k = 1, 2, ..., and i -- 1, 2, ...,2la-i. The Haar functions arelabeled by two indicesk

and i. We shall call, heTeafter, the indices k andias the group index and the subindex,

respectively, of the Haar and corresponding PL functions. The first eight of the Haar

functions are Mustrated in Fig. 1a.
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' From the Haar functions, a new class of piecewise-linear basis function set is

 derived. To keep the proposed functions distinct from Paul's PL functions, we shall

 denote the new functions by PLh (k i, t). The subscript h implies that the new functions

 are derived from Haar functions. Thus the new PLh basis functions are defined over a

 unit interval [O, 1] as:

PLh (O, O, t) = 1,

PLh (O, 1, t) = Jg har (O, O, r) dT,

PLh (k, i, t)=2(k4')/2 Jghar (k, i, T) dT,

                   ,k= 1, 2, .", i--- l, 2, ". 2k-1.

l
 
(
2
)

J

The multiplicative factor 2(k"i)n in the above equation normalizes the peak of

PLh (k) i, t) to unity. The function PLh(k, i, t) has a triangular wavefotm in the sub-

interval[(i-1)/2k-i, of2k-il,elsewhere it equals zero, while the Paul's PL functions are

composed of a train of triangular pulses. The first nine of the PLh functions are shown

in Fig. Ic.
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                         3. Completeness

   It is a direct consequence of the completeness of the Haar basis set in the space of

square integrable functions that the set of the PLh functions forms a complete basis in

the space of continuous functions. In the fbllowing, we show that these functions are

also cornplete in the space of square integrable functions as well as in the space ofcon-

tinuous ones.

   Suppose that ip(t) is a function square integrable in [O, 1] foT which

       .Il3¢(t) PLh (k) i, t) dt=O, (3)
for every PLh function. Substituting Eq.(2) into Eq.(3), we obtain

      J3¢(t) dt=O, k=i--- o,
                                                         (4)
       Jl ¢(t) [Jg har (k i, T) dT] dt=O, elsewhere.

Integrating Eq. (4) by parts and using Eq. (3), we obtain

      Je di(t) har (k, i, t) dt=O, (s)
with

      ¢(t)= Jg¢(T) dT. (6)
The function ¢(t) is continuous over [O, 1) because¢(t) EL2 [O, 1].Thenfp(t) can be

approximated arbitrarily closeiy in the sense of uniform convergence by a truncated

sum of the Haar-Fourier series HN(t) when the number of terms is large enough. Thus

we can write for an e > O, however small,

      1¢(t)-HN (t)1<e, (7)
for all tE [O, 1] . From Eqs.(5) and (7), we obtain

       l Jl} rp2(Ddt1 =1 Jg tp(t) [¢ (t) -HN (t)] dt 1(eJCi ¢(t) 1 dt･ (8)

                                                           '                                                         '
Since e can be made arbitrarily smal1, we have

       I.fl} ¢2(t) dt l=o. (g)
This leads to

because of the continuity of ¢ (t). Thus we arrive at
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      ¢ (D =¢' (t) = O, a.e.

TEhis proves that the PLh functions form a

square integrable over the unit interval [O, 1].

                      (11)

complete basis for the space of functions

             4. PLh-SeriesSignalDecompositionandSynthesis

   Any function square integrable on aunit interval [O, 1] can be expanded into an

infinite series in terms of the PLh functions :

      f(t)=(bo+CbiPLh(O,1,t)+,E, ,;, CldPLh(h i, t), (12)

in which the expansion coefficients are given by

      Cbi=-Jg f(t) haf (O,O,Ddt, (13b)

      c:lei=-2-(k'i)n Jg f(D har' (k, i, t) dt, (13c)

                     k = 1, 2, .", and i= 1, 2, .", 2k'i,

where the prime denotes the derivative in th6 usual delta function sense.

   Equation (13a) is immediate from the property of the PLh functions that

PLh(h i, t) =O fort=O except the case k=i--- O where it becomes 1. To prove
Eqs.(13b) and (13c), we simply multiply Eq.(12) by har'(l, i, t) with the substitution

ofEq.(2) and integrate over [O, 1] to yield

      Jg .t<D har' u, i, t) dt

      = Cbo Jg har' a, i, t) dt+ Cbi Jg [J3 har (O, 1, T) dT] har' (l, i, t) dt

        +,;, l.Lt,i 2(k+i)t2, cld Jg [Jg har (k, i, T) dT] hart Q, !i, t) dt. (14)

                  '                 '
Integrating by parts through the use of the orthogonality of Haar functions, we arrive at

Eqs. (1 3b) and (13c). ･

   Note that har' (k, i, t) is a triplet of delta functions arising at t= (i - 1)/2k-i,

{ i - (1/2) } /2k-i , and i/2k-i with alternating stgns and weights of magnitudes 2(k-i)n

for t= (i - 1)/2k-i and i/2k-l,,and 2(k'i)n fort ={i - (1/2)}/2k'i, except the case

har' (O, O, t) where it is a pair of delta functions with alternating signs and weight of

magnitude one. Therefore Eqs.(13a) through (13c) are reduced to:

      Coi =f(1) -f(O), (15b)
                             1      Cld Tf[{i- (112)} /2k" ] - -:i- ve{(i - 1)/2K-i}+f(i/2k-i)] , ,
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                         k= 1, 2, ..., i= 1, 2, ..., 2k-i. (15c)

   Next we discuss some properties of the PLh series.

Property 1: The partial sums of the PLh series oflength not exceeding 2N + 1, where N

is a positive integer, are piecewise-linear and continuous in [O, 1] with break-points at

most at only 2N + 1 equidistant binary rational points i/2N,i --- o, 1, ..., 2N.

   The proofis immediate from the inspection of the waveforms ofPLh functions.

Property 2: The partial sums of the fust 2N + 1 terms of the PLh sefies fbr a continuous

function f(t) give a PL approximation to the function which takes on its function value

at every 2N + 1 equidistant binary rational point t=,i12N, i --- O, 1, ..., 2N, and joins

these values successively with linear segments.' '
   To prove this, we use the mathematical induction. Let SN be a 2N + 1 length partial

sum of the infinite series Eq.(12). x

[step 1] For the case N = 1, Eq.(12) is reduced to

Si (t) = Cbo + Cbi PIh (O, 1, t) + C" PLh(1, 1, t). (16)

This leads to

Si (O) "f(O),

S,'(112)=f(1/2),

Si (1) =f(1).

'
J

(ID

[step 2] Assume that, for an arbitrary N, the partial sum

      sN (t)= C,,+ c,,'pLh (o, 1, t)+,.lill, `l}tl,i c. pl4,,(k, i, t), (ls)

which contains 2N + 1 terms, takes on the value off(t) at every binary rational point

i12N,i--- O, 1, ..., 2N. [[hen SN+i, which contains 2N more terms than SN,namely all

PLh basis functions with the group index N +' 1, takes on the value off(t) at every even

numbeted binary rationa1 point 2il2N+i bechuse all PLh functions with the group index

k = N + 1 are zero at these even numbered binary rational points. For odd numbered
binary rational points (17+1)/2N"i , the partia1 sum SN+i is reduced to

                               ,       SN.i [(ij+ 1)/2N+i] = SN {(ij+ 1)/2N+i] +CN.i,j.i, (19)

because

 " PLh [N+1,i,(2ij+1)/2N"']'= I1' i-:i-1' (2o)

                               to, i-ei-1.

From the Property 2, we can write for the odd numbered binary rational points
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SN [(2i + 1)/2N+i ] = [f(2i/2N+i) +f { (2i + 2)12N+i } ] /2.
(21)

Substituting Eqs.(15c) and (21) into Eq.(19), we obtain

SN.i [( ij + 1)Z2N+i] = f [(2i + 1)/2N+i], (22)

where i = O, 1, ..., 2N- 1. Thus we arrive at the conclusion that fbr any N, the partial

sym SN(t) takes on the value off(t) at every binary rational point i/2N,i --- O, 1, ...,

2N. This, together with the thoperty 1, completes the proof.

Property 3: Let S be a partial sum of the infinite series Eq.(12). Let S take on the values

                                             ,of f(t) at two succeeding binary rational points ta=ij-1)/2k and tb =il2k, where

k is an arbitrary positive integer andi :"-' 1, 2, ..., 2k. Adding one more,term Ck+i,i

･PLh(k+1, i, t) to the series S,the resultant series exactly takes on the value off(t) at

(t.+tb)12, the center of the subinterval [t., tb], as well as at t. and tb, and joins

these values with 1inear segments without changing the values of the sum outside the

subinterval.

   The proof is immediate from Eq.(15c) and the property of the PLh functions that

PLh(k+1, i, t) = O fort= (i - 1)1 2k and i/2k, and it equals1 fort= [i - (1/2)]/2k.

    From the properties described above, we obtain the fbllowing theorems concerning

to the convergence behavior of the PLh series.

Theorem 1: For continuous functions, the sequence of the finite sums of the PLh series

oflength n wM uniformly converges to the functions as n･co.

Theorem 2: For piecewise-continuous functions with a finite number ofjump dis-

continuities, the PLh series, while no longer uniformly convergence, is pointwise con-

vergent everywhere except at the discontinuities.

                  5. EfficientComputationalAlgorithns

5.1. PLhsignaldecomposition

   Samplmg of the Haar functions in Fig. Ia at eight equidistant points results in a

8 × 8 matrix as shown in Fig. 2. In general, a 2N × 2N matrix is obtained. Each row of

the matrix so obtained gives the 2N-length discrete representation of the corresponding

Harr function and is denoted by HARN (k) i, i),i --･ O, 1, ..., 2N -1.

j=O1234567

HARNCK,t,j)=

 11111
 1 1 1 1. -･1
E E -f2 -/2 o

o o o o v':i

2-2 OOO
OO2-2 O
OOO02ooooo

 111
-1 -1 -1

 ooo
17 -f2 -E

ooo
ooo
-2 O O
O2-2

k=

o

1

2

2

3

3

3

3

i=

o

1

1

2

,1

2

3

4

Fig. 2 Matrix representation ofdiserete Haar functions.
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Using the discrete representation of Haar functions, we can write, for k < N,

har' (k) i, t) = [HARN (k, i, D-HARN (k, i, i: 1)] 6 [t - (i12N)], (23)

i --- O, 1, ..., 2N . Substituting Eq.(23) into Eq.(13c) and rearranging, we obtain

      Cld=2-(k")/2 ii.ll.i,'HARN (k) i, i) [f{(i' 1)/2N}-f(i/2N)], (24)

for k = 1, 2, ..., N. Equation (24) skows that the expansion coefficients, except the case

k = O, can be obtained as the Haar transform of the differences of the two adjacent

samples off(D. This can be performed efficiently by the use of a fast Haar transform

algorithm. A flow diagram based on Eq.(24) is vaustrated in Fig. 3, for the case NT 3,

for example. There are several different algorithms for fast Haar transfbrm. Any one of

them can be used for the present purpose, but we have used Andrews'3). In Fig. 3 the

solid 1ines indicate that the values at the preceding node is to be carried forward to the

addition at the next node with the same sign, and the dotted lines indicate that the

values are carried forward with sign inverted. The symbolQM denotes the multiplica-

tion by m and f;k stands for f<*/8). The first step of the diagram computes the difi

ferences of the adjacent samples and the succeeding three steps, N-steps in general,

accomplish the Haar transform of the differences. All values resulted, other than Coo

and Coi , are multiplied by 1/2 to obtain the PIh coefficients. The multiplication by 112

can be efficiently acco'mplished by "one bit shift" operation instead of the multiplica-

tion. It should be noted that at each step in the calculation except the first and second

steps, half of the nodes require no further calculations. Thus the total number of addi-

tions and subtractions is

.
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       2N +2N +2N-1+ 2N-2 +."+22 +21 =3× 2N-2, (2s)
for 2N + 1 samples. This means that, apart from the 2N - 1 multiplications in the last

step, the computational time for this algorithm is 1inearly proportional to the numbeT of

the samples 2N rather than N2N as in the case of fast Fourier transform. The algoritlm,

however, requires additional storage to hold the intermediate stage calculations. To

avoid this computational overhead, we can use the "in-place" algoritlm proposed by

Roeser and Jernigan4), for instance, but it will give the coefficients arranged in a differ-

ent order and a sorting routine wM be necessary after transformation.

5.2. PLhsignalsynthesis

   Sampling values of the PLh functions with the group index k<N at 2N equi-
distant binary rational points i/2N ,i = O, 1, ...,                                 2N, are given by

PI.h (k) i, z12N)=

1
,
2-Ni,

2-{N-(k+i)/2] JIS`HARN Qt} i, r),

  . :=o
From the Property 2, we can write

      f(i/2N) = Cbo + Cbi PLh (O, 1,i/2N) +

Substituting Eq.(26) into Eq.(27), we obtain

      f(i/2N)= cb, + (lo, i/2N . i2i [ S

                          r=O                               k=1

k = O, i --- O,

k=O,i--･ 1,

elsewhere.

    (26)

N 2k-1
,E, ,.Z, CldPLh(k, i, i/2N). (27)

2k-1
i.Z, 2-{N-(k'i)12]CldHARN(k, i, r)] .

                    (28)

In derivipg Eq.(28), we have interchanged the order of the summations. The summa-

tions over k and i i'nside the brackets in Eq.(28) can be computed using fast inverse Haar

transform algorithn. The signal flow diagram based on Eq.(28) is Mustrated in Fig. 4,

for the case N = 3 fbr instance. Again we have used Andrews' algorithm. The solid 1ines

indicate additions and the dotted lines subtractions. The first four steps in the flew

diagram compute the inverse Haar transform of the weighted coefficient's array and the

succeeding eight steps perform the outermost summation over r in Eq.(28). Note that

the last eight steps involve one addition only in each step. Apart from the four, 2N-i in

general, multiplications in the first step, oniy additions/subtractions are required. The

number of the additions/subtractions required for 2N + 1 coefficients' array is again

3× 2N-2.
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Fig. 4 Signal flow diagram fbr nine-poiilt PLh signal synthesis.

                            6. AnExample

   Considef the quarter period stnusoid shown in Fig. 5 which may represent the out-

put voltage of an ideal thyristor rectifier with resistive load foT the ignition angle rr/2. In

Fig. 5 the solid line shows the eight term approximation using PLh(Q, O, t) thTough

PLh(3, 3, ij, and the dotted line shows the true cufve. The maximum pointwise

approximation error is less than 1 percent. An excenent fit iS obtained using a small

number of terms.

1.0

O.8
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O.4

O.2

o.o

Fig. 5

----- True Curve

PL Approximetion

  O PZ/4 Z/2
Finite sum representation of a quarter period sinusoid.
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                          7. Conclusion

   A set of basis functions has been derived from Haar functions via integration fbr

piecewise-linear signal decomposition and synthesis. The set{PLh(k, i, t)} is a complete

basis of L2 [O, 1], the space of functions square integrable over a unit interval [O, 11.

Any signal on L2 [O, 1] can be expanded into q series of these basis functions with finite

term sums giving a PL approximation to the signal. Efficient algorithms for the PLh

signal decomposition and synthesis have been developed. The algorithms perfbrm the

computations without multiplication except the 2N- 1 multiplications in the last step

of decomposition algoritkm and 2N-i multiplications in the first step in the synthesis

one, both of which are accomplished by slmple bit-shift operation. Thus the PIh signal

decomposition/synthesis can be accomplished much faster than those using Fourier

series representation. A further advantage of the new basis set is the local dependency of

the expansion coefficients. Variations of the signal values in a smal1 subinterval only

affect a limited number of coefficients with a large majority of the coefficients un-

changed. This property combined with the easy determination of expansion coefficient's

gives a usefu1 tool for not only signal decomposition/synthesis but also signal analysis,

data compression and others.

  1)
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, 3)

 4)
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