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A Fuzzy Fault Tree Formulated by a Class of Fuzzy Measures

Hidetomo IcHIHASHI * and Hideo TANAKA "

(Reoeived November 15, 1986)

   A fuzzy fault tree for fault analysis of soft systems is formulated by･ fuzzy meas-

ures of fuzzy sets. Fuzzy measures in this paper are based on t-norms and t-conorms.

Il/oena:UorfeSthOefflaeuVletl'tMreefu. ZZY SetS are defined recursively, which represent structure func-

                           1. Introduction

   We have many dithculties in applying fault tree analysis of mechanical systems to

soft systems such as education, traffic, crime, etc. The main reason is that the conven-

tional fault tree is based on binary logic. This paper proposes a fault tree formulated by

Sugeno's fuzzy measurei).

   The key property of the fuzzy measure is monotonicity with respect to set inclu-

sion. A broad class of fuzzy measures based on triangular norms was proposed by
Dubois and Prade2). Triarigular norms are the semi-group operators of the unit interval,

which have been studied by Mbnger3), Ling4) and, Schweizer and Sklar5), amoung

others. in this paper an integral proposed by Schwyhla6) and Kruse7) is adopted to

define.t-norm based fuzzy measures of fuzzy sets. By including possibility and necessity

measures in the definition, Zadeh's possibility and necessity of fuzzy sets are recovered

by the fuzzy integral.

   Fuzzy measures are regarded as expressing the grade of importance and an applica-

tion to the fault tree is presented. The grade of top event is represented as the measure

of a level-m fuzzy set. The irrelevency and the coherency of the fault tree are discussed.

Utilizing duality of t-norm and t-conorm the dual fault tree can be defined.

                    2. t-NormBasedFuzzyMeasures

   In this section, we briefly survey t-norm based fuzzy measures2) and

materials in functional equations.

Definition 2.1 A t-norm T4) is a two place real valued function from [O, 1] ×

to [O, 1] , and which satisfies the following conditions

       Tl : T(O, O) = O, T (a, 1)= T(1, a) =a

       T2 : a(c,b<d.T(a, b)(T(c, d)

       73 : T la, b) = T(b, a)

       74 : T(a,T(b, c))=T(T (a, b), c)

related

[O, 1]
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   T is a semi-group of [O, 1] with identity 1. For any continuous t-norm satisfying

the Archimedean property T5

      715 : T(a, a)< a, Vb E (O, 1)

there exists a continuous and decreasihg function f [o, 1] . [o, +oo] such that f(1)

=O and

      T(a, b)=f" (f (a)+f(b)) (2.1)
where f" is the pseudo-inverse ofL defined by

      f. (y) .{ f-i (y); yE {O, f(O)] , (2.2)

            tO ; yE[f(O),+oe]

fis called an additive generator of the t-norm T Schweizer and Sklar5) provided a multi-

plicative representation for strict t-norms as

       T(4, b)=h-i (h (a)Xh(b)) (2.3)

where h: [O, 1] . [O, 1] is a strictly increasing function with h (O) = O,h (1)= 1.h is

cdled a multiplicative generator of the strict t-norm, The t-norms generated by func-

tions f such that f (O) < oe and f (1) = O is called a nilpotent t-norm. Replacing the

condition Tl by Si

      Sl: S (1, 1) = 1, S (O, a) =S (a, O) = a,

a mapping S satisfying Sl and T2-7i4 is c,alled a t-conorm.

Definition 2.2 A negation is a one place function C: [O, 1] -> [O, 1] such that

      Cl : C (O) = 1

      CZ : Cis involutive i.e. C(C fa) ) =a

   The function C: [O, 1] -i- [O, 1] which satisfies the condition C2 is axial symmetric

with respect to the straight line y (x) = x. Hence the condition Cl implies that the func-

tion C is a continuous and strictly decreasing function. C is caded a Trillas' negation and

if T is a t-norm, then S (a, b) = C [T(C(a), C(b))] is a t-conorm8). For any negation C

there exists a function t: [O, 1] . [O, 1] such that t(O) = O,t(1)= 1,tis continuous

and, increasing and

      c(a)=t-i (1 -t (a)) (2.4)
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Definition2.3 Let X be a finite set. A fuzzy measure, in
defined by a set function g from 2X to [O, 1] , such that

      1) g(¢)=O, g(X)=1
     2) X4,BCX, ifACB, theng(A)<g(B).

tion 2.3 with

      Y4,BCX, ifAnB=¢, theng(AUB)=g(t4)tg(B)

where i is a

2.3.

   Let C be a negation, then a set function

      Y4 c X, gb pa)-C ig e-) )

defines a t-norm based fuzzy measure. Let T be a t-norm. If A u B = X, then

     ge (A n B) =gb (24) T gb (B)

holds instead of Eq. (2.5). For ita,B C X,

     g (A UB) lg (A A B) "g <A)lg (B)

     g. eUB) T gb pt nB)" gb ") i gb e)

                 3. Fuzzy Measures of Fuzzy Sets

   A t-norm based fuzzy measure is defined by a mappingg: 2X ･ [O, 1] .

Definition 3.1

          n
      ptA- =i.£, pti× XDi

where ptiE[O, 1] , ...
A fuzzy measure of fuzzy set A based on a t-conorm i is defined as

      g (t"4-) =,.L", (pti Tg (Di) )

Y,ggrljV6tl,,D,j)T X･ Di npi -¢ (i ,E i) and,± .d

   The restricted distribution law of i and T in Eq. (3.2) is written as

the sense of Sugenoi)

183

 is

t-Conorm based fuzzy measures are defined by replacing the condition 2) of Defini-

(2.5)

t-conorm. It is easy to see that (2.5) implies the condition 2) of Definition

(2.6)

(2.7)

(2.8)

(2.9)

                                                In this sec-
tion we define it by a mapping from a family of all fuzzy subsets Sid (X) to [O, 1] .

          Let the membership function of a fuzzy set A be a simple function

                                                 (3.1)

            and xD. denotes the characteristic function ofa setDi (Di n Pi = ¢).

                                                 (3.2)

                               T fu11M the restricted distribution law
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       a T (g (I)i) lg ([2i) )= (a Tg(Di) )l (a Tg(l2i)) ' (3.3)

                                '                                                     '       (g (Di) Lg (Di)) T a" (g (Di) T a) i (g (Qi) T a) ' '' ' (3.4)

for ila E [O, 1] and "blDi , Pi C X.

   In the remaining part of this paper we assume that i is the maximum V or a

nilpotent t-conorm with normed additive generator t, i.e. normed by t (1) = 1. The

reasones why we assume as mentioned above are as folloWs.

   An additive generator t of Archimedean t£onorm is unique up to a (positive)
multiplicative constant.

   ln other words, if ti and t2 = kti, k> O are additive generators of li and L2

respectively, then

       a!i b=a l2 b, (3 .5)
for all a, b E [O, 1] . The only continuous t-conorms which fullM the restricted distribu-

tion law arev and nilpotent t-conorms with normed additive generators.

   ln the case ofi=V,Eqs. (3.3) and (3.4) are valid for any t-norm T.In the cases

of nilpotent "conorms, if a fuzzy measure g is based on a nilpotent t-conorm with a

normed additive generator t and g satisfies normalizing condition

       n      ,.Z, (tog)(Di)=t(1)=1 (3.6)
where tog denotes a composite function of t and g, then the property of Eqs. (3.3) and

(3.4) is satisfied by choosing a strict t-norrn whose multiplicative generator is t.

schwyhla6) and Kruse7) proposed a fuzzy integral for special nilpotent t-conorms,

which is the.same formula as Eq. (3.2). By the condition g(X) = 1, for any finite

division Dis,i.li g(Di) = 1. Hence

       n      ,.-Z., (tog) (Di) ) 1 (3.7)
            nFurthermore if i.Zi (tog) (Di) =M> 1, then fbra G (O, 1)

           n      aT(t             g(Di))=a T1=a (3.8)          i=1
and

      ,.i, (a T g (Di) )= t" ( ,.Z, t (a) × (tog) (Di) )

                  = t" (t (a) × M)

               ･#a (3.9)
   Therefore the condition (3.6).is necessary so that g (2r) in Eq. (3.2) is well defined

for nilpotent t-conorm based fuzzy measures. Equation (3.6) implies that gom is a finite

additive measure with (gom) (.¥) = 1, i.e. a probability measure.

Proposition 3.1 Let ptA-u-g = "A- v uA and ptA-riB- = ptA- A ptR, where V and A are maxi-

mum and minimum respectively. Fuzzy measures of a fuzzy setA Eg(X) have follow-
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ing properties.

  1) g(¢)=O,g(X)=1andO(gpt)<1.
  2) If J4 cD theng di) (g (g).

  3) ,g ((a2( .U 2.i i.g, ((22I)A,g,)(s.)g. <2() tg (g), especialiy if A nB - ¢,

  4), IfA-" is acrisp set, theng(;l) 1g a)" 1.

Proofi

are trivial.

3) Le't the membership functions ofA"' and fi be simple functions as

       n    Pl = iZ.1 Pi X XDi

and

       n    ptk = il Vi × XDi

respectively, where "i and vi E [O, 1] .

  Since i is associative,

    g di ug) ig "N n g)

    = (,.--L, ( (ptiVvi) T g (Di) )i(( .1-:-, (sti A vi) T g (Di) )

     n    =i.±, (( (ptiVVi) T g (Di) l( (ptiA vi) T g (Di) ))

     n    :i.±, ( (iii T g(Di) )l (vi T g(D,) )

    =(,.i, ()ti Tg(Di)))±(,.i, (vi Tg(Di)))

    '=g a) ig di)

Hence, ifZ ng = ¢ then g ca u D) =g (2i) lg di).

4) If A"" jsacrisp set then 2f n A'" =¢ and ZUA=X. Thus -

tion for VA"" ELS7- , as

    gb a) 2 cig di))

185

Since L and T are non-decreasing two place functions in unit interval, 1) and 2)

(3.1O)

'(3.11)

(3.12)

                          ,g di)lg di) =g (X) = 1.
Let g be a fuzzy measure based on i, and let Cbe a negation. We define a set-func-

                                     (3.13)

where "A " Co ()tJl) and Co is a negation which is not necessarily equal to C gb is also

a fuzzy measure with following properties.

. Proposition 3 .2

  1) g. (ip) = O, g. (n " 1 and O (glr di) ( 1.

  2) IfA'"cjtheng. (2i)<gb di)･

  3) gb diug)T'gbang)=gb di)T'gb di)
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where T ' is a t-norm, the CLdual of t-conorm ±. Especially ifA u D = X then gb (A"" n

g) =gb ca)T'gc di)･

  4) If2"4" isacrisp setthengb a) T'g. di)=O

Proof.

1) Let the membership functions be as in Eqs. (3.10) and (3.1 1). Since

          n    gb (t41)= C(,-.l-, (Co (izi)Tg(Di))) ' '' (3.14)

                             ' AJ

ifA=¢, '' - '' '         n
    gc (¢)"C( ,l., (1 Tg(Di) ))=C(1)=O (3.ls)
IfA = X,

    gb(X)=C( ,l, (O Tg(Di)))=C(o)=i. (3.i6)

2) It follows immediately since ± and T are non-decreasing and, Cb and Care decreas-

  ing functions.
3) Sincegis based on ai and T ' is the CLdual t-norm ofl,

    Cie. di Uj) T'g. di nj))

    =c(c ie ca ug) ) T' ciganj) ))

    =c(c (gF (,41 nD) ),T'c(g･ (2il ug) ))

    =g di ng) tgaug)

    =ga)1g¢)
    -C(C ig a) )T'Cig di)))

    =C(gb di) T'gb di)) (3.17)
Hence, g. (2i U g) T' g. (;l n jl = gle (2i)'T' g. di). Especially ifA'" ug=Xthen

g. anj)=gb di) T'& di). - . ,- ,
4) IfAis a crisp set thenZu2i =X and 2r nA=¢. Hence gb (2i nJ- 4)=gb (;l)

  T'g. a)=o ,  In what follows it is assumed that the negation C is equal to Co , i.e. ILi = C (l!4)･

Proposition 3.3 Let T' and l' be CLdual ofl and T respectively. When g (AN ) is written

as

     .. n    g(A)= ,!l;, (pti Tg(Di)), (3.ls)
& (t4) can be written as

    gb a)=,.I,' lpi l' g. (D-i)) (3.lg)
                        '
koof.
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   gb di) - c ig a) )

       n   =C( ,+, (C (pti) T g(Di) ))

     n   = T' (C (C (sti) T g (Di)))
    i-z'i

   =,T.I (pti l'C(g' (Di)))

     n-    :,T.I (pti±' gb (Di)) (3.2o)
   The case where .2i is a crisp set andDi is an element xi EX is stated by Dubois and

Prade2) and g (x4) and g. (A) are called a t-conorm based fuzzy measure and a t-norm

based fuzzy measure respectively. See ajso remarks in WeberiO) for infinite universe set

X.

Proposition 3.4 Let g be a fuzzy measure based on a nilpotent t-conorm l, then g is

alsobased onanilpotent t-norm. ' ･ ･
Proof. Let to be the additive generator ofl.

            n      g (?i)= ,-.L, ("ti T g (Di))

                n
          =te --i (£ to (pti)× to (g (Di))) (3,2i)                i=1

Let ti =1- to.Since to (g (Di))=1- to (g (Di))"ti (g (Di)),

                   n
      g(2()=ti-i (1 - ,Z., (1 -ti (pti))× to (g (Di)))

                n --.          " ti -' (,£., ti (pi)× ti (g' (Di)))

            n-           : T i (pti li g (Di))

where T i is a t-norm with normed additive generator ti .

Proposition 3.5 Let C be any negation and g be a fuzzy measure based on a nilpotent

t-conorm i. gb is based on the t-norm T ' which is a CLdual of i. Then gb is also based on

a nilpotent t-conorm.

Proof. Though we can readily see it by Proposition 3.4, let us show an another proof

so that the relation between g and g. is clarified.

   Let g be a fuzzy measure based on a nilpotent t-conorm whose additive generator is

to . Then, for any negation C,

      g. di)"cig (A'))

                     n
           =(Co to-')(i.Z, (tooC)(sti)× to (g' (Di))) (.3.23)
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   Let t2 fa)=1- (tooC) (a), then

                                                        '
      t2 -i (b)=(Co to "-i)(1-b) (3.24)
                                                '                                          '                                                  'Hence, we. have

                   n'      gb (i:i)=t2 -" (1 - ,Z., (1 -t2 (sti))× to ig (Di)))

                 n.           = t2 -' ( iZ., t2 (ui) × (t2ot, 'i o t,) ig (Di) )) (3.2s)

to: [O, 1] . [O, 1] is an increasing function and C: [O, 1] ･ [O, 1] is adecreasing func-

tion. Therefore t2 is an increasing function from [O, 1] to [O, 1]. Thus gb (2i)can be

written as

            n      gZ, (A)=i.i,2 (lzi T2 (Coto-i o(1 - to)) (g･ (Di)))

            h
           = ,l.,2 (iti T2 C(g (D-i )))

            n           =il.,2 (lpti T2 gb (Di)) (3.26)
                                        t/                                tt t
where 12 and T 2 are a t-conorm with additive generator t2 = 1 . (to oC) and a t-norm

with multiplicative generator t2 respectively. Hence, it can be seen that gb is based on a

t-conorm l2 with t2, while at the same time gb is based on CLdual t-norm T' of

t-conorm l with additive generator to .

   It is easy to see that Propositions 3.4 and･3.5 are true in the case where A'" ts' a crisp

setA.

Proposition 3.6 If C is generated by t, and a fuzzy measure g is based on a nilpotent

t-conorm l with generator t, then g is also based on the C-dual of the t-conorm, say the

t-norm T , namely g (A) = gb (i4).

      ･nProof. Since .Z t(g(Di))=1isassumed,
          t=1

               n'      g (A)= t'i (,Z., t (pti) × t(g (Di) ))

        '                        '                  n
          = t-i (1 - .Z (1 - t (-ti) )× t (g' (Di) ))
                 t= 1,
                            '          -Cig (Z))

                              t.t                                      '                                tt tt                              '          =& di) .(3.27)                                               '                                          '
Example 3.1 Let a 1 b = a V b and a T b = a A 6 where V and A are maximum and

minimum respectively. V and A are distributive binary operations. By Definition 3.3

                                                  '                                                '      ga)= ,V., lpiAg(Di)) ･ (3 .28)
                             '                                  '                    '
Since for any negation C, A and V are the CLduals of V and A respectively,
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             n      gb (A)= ,A.., (lli V C (g (Di) )) (3.2g)

by proposition 3.3. Let g = il, then

       iC[l ,VD,n(,'`l ug)-H (,ll)vn(D) (3.30)

by 2) and 3) of Proposition 3.1 . Zadeh's possibility measures of fuzzy sets are recovered.

Furthermore, by 2) and 3) ofProposition 3.2,

       'bt,:i, VD,N(Z ng)-N(,N4)ANdi) , , . .' ' .(3.31)

where N= gb. Necessity measures of fuzzy sets are also recovered. ,

Proposition 3.7 Let ptVand ptAbe th'e maximum and the minimum value ofmember-

ship function of fuzzy set A C X respectively. Then

      itA(g (,"4")(ptVand pt"<gb (?4)<szV (3.32)

Proof. Assuming that ptA- -- k and k is a constant from [O, 1] ,

            nn      g(,'4"')= ,i., (k Tg (Di))"kT (,i.,g(Di) )"k (3･33)

Hence, by Proposition 3.1-2)

      ptA=g (2il A) (g (A) <g Q[l v)=ptV (3.34)

where ptA- A= ptAand "k-v = ptVare assumed. By the monotone decreasingness of C,

      c(pt V) (g (Zl)(c (st") (3 .3 s)
where pA'-' = C ("A) is assu!ned. Thus,

      C(C (pt"))(C(g' di'))(C(C (pt V))' (3.36)

      ptA(g. (?4)(stV . (3.37)

                4. A Fuzzy Fault Tree for Soft Systems

   Fuzzy measures in the sense of Sugenoi) can be considered as expressing the grade

of importance of attributes of evaluating objects. The measures of fuzzy set g (A"" ) and

gb (2i) aggregate membership values by the grade of importance, and they can be seen as

the averaging operators in the sense of Dubois and Pradeii) from the property of

PrOPsOini/i'eOng 3(,ii7)' and'g. (z) are mappings' from.g(,x)to [o, 1], they also can be seen as

a membership functions of level-2 fuzzy set, i.e. a fuzzy set whose elements are fuzzy

sets. Denoting level-m fuzzy set as MA and defining recursively, measures of level-m

fuzzy set can be written as .. ･. ' ･ ･ ,
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       tg(MZ)=,{i (g (M-' A'" k) T gk) (4.1)

or

g. (MA-")=,i-; (g (M"
AN ,) i' llil;,T ) (4.2)

where g denotes g or gb, and gk and gbk stand for fuzzy measures assigned to each
element M-i2(k.

   In this section we apply these notions to fault tree analysis. Let X denote the set of

all basic events xi. A denotes a subset of X such as a cut set; In the conventional fault

tree analysis, the occurence of top event is judged by the occurence of a cut setA.

   Now we consider a fuzzy fault tree in which the state of basic event xi is repre-

sented by the membership value pti E [O, 1] and the state of top event is represented by

the measure of level m fuzzy setg(MA""). Let the structure function ilf E [O, 1] be a

function of vector p = (pti , ･･･, pt.). The structure function of fuzzy Amo gate shown in

Fig. 4.1 is written as

                 n      NIr (p)=g di)=,,l,, (ltiTgi) (4.3)

For fuzzy on gate shown in Fig. 4.2,

                  n      ilr (pt)=g. a)=,-!,' lpi i' gil.) (4.4)

Furthermore, for fuzzy AIOT gate shown in Fig. 4.3,

      ilr (pt)=C(pt,) (4.5)
on, AALD and NOT gates defined above fullM DeMorgan-like property such as

      IVOT(xi on x2 QR ･･･ OR x.)

          =(iVOTxi)AIVL) (ArOTx2)AArD ･ ･ ･ AIVD (?VOTX.)

   The structure function of the left hand side of Eq. (4.6) is written as

              n      ,I' (jee) = C(,,I,, ()Jti T gi) )

By the duality ofl and T', and T andl'

            n      ilr (pe) = ,.! , ' (C (lzi) i' g-bi )

(4.6)

(4.7)

(4.8)

Fig. 4.1

 p lp

An example of Fuzzy

AIVD gate (n=2).

Fig. 4.2

- lp

An example of Fuzzy

OR gate (n=2). Fig. 4.3

N

Fuzzy IVOT gate.
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Equation (4.8) implies the right hand side of Eq. (4,6).

   By applying three fuzzy gates OR, AIVID and NOT to a fault tree, a structure func-

tion can be obtained as the measure of level m fuzzy set in the form of Eq. (4.1) or

Eq. (4.2). The lower level fpzzy sets correspond to the modules of fault tree. Let

('i, p) = (pt1 , -･･, "i-1 , ･ , Ui+1 , ･･･, "n) and (ai, pt) " (pt1 , ･･･, pti-1, a, uff1 , ･･･, "n)

Definition4.1 If the structure

for all aE [O, 1] and ('i, p),

      }Ir (ai, pt)" W (1i, p)

function W (}Lof is invariant with respect to "i, that is,

(4.9)

holds, a basic event xi j said to be irrelevant to the structure llr. '

   In this paper we restrict ourselves to fuzzy measures based on V (possibility),

A (necessity) and nilpotent triangular conorms and norms so that measures of fuzzy set

g (ZI) and gz, (2() are well defined. g (A) based on v is defined for any T as

             n      g (2i)= ,V., (szi T gi) (4.lo)
And, gb (Z) based on A is defined as

             n      ge (t4)" ,A.., ("i i gbi) (4.11)
for anY ±.

Proposition 4.1 If Ygi > O and Ygbi > O, then a basic event xi i irrelevant to the struc-

ture W only when all gates in which the event xi is concerned are based on V or A .

Proo£ By the restricted distributivity of i and T , any fuzzy gate which'aggregates n ,
items (n > 2) can be represented by a hierarchy of fuzzy gates aggregating only two

items. Therefore it is sufficient to show the proof for the case of two level fault tree

shown in Fig. 4.4. Let ilri and ilr2 denote the structure functioris of the gates Giand G2

in Fig. 4.4 respectively. When the fuzzy gate Gi is based on A and G2 is any gate which

is not based onV, there exists pti e(O, 1) such that ifpti >pt2 then pti >Wi (W2,pti),

while pti < Nlri (W2, pti) whenever pti ("2 by proposition 3.7. Hence,x2 is relevant to

the structure. It･is easy to see that x2 is relevant to the structure in other cases such as

1) Gi ; based on V, G2; not based on A
2) Gi;not based on V, G2; based on A

q

(ii2)

gle s
Fig. 4.4 An example of two

      level fault tree.
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   3) Gi; not based on A, G2 ; based on v
   4) Gi and G2 are based en neither v norA .

When Gi is just equal to A and G2 is equal toV, i.e. Yglr = 1 in Eq. (4.10) andvgZIi =O

in Eq. (4.1 1), then x2 is irrelevant.

Definition 4.2 When a structure functionilr(pt) satisfies the following two conditions,

NIr ()et) is said to be coherent. ･ . '.･ ･- ･ ･
   1) Each basic event xi (i = 1, ･･･, n) is relevant to-the structure W.

   2) NIr (p) is non-decreasing with respect to each pti (i = 1, ･･･, n).

   By the non-decreasingness of t-norms and t-conorms, apy structure function of

fuzzy fault tree without IVOT gate is nondecr.easing. Hence, if pti )"2 (Vi, pii ) "2i)

then ilf ("i ) ) ilf,(si2). Furthermore ilr (O) = O, Nlr (1) = 1 and

      ,A.-., pti (ilr (pt)<,., pti (4.12)
              '                                           '
by Proposition 3.7.

Definition 4.3 A structure function of the dual fault tree NlrD is defined as

      NlrD (p)=C(Nlr (ptC)) (4.13)

where ptC = (C (sti ), ･･･, C (ptn) )･

   Replacing AND gates by on gates and on gates by AA[D gates we have a dual fault

tree whose fuzzy subset of basic events is A'" . A represents a fuzzy set of successfu1 basic

events, whose membership function is C (pti).

Example4.1 Let a l b･= min [1, faq + bq)]i/q ,a)O. Additive generator ofL is

t (4) = aq and t (g (Di) ) = pi. Then the structure function of on gate is represented by

                       '                           t.               t tt                                           '                                  '              n-      gdi)=(iZ., ptiqXpi)i/q ･ '. ･ , (4.14)
                '                               tt                          t t tt t tt                             .t /t                    '                                                         '   When C (a) = 1 - a, AINLD gate is represented by

      g. (2i)=1-(S (1-pt,)qXpi)i/q (4.ls)
                .i--1

   Each structure function is reduced to the well known mean values shown in Table

4.l depending on q. ,
                                 '   If V)ti E { O, 1} and q . ?o or q･O then OR gate andAmo gate are equivaleht to

on gate or AIVD gate of the conventional fault tree. Similarly by setting as in Eqs.

(4.1O) and (4.11)

                                         '      g(A'V)= Y (sziTgi) '' ' ,' ' , (4.1 6)
            t=1 ' .                                      ttt
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Table 4.1 Mean values assumed by the structure functions in Example 4.1.

ORgate A.iVDgate

q･oo
n
V
I
I
i
i
=
1
.
m
a
x
l
m
u
m

n
.
A
p
t
i
l
=
1
m
i
n
i
m
u
m

q.1
n£IZiXPin=1arithmeticmean

n£lti×pii=1arithmeticmean

q.o

n,.n,(pt9i)1wnenVPi--T'.geometncmean
n1-.H(1-pti)Pil=1WhenVpi'----i-,dualofgeometricmean

and

       n   A- -g. (t4)= ,A., (iti igbi), (4.17)

where g is a possibility measure and gb is a necessity measure, we can define OR and

AIVD gates. It is easy to see that if Vgl = 1 and Vg.i " O then Eqs. (4.1) and (4.2) are

conventional structure functions of OR gate and AIVD gate respectively.

   . 5. ConcludingRemarks
   The notion of fuzzy measures of fuzzy sets has been adopted to a fault tree of soft

systems. Fuzzy fault tree presented in this paper includes conventional fault tree in the

special case. And, fuzzy reliabMty graph may also be fbrmulated along this line. These

attemption wma develop wide variety of fault analysis not only fbr engineering systems

but also for social systems.
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