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A fuzzy fault tree for fault analysis of soft systems is formulated by fuzzy meas-
ures of fuzzy sets. Fuzzy measures in this paper are based on #-norms and 7-conorms.
Measures of level-m fuzzy sets are defined recursively, which represent structure func-
tions of the fault tree. )

1. Introduction

We have many difficulties in applying fault tree analysis of mechanical systems to
soft systems such as education, traffic, crime, etc. The main reason is that the conven-
tional fault tree is based on binary logic. This paper proposes a fault tree formulated by
Sugeno’s fuzzy measure!).

The key property of the fuzzy measure is monotonicity with respect to set inclu-
sion. A broad class of fuzzy measures based on triangular norms was proposed by
Dubois and Prade?). Triangular norms are the semi-group operators of the unit interval,
which have been studied by Menger®, Ling® and, Schweizer and Sklar®), amoung
others. In this paper an integral proposed by Schwyhla® and Kruse”) is adopted to
define -norm based fuzzy measures of fuzzy sets. By including possibility and necessity
measures in the definition, Zadeh’s possibility and necessity of fuzzy sets are recovered
by the fuzzy integral.

Fuzzy measures are regarded as expressing the grade of importance and an applica-
tion to the fault tree is presented. The grade of top event is represented as the measure
of a level-m fuzzy set. The irrelevency and the coherency of the fault tree are discussed.
Utilizing duality of #-norm and z-conorm the dual fault tree can be defined.

2. t-Norm Based Fuzzy Measures
In this section, we briefly survey z-norm based fuzzy measures®) and related
materials in functional equations. :

Definition 2.1 A t-norm T¥ is a two place real valued function from [0, 1] FX [0, 1]
to [0, 1], and which satisfies the following conditions

Tl: T0,0)=0,T(e,1)=T(1,a)=a

T2: a<c¢,b<d->T(@b)<T(cd

T3: T(a,b)=T(b,a)

T4: T(e,T(b,c))=T(T (a, b),c)

* Department of Industrial Engineering, College of Engineering.
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T is a semi-group of [0, 1] with identity 1. For any continuous f-norm satisfying
the Archimedean property 75

T5: T@a<a Ya€(@©,1)

there exists a continuous and decreasihg function f: [0, 1] - [0, +°°] such that f (1)
=0and

T@b)=f*f@+f(®)) (2.1)

where f* is the pseudo-inverse of f, defined by

1) y€l0,f/0)1
FA6)) ={ (22)
0 ; ¥ €[£(0), +°]

fis called an additive generator of the -norm 7. Schweizer and Sklar®) provided a multi-
plicative representation for strict z-norms as

T(a,b)=h" (h @)X h (b)) (2.3)

where A: [0, 1] = [0, 1] is a strictly increasing function with 2 (0)=0,2 (1) = 1.k is
called a multiplicative generator of the strict #norm. The f-norms generated by func-
tions f such that f (0) < ¢ and f (1) = 0 is called a nilpotent #-norm. Replacing the
condition T'1 by S1

S1:8S1,1)=1, §0,a)=5(a,0)=a,
a mapping S satisfying S1 and T2-T4 is called a z-conorm.

Definition 2.2 A negation is a one place function C: [0, 1] —> [0, 1] such that

Cl: C(0)=1
C2: Cisinvolutive ie. C(C(@)) =a

The function C: {0, 1] = [0, 1] which satisfies the condition C2 is axial symmetric
with respect to the straight line y (x) = x. Hence the condition C1 implies that the func-
tion C is a continuous and strictly decreasing function. Cis called a Trillas’ negation and
if T is a -norm, then S (g, b) = C [T(C(a), C(b))] is a t-conorm®). For any negation C
there exists a function #: [0, 1] = [0, 1] such that z (0) = 0, # (1) = 1, ¢ is continuous
and increasing and

C@)=1t"(l~1(@)) (2.4)
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Definition 2.3 Let X be a finite set. A fuzzy measure, in the sense of Sugeno!) is
defined by a set function g from 2% to [0, 1], such that

1) g($)=0, g(X)=1
2) Y4,BCX, ifACB, theng(4)<g(B).

-Conorm based fuzzy measures are defined by replacing the condition 2) of Defini-
tion 2.3 with

Y4,BCX, ifANB=¢, theng(AUB)=g(4)Lg(B) (2.5)
where 1 is a r-conorm, It is easy to see that (2.5) implies the condition 2) of Definition

2.3.
Let C be a negation, then a set function

ACX, g(A)=CEA)) (2:6)

defines a r-norm based fuzzy measure. Let T be a t-norm. If AU B =X, then

8 (AN B)=g,(4) T & (B) 2.7
holds instead of Eq. (2.5). For Y4,B C X,

gAUB)1lg(ANB)=g(4)1g(B) (2.8)

8. AUB) T g (ANB)=g.(A) | 8 (B) (29)

3. Fuzzy Measures of Fuzzy Sets

A t-norm based fuzzy measure is defined by a mapping g: 2% — [0, 1]. In this sec-
tion we define it by a mapping from a family of all fuzzy subsets % (X)to [0, 1].

Definition 3.1 Let the membership function of a fuzzy set A be a simple function
n
A= ,Z X Xp; 3.1

where u; € [0, 1] and xp, denotes the characteristic function of a set D; (D; ND;=¢).
A fuzzy measure of fuzzy set A based on a -conorm 1 is defined as

~ n
gA)=L (mT18D)) (3.2)
where U D; =X, D ND;=¢(i#j)and, L and T fullfil the restricted distribution law

(see Weberg))
The restricted distribution law of L and T in Eq. (3.2) is written as
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aT@D)LleD))=@Te®@))L@TgD)) (33)
E@)1g@)) 1a=(D) Ta)L D) T a) (34)

for Va€[0,1] and YD;,D; C X.

In the remaining part of this paper we assume that L is the maximum V or a
nilpotent #-conorm with normed additive generator #, i.e. normed by ¢ (1) = 1. The
reasones why we assume as mentioned above are as follows. ‘

An additive generator ¢ of Archimedean f-conorm is unique up to a (positive)
multiplicative constant. v

In other words, if ¢, and ¢, = kt,, k > 0 are additive generators of 1; and L,
respectively, then

alyb=al, b. (35)

for all a, b € {0, 1]. The only continuous z-conorms which fullfil the restricted distribu-
tion law are \/ and nilpotent ¢-conorms with normed additive generators.

In the case of L =V, Egs. (3.3) and (3.4) are valid for any ¢-norm T . In the cases
of nilpotent #-conorms, if a fuzzy measure g is based on a nilpotent r-conorm with a
normed additive generator ¢ and g satisfies normalizing condition

2 (o) @)=1(1)=1 (36)

where fog denotes a composite function of ¢ and g, then the property of Egs. (3.3) and
(3.4) is satisfied by choosing a strict #-norm whose multiplicative generator is ¢
Schwyhla® and Kruse”) proposed a fuzzy integral for special nilpotent f-conorms,
which is the same formula as Eq. (3.2). By the condition g (X) = 1, for any finite
division D,,s,iil g(D;) = 1. Hence

2o @)>1 | 3.7

n
Furthermore if Zl (tog) D))=M> 1, then fora € (0, 1)
e

aT (:il gD))=aTl=a | (3.8)
and
L@Te))=r( Z t@X (to) @)
= 1% (¢ (@) X M)
#a ‘ (3.9)

Therefore the condition (3.6) is necessary so that g (4)in Eq. (3.2) is well defined
for nilpotent t-conorm based fuzzy measures. Equation (3.6) implies that gom is a finite

additive measure with (gom) (X) = 1, i.e. a probability measure.

Proposition 3.1 Let ujug = uq V 85 and pgng =14 N\ ug, where V and A are maxi-
mum and minimum respectively. Fuzzy measures of a fuzzy set 4 € % (X) have follow-
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ing properties.
1) £@)=0,g(X)=1and0<g(4)<1.
2) IfA CBtheng(d)<g(B).

3) g AUB)Lg(ANnB)=g(A)Lg(B),especiallyif A NB =¢,
gAVB)=gA)Lg(B).

4). If A is a crisp set, then g (4) L g (4)=1.

Proof. Since L and T are non-decreasing two place functions in unit interval, 1) and 2)
are trivial.

3) Let the membership functions of A and B be simple functions as

n
was= T

Z, X xo, R (3.10)

and

n
ug= X
i=1

Vi X Xp; k - - (3.11)
respectively, where y; and v; € [0, 1].

Since 1 is associative,
gAUB)LgANB)
=(L (v Te@) (L A Te@))
, ((ve) T e D) L(wAv) TeD)))
=L (wTe@))L:T D))
=L wre@1( L 6iTe@)))
=gy Lg® 6

-,

i

BN

Hence, if A N B = ¢ then g (4 UB) =g (A) L g (B).

4) I Aisacrispsetthend NA=¢and AU =X. Thus,g(A) Lg () =g (X) = 1.
Let g be a fuzzy measure based on 1, and let C be a negation, We define a set-func-
tion for VA €. F  as

g@ 2 Ccied) . (3.13)

where pj = Cy () and C, is a negation which is not necessarily equal to C. g, is also
a fuzzy measure with following properties.

Proposition 3.2

1) g($)=0, g (X)=1and0<g A)<L
2) IfAC Btheng, (A)<g, (B).
3) gc(zUE)T'gc(zn§)=gc(g)-r'gc (E)
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where T’ is a #-norm, the C-dual of ¢-conorm L. Especially if 4 U B = X then g, (A N
By=g. )78 (B).
4) IfAisacrispsettheng, (A) T g, (j) =0
Proof.
1) Let the membership functions be as in Egs. (3.10) and (3.11). Since

g @)= C(L (Cow)TE®))) (3.14)
ifA=¢,

e @=c(L aTe@)))=cm=o o 6)
If4=X,

£ =C(L 0Tg@)))=cO=1 (3.16)

2) It follows immediately since L and T are non-decreasing and, C and C are decreas-
ing functions.
3) Since gis based on a L and T is the C-dual z-norm of L,

CEAVUB)T'g. (ANB))

=C(C@@AUB)) T'Ce@ANB)))
=C(CE@NB)) T CEe@UE)))

=g(ANB)LgAUB)

=g D 1g®

=CC@@)T'ce®))

=C(g. (A) T'g. (B)) (3.17)

Hence, g, A VU B) T'g. (AN B) =g, (A) T'g, (B). Especially if 4 U B = X then

&e (an) =& (‘Z)T 8 (B)
4) Ifﬁlsacnspsetthen.ZUZ =XanddANnd-= ¢Hencegc(Zﬂ,Z) g (A

T'g ()=0
In what follows it is assumed that the negation C is equal to Cy, i.e. 7 =C (uz).

Proposition 3.3 Let T' and L' be C-dual of Land T respectively. When g (A) is written
as

e@=1 wTe®)), (3.18)
g (A) can be written as
g )= 1" (u1' s D)) (3.19)

Proof.
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g @)=CE @)
=c(L cw @)

G4 €& PD))

L g D;)) . (320)

The case where A4 is a crisp set and D; is an element x; € X is stated by Dubois and
Prade® and g (4) and g, (A) are called a ¢-conorm based fuzzy measure and a r-norm
based fuzzy measure respectively. See also remarks in Weber'®) for infinite universe set
X.

Proposition 3.4 Let g be a fuzzy measure based on a nilpotent f-conorm 1, then g is
also based on a nilpotent -norm. ‘

Proof. Let ¢, be the additive generator of 1.

gd)= ,.il_ 7 D))
=107 (800 )X 1o € 0))) | (321)

Lett, =1—to.Since fo (g (D)) =1~10 € (D;)) =11 (€ (D1) ),
f@ =17 (- £ (1t ()X 16 €D)))

1
=07 (2, nwX 1 € O)))

=T L e @) 622

where T, is a #-norm with normed additive generator ¢, .

Proposition 3.5 Let C be any negation and g be a fuzzy measure based on a nilpotent
t-conorm L. g, is based on the t-norm T' which is a C-dual of 1. Then g, is also based on
a nilpotent #-conorm.

Proof. Though we can readily see it by Proposition 3.4, let us show an another proof
so that the relation between g and g, is clarified.

Let g be a fuzzy measure based on a nilpotent #-conorm whose additive generator is
to. Then, for any negation C,

g M=Ced))
= (Cot™) (£ (tooCY ) X 1o € (D)) (3.23)
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Let ¢, (@) =1 — (20 C) (a), then
7t (B)=(Coto™')(1 —b) : (3.24)
Hence, we have
g @=7 (1= Z (-1, (@)X to D))
=57 (F 6 @)X (ot 010) @D))) (3:25)
to: [0, 1] = [0, 1] is an increasing function and C: {0, 1] = [0, 1] is a decreasing func-

tion. Therefore ¢, is an increasing function from [0, 1] to [0, 1]. Thus g, (4) can be
written as

ge )= L2 (T2 (Coto™ o1~ 26)) G (DY)
=l . ce@))

=L, wre.@) (3.26)

where 1, and T, are a t-conorm with additive generator #; =1 — (oo C) and a f-norm
with multiplicative generator ¢, respectively. Hence, it can be seen that g, is based on a
t-conorm l, with t,, while at the same time g, is based on C-dual #-norm T' of
t-conorm L with additive generator ¢,.

It is easy to see that Propositions 3.4 and 3.5 are true in the case where 4 is a crisp
setA.

Proposition 3.6 If C is generated by ¢, and a fuzzy measure g is based on a nilpotent
t-conorm | with generator ¢, then g is also based on the C-dual of the f-conorm, say the
t-norm T , namely g (4) = g, (4).
n
Proof. Since '21 t (g (D;) ) = 1 is assumed,
=
n ;
g@=r(Z t(w)Xt@Ed)))
n ,
=t (1= Z (-t@))XteD)))
=ce@) |
=g, (4) | 32D

Example3.1 Letalb=aV bandaT b=aAbwhereV ahd A are maximum and
minimum respectively. V and A are distributive binary operations. By Definition 3.3

g@=V uAg®)) | (3.28)

Since for any negation C, A and V are the C-duals of V and A respectively,
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& @)=A wVCED))) (3.29)
by proposition 3.3. Let g = II, then
YAIVE, n(@uB) =)V II(B) (3.30)

by 2) and 3) of Proposition 3.1. Zadeh’s possibility measures of fuzzy sets are recovered.
Furthermore, by 2) and 3) of Proposition 3.2,

VA,VB, NANB)=N@)ANB) (33D
where N = g,.. Necessity measures of fuzzy sets are also recovered.

Proposition 3.7 Let uVand u” be the maximum and the minimum value of member-
ship function of fuzzy set 4 C X respectively. Then

ph<g@<pVandp'<g @<pV ‘ (332)
Proof. Assuming that u; = k and & is a constant from [0, 1], .
~ n n
e @=L kTe@))=kT (L g@))=k (3:33)

Hence, by Proposition 3.1—2)

pr=g@r<g@<gdy)=p" (339
where uz \=u/Nand y iy= uVare assumed. By the monotone decreasingness of C,

CEVI<e@<CEh) (3:35)
where = C (1) is assumed. Thus,

CEEMHI<SCEA)N<CEEY) (3.36)

p<g. (A)y<pV N (3.37)

4, A Fuzzy Fault Tree for Soft Systéms

Fuzzy measures in the sense of Sugenol) can be considered as expressing the grade
of importance of attributes of evaluating objects. The measures of fuzzy set g (4) and
g (A) aggregate membership values by the grade of importance, and they can be seen as
the averaging operators in the sense of Dubois and Prade!!) from the property of
Proposition 3.7. . '

Since g (4) and g, (4) are mappings from.% (X)to [0,1], they also can be seen as
a membership functions of level-2 fuzzy set, i.c. a fuzzy set whose elements are fuzzy
sets. Denoting level-m fuzzy set as ™4 and defining recursively, measures of level-m
fuzzy set can be written as
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g Z)= 1 (& ("4 T 50 @1)

or

&)= (&AL E) @2)

where g denotes g or g, and g; and 8., stand for fuzzy measures assigned to each
element ™! 4;.

In this section we apply these notions to fault tree analysis. Let X denote the set of
all basic events x;. A denotes a subset of X such as a cut set. In the conventional fault
tree analysis, the occurence of top event is judged by the occurence of a cut set A.

Now we consider a fuzzy fault tree in which the state of basic event x; is repre-
sented by the membership value y; € [0, 1] and the state of top event is represented by
the measure of level m fuzzy set g (" A). Let the structure function ¥ € [0, 1] be a
function of vector g = (u;, -, M4, ). The structure function of fuzzy AND gate shown in
Fig. 4.1 is written as

V(=g @=1 g 43)
For fuzzy OR gate shown in Fig. 4.2,

V(=g @)=T wl'z) , (44)
Furthermore, for fuzzy NOT gate shown in Fig. 4.3,

¥ (2)=C (4;) 4.5)
OR, AND and NOT gates defined above fullfil DeMorgan-like property such as

NOT (x, ORx, OR - - . ORXx,)
= (NOT x,) AND (NOT x,) AND - . . AND (NOT%,)  (4.6)
The structure function of the left hand side of Eq. (4.6) is written as
n
V()=C(L (uTg)) 4.7
By the duality of Land T',and T and 1’
n —_—

V(=1 "Ck)le;) (4.8)

x

4% 4% | i

Fig. 4.1 An example of Fuzzy Fig. 4.2 An example of Fuzzy
AND gate (n=2). OR gate (n=2). Fig. 4.3 Fuzzy NOT gate.
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Equation (4.8) implies the right hand side of Eq. (4.6).

By applying three fuzzy gates OR, AND and NOT to a fault tree, a structure func-
tion can be obtained as the measure of level m fuzzy set in the form of Eq. (4.1) or
Eq. (4.2). The lower level fuzzy sets correspond to the modules of fault tree. Let

('ia I‘) = (I'l'l s oty Myl t s Mitls s I-ln) and (ai’ [l) = (“1 s "t Mie1s @y Mig1s = /-‘n)

Definition 4.1 If the structure function W (g is invariant with respect to y;, that is,
foralle € [0, 1] and (-;, p),

U (a5, )=V (1, 22) | (4.9)

holds, a basic event x; is said to be irrelevant to the structure W. ‘

In this paper we restrict ourselves to fuzzy measures based on V (possibility),
A (necessity) and nilpotent triangular conorms and norms so that measures of fuzzy set
g (A) and g, (A) are well defined. g (4) based on V is defined for any T as

~ n
gA)=V i Te&) (4.10)
And, g, (4) based on A is defined as

ge ()= A (u 12;) @“.11)

for any 1.

Proposition 4.1  If Vg; > 0 and Vg, > 0, then a basic event x; is irrelevant to the struc-
ture ¥ only when all gates in which the event x; is concerned are based on V or A.

Proof. By the restricted distributivity of L and T, any fuzzy gate which aggregates n
items (n > 2) can be represented by a hierarchy of fuzzy gates aggregating only two
items. Therefore it is sufficient to show the proof for the case of two level fault tree
shown in Fig. 4.4. Let ¥, and ¥, denote the structure functions of the gates G;and G,
“in Fig. 4.4 respectively. When the fuzzy gate G, is based on A and G, is any gate which
is not based onV, there exists u; € (0, 1) such that if u; > u, then u; >¥, (¥,,u,),
while u; <W¥; (¥,, 1) whenever u; <y, by proposition 3.7. Hence, x, is relevant to
the structure. It is easy to see that x, is relevant to the structure in other cases such as

) G,; basedon VvV, G, ; notbased on A
2) Gy;notbasedony, G,; based on A

Fig. 4.4 An example of two
level fault tree.
1% %
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3) G, ;notbasedon A, G, ; based on Vv
4) G, and G, are based on neither V norA.

When G, is just equal to A and G; is equal toV, ie. Vg; =1 in Eq. (4.10) and VEc_i =0
in Eq. (4.11), then x, is irrelevant.
Definition 4.2 When a structure functionW(#) satisfies the following two conditions,

W (pe) is said to be coherent.

1) Each basic event x; (i = 1, ---, n) is relevant to-the structure .
2) W (p)is non-decreasing with respect to each u; i = 1, ---, n).

By the non-decreasingness of f-norms and f-conorms, any structure function of
fuzzy fault tree without NOT gate is nondecreasing. Hence, if g2, = g2 (v}, t1y; = Maf)
then ¥ (u; ) =¥ (u;). Furthermore ¥ (0)= 0, ¥ (I) =1 and

n . n . .
A m<E@<Y b (4.12)

i=1

by Proposition 3.7.
Definition 4.3 A structure function of the dual fault tree W2 is defined as

VP (p)=C (¥ (5)) (4.13)

where #€ = (C (1), -+, C(kn)).

Replacing AND gates by OR gates and OR gates by AND gates we have a dual fault
tree whose fuzzy subset of basic events is A. A represents a fuzzy set of successful basic
events, whose membership function is C ().

Example 4.1 Let a L b-= min [1, (@? + b9) ]'/2 , g > 0. Additive generator of 1 is
t (@) =a and ¢ (g (D;) ) = p;. Then the structure function of OR gate is represented by

n ‘
gd)=( i§1 i X pptha : - (4.14)
When C (@) = 1 — a, AND gate is represented by
. n . . ‘ .
g @)=1-(Z (1-p)Xp)h (4.15)

Each structure function is reduced to the well known mean values shown in Table
4.1 depending on g.

If vy, € { 0, 1} and g - oo or ¢ = 0 then OR gate and AND gate are equivalent to
OR gate or AND gate of the conventional fault tree. Similarly by setting as in Egs.
(4.10) and (4.11)

£@)= V(T 8) | o @)
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Table 4.1 Mean values assumed by the structure functions in Example 4.1.
OR gate AND gate
V A
— o0 . .
q =1 M FAT
maximum minimum
5 3
. X p; X p;
g1 Z HXp 2, HiX e
arithmetic mean arithmetic mean
n n .
A1y - I -y
q9-0 When Vp; = % s When Vp; = —’11—-, dual
geometric mean of geometric mean
and
~ n —
e A)=N ley), N CEY)

where g is a possibility measure and g, is a necessity measure, we can define OR and
AND gates. It is easy to see that if Vg; = 1 and Vg, = O then Egs. (4.1) and (4.2) are
conventional structure functions of OR gate and AND gate respectively.

. 5. Concluding Remarks

The notion of fuzzy measures of fuzzy sets has been adopted to a fault tree of soft
systems. Fuzzy fault tree presented in this paper includes conventional fault tree in the
special case. And, fuzzy reliability graph may also be formulated along this line. These
attemption will develop wide variety of fault analysis not only for engineering systems
but also for social systems.
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