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A Formulation of Boundary Element Method

         for Mane Stress Problems

Tadakazu KATAYAMA" and Yoshihiko SUGIYAMA"

           (Received June 16, 1986)

   The paper presents a formulation of a boundary integral equation for a plane

stress problem, based upon Airy's stress function. The integral identity is derived from

the weighted residual expression for a biharmonic equation. The necessary boundary
integral equations are obtained by selecting a paoper singular two-point function as the

wetghting function in this identity. The sum of the normal stresses is obtained directly

from the boundary integral equations. Thus the stress disuibution on the boundary is

obtained easily. The resulted boundary integral equations are transformed into the

simultaneous algebraic equations by the discretization technique. The integrals on each

boundary segment (element) are evaluated analytically. [Ehe effectiveness of the

method is demonstrated by the two numerical examples.

                           1. introduction

   The integral equation method was already employed as a numerical approach to
pbysical problems in the early part of this centuryi). However the method could not

become an usefu1 numerical means in engineerings because of its numerical troublesome-

ness. The method got renewed in a form of a boundary element method (BEM) in the
middle of 1970s2). Since then, the method has fbund its applications in a wide area of

engineering3). in a stress analysis, a major formulation of BEM is based on a displace-

ment method because of its wide applicability. But the first obtained quantities in this

method are displacements and tractions at points on boundaries. The stresses on the

boundary have to be computed from the displacements and tractions on the boundary.

   The aim of this paper is to present a BEM fbrmulation based on Airy's stress

function for plane stress problems. Firstly, the integral identity is derired from the

weighted residual expression for a biharmonic equation in a finite region. Secondly, by

selecting a proper singular function as a weighting function, necessary boundary integral

equations are derived. Finally these equations are extended to an infinite regton. One of

the advantages of this method is that stresses along the boundary are obtained directly

from the boundary integral equations. Numerical applications of the proposed pro-

cedure to the extension problems of the infmite region with a hole are giyen. Variation

of a hoop stress along the boundary of typical hole configulations is investigated.

                       2. Airy'sStressFunction

   ln plane stress problems without body forces, a stress

duced to obtain, stress components as

function X is often intrd-
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      o. :ili2i,X', oi,'lt''oa.'2',X,T., =''i'L'' sOpu2Si ,' ,,, ''., '''' '' (i)

gqh.e,',e.X.".fa:,C,li,etrafu".C,O,?.gd.,i",a,',e$..F,r.o::.}fi.c.og}patibthtyequations,thegoveming

whereAisaLaplacian. ,follo tt: boundary conditions to X are given from surface tractions Xh and yh as

        tt           '             tt t      x = Iii'(!i9 Xh ds )ay - Ile(.!i9 Yh ds)du + Cix + C27 + C3 ,

                 '
                                   '                            '                                '      gltt = (4' xh ds)costvl n) -'(Ixe yhds) co,(x, .)

          +Ci cosix,n)+qcosly,n) (3)
Unknown constants Ci , Clz and C3 can be put to O for simply-connected region. On the

other hand, the constants are different each other for multiply-connected region and

determined by the conditions of single-valuedness of displacements and rotations4).

      Ii gl.T (Ax)ds =･o

           a e-      -4 tv sii- -xsiT,)4xds -o

           oa - ,      G.(XT. +7si7)axds.-O 1'' ･, i., (4)

where r is the contour of each hole.

3. BoundarylntegralFormulation

3.1.. internalproblems

   The weighted residu

ed as

al !epresentation for the governing equation (2) can be express-

      Jh(A2 x) ･v dst =O ･ (s)
where st is a region under consideration and v is a weighting function. Using the diver- '

gence theorem, Eq. (5) can be transfbrmed such that derivatives of the stress function

are not contained in a region intggral
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4,X ･A2 vdst + li {x illi ( Av) - Av ･ g/-
} dr

-4{v･-S}.-(`ax)
-ax･

Ov

On
}dr=o (6)

where n is an inward normal on a boundary r ofthe region st. We can derive necessary

boundary integral equations from Eq. (6), selecting a biharmonic function with proper

singularity as the weighting function v in Eq. (6).

   Following two-point function is first chosen,

v(e,P) = r2 (lnr L-- 1), r= 2P (7)

where P is an arbitrary fixed point in st and a is any point in the closure st + P and r is

a disymce between these points. The function (7) is biharmonic in the region st unless

the point e coinsides with the point P (otherwise r = O). Then we consider the region

fl, removed a circle ofa radius e centerd at P from the original region st (Fig. 1). In this

case, Eq. (6) yields,

･(b+c, {x i3i (Av) - Av g/li
}dr - 4+ ee{   oV 5ii' ( ZSX) - zVc

Ov

an
}dr=o (s)

Using the mean value theorem, the integral on the circle C, becomes

G,(' '･ ･･ ･) dl" = 8rrX lo - 8re ine g/÷

e

+ 2Te2 (lae2 - 1)･Ax lo - 2Te3 (lne - 1)
azax

an e (9)
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Fig. 1 Field point- in a region
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where ( )b means the value of function at a proper pointeon C,. The limite･O

in Eq. (9) yields

      ?.m., lbk('""')dP"87Xp ao)
          '
Therefore, the internal value representation is obtained in terms of the boundary

                                                 '
      8vrX, = 4Ib(K, (P, e)q,(e) + K, (P, e)q2(e))dre

            + Ib(K3 (P, e)q3 (e)+K4 (P,e)q4(e))dPe , (1 1)

where kernel functions Ki (P, 2) are

                 1 Or
      Ki (P, e) = -7 a. , K2 (P, 2) " lnr

                           t.      K3 (P, e)=- oO. {r2 (lnr - 1)}, K4 (P, e)= r2 (lnr - 1) (1 2)

                                  '

and the boundary functions qi(e) are

      qi(e)=X2, q2(e)=(OX/On)e

      q3(e)=(AX)e, q4(e)=(aAX/an)e (13)

Stresses at any internal points are calculated from Eq. (1) with relation (1 1).

   To obtain the relations between the boundary functions qi(e), the pointPis taken

on the boundary P and a half circular region of radius e centered at Pis removed from

region st (Fig. 2). Then Eq. (6) yields '

   4 .Ci,(Kiqi +K2q2)dr + Ib,(K3q3 +K4q4)dl"

        4
      = T G.qidl' + e(lne2 - 1) G,q3dr

                -4ine G,q2dr -e2(lne- 1) G,q4 dlr (1 4)

                                  '
                                    '
integrand of the first integral in a left-hand side becomes infinite when r=O, so this

integral is an improper integral. On the other hand, the second term include no singu-

larity. Then the integral over r, tends to the integral over r as e-->O. Due to the

boundedness of the boundary functions qi, the right-hand terms take finite values as

e -> O. Finaly, we obtain



             dw       E

              r

                  n

              9

               Fig. 2
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                       +K2q2)dP+4(K3q3+K4q4)dr (15)

where ep is an internal angle of contour at P and equal to rr if the curve r is smooth.

   Another relation between boundary quantities can be obtained in a sirnilar manner.

As a weighting function, we choose

                                                         '        '
      v(C,P)=lnr, r='l2P" ' . , (16)
                                            '                                        '
Then Eq. (6) yields

                                             '                                                      '      tpq3(P)=4(Kiq3+K2q4)dP . (17)
                                 tt                                         '                             '                 '                                                 'In Eqs. (15) and (17), boundary values qi and q2 are given from the boundary con-

ditions (3). Then the unknown boundary values q3 and q4 are obtained by solving

the simultaneous integral equations (1 5) and (17).

3.2. Externalproblems

   In order to treat an external problem, a very good care ofthe bghavior of the stress

function at infinity must be taken. From the uniqueness conditions for a biharmonic

function defined in an infinite region, function X must behave as

      X(P)=O(R), R.oo ' ' (18)
An asymptotic expansion of Eq. (1 1) in terms of R yields

                                                     '                                '                                            '       8Tx, =R2(lnR - 1) Jiq4dr +x(lnR2 - 1) Ii(q3 [li/l- - q4E)dr

                                   '            +7(lnR2 - 1)4(q, gl/l; - q,n)dr

    '    ' +lnR.(i(4ti2-2q3rc ba'.e +q4re2)dl'+O(1) ' ' (lg)
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                   Eig.3. Notations ip-an iiifTmite region

 where (x, p) and (g, n) are Cartesian coordinates to points P and e, respectively (Fig. 3).

 To satisfy the condition (18), first three terms must vanish in the right-hand side of

Eq. (19). So we obtain ' '' ' '
                '
                                    '
       4q4(e)dr = o

       4(q3(c) g/- - q,(e)t)dp = o

       4(q3(e)81tt-q4(e)n)dr=o ･ (2o)
                                  '                                        '                            '       '                    '                                           '
 Since in this situation the terms of O(R) are simultaneously removed, the term ax

 + tw + 7 have to be added to right-hand side of Eq. (11).

       8vrXp･ = 44(K, (P, e)q, (e) + K, (P, C)q, (e))dP

            + Ii(K3 (P, e)q3(e) + K, (P, C)q,(e))dli

                              '               tt            +ax'+By+of ' ･ '- (21)
             tt                tttt                          '                                            '                                       '                              '                                     '                t tt                                                  '
'Ihe unknown constants or, B and 7 are now td be deterrnined from the conditions (20)

,which are equivalent to the uniqueness conditions of displacements and rotations

around the edge of the hOles. For example, Eq. (20)2 is rewritten as follows;

                                tt      4, {(`sx)i g/l÷ - g ,-O. (zsx)/} dp -.4,'(zs)o g'?-dt'- .4,g illi- (Ax)dr

      =(AX)n 1". -4(EY/ +n lll-) zsxdr (22)

The first term in the right-hand side ofabove equation vanishes due to the single-valued-

ness of stresses. Thus Eq. (20)2 is equivalent to Eq. (4)2 .
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                      4. ,. Numerical Treatmen.t

   Since it is'in general very difficult to sdl"e analytically the simultaneous boundary

integral equations (15) and (17), these equations must be discretized and numerically

solved. First the boundary is devided into IV smail segments' (elements) as shown in

Fig. 4. An integral over an element is evaluated by means of a numerical quadrature,

uslng values of function at given nodal points ny. Assuming the boundary functions to

be constant over each element and taking in turn a point P in Eqs. (15) and (17) to

a nodal point 4, 2N algebraic equations are obtained as

4<bq i (Plr) =i;", { 4Plfiq i (]P7) + 4Giiq2 (l}) + Hijq3 (I>) + Rijq4 (JP]f) }

                    '        +ex'p.i+PYpi+7 .
¢q3(Plr) =il ,{F)iq3(I}) + Gijq4(l})} ' (23)

where.

,F1,f

dy

x JivKi (Plr, C)dra

= Ii>K3(Plr, e)dve

Gij

Rij

= /ivK2 (Pir, e)dl'a

= 4>K4(P}･ e)dPe (24)

R･

   i
x,fG

L
R

Fig. 4 Subdivisioris of a boundary and nodal points

Constants a, P and 7 in the above equations are set equal to zero in an internal problem,

and determined from additional discretized versions of Eqs. (20) in an external problem.

It is difficult to calculate the integrals (24) for a general path. However if the path isa

1inear segment, these terms can be integrated exactly. Hence the smdl curved element is

replaced with two 1inear 1ines which connect the central nodal point and the terminal

points of the element as shown in Fig. 5b. The values of each integral are calculated by

means of the fb!lowing analytical results.

[i] NeitherpointAnorpointBcoineideswithnodalpointPlr: ･

Ii = tiK, (Pi, e)dlb = Q

     L           'I2 = If"K2 (Plr, e)dre =aln ('f-) cose + h(lnb - 1) +aW sine

                  -
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                     '           '                                 '     ,(t'K3(Plr, e)dlle =asine [2ain (-ili)cose + h (inb2 - 3) + 2aWsine]

     IIFK4(P}, e)drb = -i- wa3 sin3 e

            t tt       + -!I- [(b2 + 2a2 sin2 e)( lnb - -g-) - a2 sin2 e] ･-

                                  '           + aC30Se [(b2 +2a2 sin2e)lnf+(a2 -b2)(lna- -g-)] (2s)

                                         '
                 '[li] ･Point A or B coincides with nodal point ,Plr:

    '
     '
     F}i = ･C･, Ki (Plr, e)dPe = vr - 9o

     1 BK2(Pli, e)dPe = h(lnh - 1)

     lfK,(i}, e)dl}2 - O

                 '       K4 (Plr, e) dre= ilT..h3 (lnh- {I-) (26)     e

where the symbols in the above equations are defined in Fig. 5.

  Stresses at an intemal point are calculated by using the following equations

                  '
     ox = ".it", [qi(ny)6 ao2y5i dp+q,e)s bo2:2 dp]

        ' {l.ti-/ti [q3(&)6 Oo2753 dp+q4(ny)s Oa2y54 dp]

              B
                  h
                       A

                 a*
           PY, (a) (b)

                   B oc (C)

Fig. 5

x

         A･
Notations for a linear element
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                                        o2K2                        a2Kl          IN      oy = 7. i.Z, [qi(&) ･C:i a.2 dP + q2 (4) ･Cii o.2 dPl

      '          + sih-tN, [q3e) Jiii I2.53 dr+q,e)6 Oo2.5` dp].

      T., -- ". ,z". r., [q,(jek) .{iii glKbyi dp +q,(j}}) Iiii g2.lljl dp ]

                                                 '                                                '                                                    '                                      '          - gt. ,/,, [q3 (4) Ji,, glg,' dr+q,(&) 6 g2.st dp] (2,)

integrals involved in the above equations are also ana!ytically evaluated for the linear

path. The results are as foilows; . ..
                                               '

      lf Oi.g' dr=-ij aa2y5i dp=(", -?l,t)sin2a ,,,

                         h11      ,'ij }2.g, ,,.--2ak"ei.iil ZO,S2.-.li(.T' --T')".7os(?ff+el] ,

                           '      ai }2xg3 dr=2(ii -is sina-I6 cosa+i7asine) ' ..''

                               '                                 '      gi 12t. Kt ,4 dr = 2i2 + hcos 2a - 4a sine (Is sina + I6 cosa)

      IIP }2y53 dv = 2ui + is sin or + i6 cosa - i7 asine)

                    '                        '
      lilgai.l.,:ilih.:,,--hli,llSi,a.',,i"sineusst?a+4,.,.,

                                                    '                                        '              '
                          h11      , -2asine[T, sin2a-(-sr,-T, )atm(2q+e)]

                 tt                '      ti O,2.5; dp=is '' ' '

         Io2K3       'lti              dr = 2(Is cosa - I6 sina + Is qsine)
          oxay . ･
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      cti g2xg dp=hsin2a+4asine(iscosa-i6sina) (28)

where li andl2 are defipe.d. inEq.(25),and ,.' .,. -
                                     tt                                '               '                       tt t                                   '                                         '      Is =ln(a!b)cosa- ip slna '
                                tt      k=ln(alb)slna+",cosa. , ･, .'･
                                             '                '                                         '                       11 '      il =(hlb2)cgs2a -( T, T? )a,cosf2a+e)

      '                  '                           .t.                               '             '                    '                                      tt                  t tt                      11 ･      ,Is =(hlb2)tm 2a -( b-,- - T, )asin (2a+e) ' '(29)

                  t ttt
where a is the angle between the linear path AB and the positive x-atcis. (Fig. 5c).

                      5. NumericalExamples

5. 1 . Hoop stress around a cireulat hole

   'Ihe stresses around a circblar hole are calculated in the infinite region in a state of

simple tensle stress S as shown in Fig. 6. This example is one of the most standard

problems in two-dimensiorial elasticity5) and selected to verify the vabdity of the pro-

posed method. Numhers of elements are taken as 12, 18, 24 arid 30. The numerical

results of the tangoptial stress ae are plotted along the edge in Fig. 7 and compared with

the analytical one shown by a solid lme. It is seen that 12element-approximation even

gives a good agreement with the exact solution.
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5.2. Hoop stress alongabulged square hole' 'i

   When a plate with a hole is･extended, a high stress concentration occurs around the

hole. Since a stress concentration is a bug to the strength of the plate, the stfess distri-

bution should be as flattened as possible. Smoothing of the stress distribution is con-

sidered for the bulged square hole with rounded corners in the infinite fegion under the

simple tensile stress S as shown.in Fig. 8. The corner radius r of the bulged square hole is

assumed to be a!3, where a is a halflength of the side of the square hole. Figure 9 shows

the variations of tangential stresses with respect to the height h of top. and bottom

bulges. It is seen that a high stress concentration occurs at the corner-part, when the top

and bottom sides do not butged, that is h = O. As the height of the bulge increases, the

stresses at the corner decreases gradudly and the one along the bulged part AB in-

creases. The almost fiattened distplbution of, the stress is shown in Fig. 10 with the

stress distribution for the non-bulged case. It is observed that the buige, only 1 1.32% of

a halflength ofthe side, reduces the stress concentration considerably.
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Fig. 8 Bulged square hole in an infinite plate
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Fig. 9 Vatiations of tangentia1 stress with

respect to the buige height
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                      6. ConcludngRemarks

   The present paper has proposed a formulation of BEM based on the stress method.

The obtained boundary integral equations are numerically solved after discretizations.

The integrals on the boundary elements are evaluated analytically by assuming a pair of

linear' paths. The expressions for the integrals over the linear path are given in closed

forms. The tangenha1 stress on the boundary can be obtained easdy, because the un-

known quantities q'3 in the boundary relations ･gives the sum of the normal stresses. It is

verified through the examples that the BEM proposed here is useful and eflbctive for

solving the plane stress problems.
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