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(Received June 16, 1986)

In this paper the line current along the combined dissymmetrical multi-conductor
transmission system is calculated by making use of the position angle matrix. Detailed
numerical examples are presented on calculation of the successive reflections of waves.

1. Introduction

In the previous paper?) we dealt with the boundary value problem in the cascade
connected symmetrical multi-conductor transmission system. Then we gave analytically
the line potential of any point in the compact form by using the position angle matrix
and showed some numerical results for a practical example concerning such a problem.
Problems of this type are of special engineering interest in connection with the design of
ground wires and other protective schemes, and, in general, in the study of traveling
waves. :

In this paper our method is applied to the calculation of the line current along the
combined dissymmetrical multi-conductor transmission system. The assumption is more
generalized than that of the previous paperl), that is, different lines are connected in
series and the arrangement of conductors at any stage is dissymmetrical. But there is the
electric source at the sending point only and no initial value of voltage or current on the
transmission system in this paper. :

By introducing position angle matrices it has been able to describe most simply the
line current even in such a more generalized system. Moreover it has been shown that
this acquisition may be construed well reasonably. This does not lead only to carry out
the computations with ease, but also this leads to get equations of currents of such a
system from the diagram directly using the position angles. Thus the solution can be got
without solving the boundary value problem of partial differential equations. As a result
of this theory, a useful methodology has been established so that the combined dis-
symmetrical muiti-conductor transmission system may be analyzed very simply and
easily.

The numerical calculations in the case of the three stage cascade connected sym-
metrical two-conductor transmission system as a simple and practical example for the
above method are given in this paper. They may catry out systematically programs for
calculating by using the digital computer and repeating the same calculation very
readily.
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2. .General Solutions

By way of ﬂlustratlon of the general equatlons cons1der the circuit of Fig. 1, which
is the i-stage combined dissymmetrical n-conductor transmission system. It shows a pair
of traveling voltage and current ‘waves at an arbitrary pomt X; on the s-th stage line,
matrices [e;(x,)] and [i;(x,)] in operatlonal form, Then we have the following well
known equations?. '

Line | Line 2 Line¢

' Fig. 1 Simplified equivalent circuit of many stage cascade connected multi:
conductor transmission system.

~ 3 L] = )] To()] o

- 6CD] = (4@ [es) @)
where, . | .

[Z,0)] = [Ls]p+ [Ry] = [pLy + R,] \ @

[Y,(0)] = [Glp+ G =[pC,+G,] @)

and [R], [Ls], [C,] and [G;] are n X n matrices representing the resistance, induct-
ance, capacitance and leakance per unit length of transmission line. From Eqs. (1) and
(2), we obtain

2 :
'_3 [i(x5)] = (8] [i5(x5)] ; 4 " (%)
Lo )] = = [8%] = [x)] o o ®
where, _ ’
[£:)% = [Y:(P)] [Zs(D)] = [PC, + Gl [pLs+Rs] )
[g*) = [Y, (@] = [pCs + Gg] ' O ®

The general solution for Eq. (5) is given®) by

[ig(x,)] = sinh [g,] ,- [&5] + cosh [g,] x, - [B] | ©)
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where integral constants [a] and [Bs] are determined so as to satisfy the boundary
conditions.

Substituting Eq. (9) in (6), and solving for the potential, there results

[es(x5)] = — [25*] [g5] (cosh [g] X+ []
+sinh [gs] Xg* [Bs] ) ’ ) (10)

3. Current Waves ;

Consider first the circuit Fig. 2, a n-conductor transmission system having a length
1,. A group of voltage sources [Eo(#)] and a group of impedances [Z, ] are in series at
the sending terminal and a group of impedances [Z,] is at the receiving terminal.

Then the boundary conditions may be expressed as '

' '[El(O,f)]=[Eo(t)-]—[le[11(9,1‘)] ﬂ ~an
[E1(11,0] = [2;] [1,(lh,0)] : . (12)
Line‘ ‘l
LERx, )]
7[I|(X|,t)]
“ T

B

' Fig.2 Fundamiental circuit of nconductor transmission system.
It will be also convenient to introduce the notation
les(x1)] =L [Ey(x1,D)]

(1 (x)] = £ [L(x1, )]
[eo] =L[Eo(D]

Then Eqs. (11) and (12) become | ; '
[e1(0)] = [eo] — [Z,]1i1(0)] (13)
[ex(1)] = [Z2][ia (7)) . a9

in which the matrices [Z.l] and [Zz] are the operational forms of [Z,] and [Z,].
From Egs. (9), (10) and (14), [, ] and [8, ] turn out to be

[a] = —SH([g: )0 + [82]) {CH([£:11 +[62])} ~ [1:(0)]
(15)
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[8:] = [11(0)] ‘ 16)
where
tanh [8*] = sinh [8*] (cosh [6*])™*
"= (cosh [6*])~! sinh [5¥]
= [g] ™ [g*]! [2] (17)
Substituting Eqs. (15) and (16) in (9) there results

[i1(x1)] = CH {[g1] (h —x1) +'[8:*1}
X {CH([g:11 + [6:]) } ™ [11(0)] | (18)

It is evident that Eq. (18) is a type of natural multi-dimensional expansion when the
current is represented using the position angle. ‘
Equation (18) may be rewritten as

[CH {[g] ( —x1)+ [81} 17" [i1(x1)]
= {CH([g:14 + [82]) } * [1(0)] (19)

The position angle matrices in the positive direction of x; from the point 4 and at
the point 4, when the point B is assumed to be the standard point, are written by
[8:1 (4 — x;) +[6*] and [g,]]; +[85*], respectively. Equation (19) shows that the
matrix product at an arbitrary point of a line [CH{ [g1]1(y —xy)+[85* ]} 17 i1 Gey)]
has a constant vatue, "

Now take the case, Fig. 3, of the two-stage transmission system having the same
constants as in the previous case. Then the fundamental circuit equations are:

[ei(x1)] =— [£:*] [81] (cosh [g1] xy -[ay] +sinh [g,]x,-[B1])

(20)
[#(x1)] = sinh [g,] %1-[a;] + cosh [gy] ;- [6,] @1)
[ex(x2)] == [g2*] [g2] (cosh [g3] ¥, -[;] +sinh [g,] %, -[6,])
@2)
[12(x2)] = sinh [g,] %, - [a] + cosh [g;] ¥; - [82] @3)
and the boundary conditions are
[e1(0)] = [e0] — [Z1] [11(0)] | (24)

[ex(1)] = [:0)] = [Z,] ()] - [2©)]) ' (25)
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(i) Linel () [Go)  Line 2 [

— x,—(ex]
{aea)

[Eo]
.

—— xp —r(E2(%2)
{ taveel

Fig.3 An equivalent circuit of cascade connected polyphase transmission
system.

le2(B2)] = [Z5] [i2(12)] : (26)

There are only four integration constants to be determined from the terminal condi-
tions. Referring to above equations, there is

[y ] =—([Q*] cosh [g;]1, +sinh [g;17,)™ ([2*] sinh [g,]1,

+cosh [g;] 1y) [,(0)] 27
[6:] = [::0)] f | 28)
(0] =—SH([g:]1 + {85]) {CH([g:15 + [83]) } 7! [1,(0)]
| | (29)
(21 = [12(0)] (30)
[2%] = [[U] + { TH([g]1, + [85*]) } * tanh [57%,]]
X (tanh [6*])7! @3

in which
tanh [85*] = [g,]7" [g*] ! [Zz]
tanh [§%,] = (217" (8217 [Z,]
tanh [83*] = [g,]7" [£:*] 7 [Z5]
The impedance matrix [Z;] looking from the end terminal of line 1 toward line 2,

and the impedance matrix [Z; ] looking from the start terminal of line 2 toward the end
terminal are related as ‘

[£:]7 =[Z,]7" + [£.]
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Thus
217 [e*) (1] = [Z2]7" (4] [&n]
+ [2:]17 (8] [22] [82]7" [82*]7 [22] (2,17 &%) [&1]
(32)

Putting the position angle matrix lookmg from the end terminal of line 1 toward line 2
[#:*], there is : : \ :

TH [¢*] = [&1] 7! [e*]17 [£4]

and since [g211, +[635*%] is the position angle matrix looking from the start terminal of
line 2 toward the end terminal, the next relation holds

TH([g:11 + [85*]) = [g217" [55*] . [2.]
Therefore Eq. (32) becomes ‘
(TH [¢#1)™ = (tanh [6,41)7" + {TH([g,1% + [8+]) }
X tanh [857,] (tanh (81"
= (2]
and Eq. (27) becomes

[e] = — { CH (18] + [£1112) } ™ SH ([6] + [£214) [12(0)]
(33)

where [¢,] is the conjugate position angle matrix of [¢,] which satisfies the next
relation .

SH [¢] (CH [¢])™ = (CH [¢])™* SH [4]
Substituting Egs. (28) ~ (30) and (37) in (21) and (23)

[i1(x1)] = CH {[g1] (1 - x1) + [}

X{cn(tgllzuw D} ‘[11(0)] R <
[120:2)] = CH {[g2] (1 - %2) + [634] } -
X {CH(lg2112 + [851) }  [2(0)] (35)

Comparison of Egs. (34) and (35) with Fig. 3, it shows that the content of these
equations is the same as that of Eq. (18). In other words, both Eqs. (34) and (35) show
that the equation multiplied the current matrix by the inverse matrix of the pseudo-
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hyperbolic cosine of the position angle from the left side has constant value.

In the following examples the -application of the general equations derived above is
restricted to three stages. Increasing the number of stages involved merely magnifies the
amount of calculation that must be done. In general, complete set of equations for the
s-th stage may be written:

[is(x)] = CH {[g] (4 —x)+ [¢*] }
X{CH([gxlz + [ } 7 [5,0)] - G6)

where [¢s*] is the position angle matrix lookmg from the end termmal of hne a toward
the receiving terminal of transmission system. The details of the solutions for this case
will not be undertaken here. : : ‘ .
Thus, the operation equations for the current at an arbltrary point on a transmis-
sion line is
[is(x5)] = CH [65t] (SH [65*])7 sinh [851] TL CH [9c*]
a: —
X (SH [651)™" sinh [8g5,]-[Z1] [eo] .6
where
[es;] = [gs] (ls - xs) + [¢s*]
[05] = [65%:] + [go] 1o + [¢5*]
(TH [¢g1 1) = [[U] + { TH(Igo) 1o + [65]) }~* tanh [8.5]]
X (tanh [851)7 |
1
JLCH [62] -(SH [04])™ sinh [8gn] = [U]
tanh [85%] = [go-—l]-1 [got1] o [Z~o]
tanh [8%] = [g] 7 (e8] [Z,].
TH [¢,*] = tanh [5,*] = [&] ™ [g*] ** [Z)]

This is the general operational equation, whose solution, subject to the circﬁit
conditions, yields the explicit equations of the transmission line transients. If the posi-
tion angle matrix is used, the current equation can be obtained easﬂy w1thout solvmg
the boundary value problem of partial differential equations. _

Thus, if [e] is given at the sending point as a function of time and all the param-
eters are known in operational form, then the voltages and currents along the lines are

determined by solving the above equations. In particular, if e, , e,, ..., €, are sinusoidal
waves, the solution may be obtained by operational calculus.

4. Numerical Examples
In this chapter there are given the numerical results for the circuit of 3-stage line
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Dot t) Tod%e {) R3
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Fig. 4 Two-conductor system grounded through resistances.

Taixalt)

132(13 t)
Eovt) Iy (xt) FATY)
Ra FRs
02(t)

£ —

system as Fig. 4. These very simple 2-conductor circuits adequately illustrate the
method of analysis with minimum amount of algebraic exercise. Referring to Fig. 3,

let
[Ly)=[L,]=[Ls]={L M
M L
[Gl=[Cl=[Gl=|Cc C
c C
[Ry]=[R;)={R3]=|R+R'" R’
R’ R+R'
[Gi] = [G;] = [Gs] = [0]
for which:
L =1.585 mH/km, M= 0.364 mH/km
C=0.00746 yF/km, C' =-0.00167 uF/km
and the line lengths are

1, =450km, I, =300km, I3 =450km.

The line resistances, ground-return circuit resistances, grounding resistances etc., are

" taken as shown in Table 1.

Now, it is obviously [Z,] = [0] in Fig. 4, then Eq. (37), putting [8;

simp]jfy to

Table 1 Parameters

m] = [0],

Conductor | Conductor | Ey (1) )| R, | R, | R, | R, | Ry | R, | R, | Line]Groundsetum
! 2 ow|loew| | @|@| @|@|e| @l @ )
(o] ° 1.0 0.5 100 | 1,000 | 100 | 1,000 10 20 30 0.02 1
=3 1.0 0.5 | 1,000 100 | 100 | 1,000 100 20 30 0.01 1
A A 1.0 0.5 1,000 100 { 100 1,000 1,000 20 30 0.02 3
X * sin wt | cos wt 100 | 1,000 { 100 | 1,000 100 20 30 0.02 3

w =196.352 (I/s)
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Fig. 5 Current distributions of lines when the sources at sending points are

assumed.
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[11G0)] =CH {[&] (s —x1) + [641} {SH([&:]0 + [#1) }
X (817 [2#]7 [eo]
lis(x5)] = CH [6%] - (SH[0,*])~" sinh [55%]
X 1 CH[$21-(SH[8 1) sinh [] CHIp#)
X {SH([&:]10 + (62D} 7 [&1]7 [6*]7* [eo]
where

$s=>2, iIICH [¢5*]) -(SH[64#]1)" sinh [82,] = (U]

Figures 5(a) to 5(h) show results of numerical calculation obtained. On these figures are
recorded the current distributions along the lines.

5. Conclusions

In view of the foregoing discussion, we may conclude that introduction of the posi-
tion angle matrix makes for simplification the representation of line currents in a
multiple-stage, multiple-conductor transmission system. The line current can be found
from the system circuit diagram without solving each tedious boundary-value problem
with partial differential equations. If this is done a relatively simple method of calcula-
tion is available as will be shown. The resuits based upon this method show good agree-
ment with those obtained by solving the differential equations.
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