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A Method of Optimal Control in Nonlinear Systems
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The derivation of optimal nonlinear feedback control laws for nonlinear systems
with non-quadratic performance critearia is presented by using inverse optimum con-
trol problem. The nonlinear systems under the consideration are restricted to the
systems which are nonlinear with respect to the state variables. The validity of this
method is shown by numerical examples.

1. Introduction

It has been long time since the optimal state feedback control law of a linear system
that is represented by the L.Q.G. problem has constructed. And it has been reported
that these theories are effective in the domain that is approx1mately linearized in an
actual nonlinear system in various fields* -4,

However, the nonlinear regulator is essentially demanded in the nonlinear system
which shows the remarkable nonlinearity so that various methods of the optimal regu-
lator for the nonlinear systems have been considered. For example, the method approxi-
mating the nonlinear system by the connection of several linear systems and the
method using Liapunov function are proposed.

In this paper we propose a new method that asymptotically stabilizes the non-
linear system and minimizes a certain cost function by tsing a Liapunov function. It will
be considered that this method is one improving on the method proposed by Jacobson.

2 Problem Statement

Let us consider the optimal control problem such that the system is nonhnear w1th
respect to the state variables only;

x=f(x)+Bu : | @

where x and u are the n X 1 state vector and the r X 1 control vector, f(x)is nonlinear
vector valued function of # dimensions which is differential with respect to state vector
x, and B is a matrix of appropriate dimensions. Equation (1) is a familiar nonlinear dif-
ferential equation, for instance, the equation of the transient motion of the generator in
power system. ‘ ,

Now we define the cost performance function as
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where g(x) is a positive function of the state x, u; is the i-th component of control
vector # and p, k are integer respectively.
It is the purpose of this paper to find the optimal control that minimizes the cost
function Eq. (2) in the nonlinear system.

3. Stabilization and Optimal Control

Supposing the positive function ¥ (x) of the state vector x, we consider the follow-
ing control using the gradient of V(x).

2kt1

us= —2: [{Vx(x)Bl JEN Y 3)

where Vy(x) denotes the gradient of the Liapunov function V(x), p and k are integer
respectively, and 17 is given by
f'_—i%
1;: [9, 0,-,0,1,0, ...,9] T 4
M
Each components of the vector u are defined by

2k+1
U =-= [Vx(x)bi] 1 i= 1’2’3""sf (5)

where b; is the i-th column vector of the matrix B,

(Theorem)

Suppose that there exists a radially unbounded, positive function V(x), such that
Vx(x)f(x)is negative semi-difinite. Then the control of Eq. (5) globally asymptotically
stabilizes Eq. (1) and minimizes the cost function Eq. (2) in the class of control func-
tions which causes x(t)—> 0 as ¢ > oo,

(Proof)

First, we show that the positive function V(x) satisfies a Liapunov function of the
system Eq. (1).

2k+1
V(x)=Vy(x)x = Vx(x) [f(x)- BE {(Vx(x)Bli) T }]
: r 20ptkt1)
= Ve (x)f(x) _i§1 [V (x)b;] 2p+1 ©

Since the Vy(x)f(x)is negative semi-definite and 2(p + k + 1) is even, V(x) <O and
V(x) becomes a Liapunov function of Eq.(1). Control Eq. (5) therefore globally
asymptotically stabilizes Eq. (1).

Next, the algebraic Hamilton-Jacobi-Bellman equation for this case becomes as
follows '
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e+l ’ 2(;;c+k+1)
. ; 2K+ =
min [4() + 22 & + V() {f0)+ 2, b} ]
Q)
By differentiating about u;, we may write down
2p+1
u 21+ Ve(x)b; =0 ®
thus the control which minimizes the cost function is given by
2k+1
u; = — [Ve(x)b;] 2" )]
Substituting Eq. (9) into Eq. (7) yields
+ 2(pt+k+1)
q(x) =~ Vyx(x)f(x) + m > [Ve(x)b;] 2P*1 (10)
Along a solution of Eq. (1) we have
V(x0)— V(xw) + [ V(x)dt=0 an
so that
. )
V(xo) = Vixw) + f; Va(x) [f(x) + Z ;] d2 =0 (12)
Adding Eq. (12) to Eq. (2) and substituting (10), there results
oo 4
= V(o) = V(x) + [T [V () {Fx) + 2, bitti } — V() F(x)
A N U AEY R W P
2prk+l) st 2ptk+1)i=1 !
(13)

Since we chose u; from the class of functions which causes x(7) > 0 as ¢ = oo, V(x(=°))
= 0 and the controls Eq. (9) minimize the integral in Eq. (13) to give its minimum
value of zero. Hence V(x,) becomes the minimum value of J.

Jmin = V(xo) 14)

4. Numerical Examples and Discussion

This principle of the optimal control is valid for essentially nonlinear systems. To
show this, we present the simplest interesting system. Our analytical examples are rather
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elementary, whereas these examples do not carry over into more compelx systems, the
behavior is in many ways similar to that observed in the more complex cases.

(Example 1)

Consider the second order nonlinear system
*=f(x)+Bu ' (15)
| R 1 N
where x = (x1,%;)7, f(x) = ( -5 sin2 (xy —x3) ~x; 3 sin 2 (x; — x,))T
2 -1 |
B= ,u=(u1,u2)T
B S |

In terms of this matrix we may then express the Liapunov function for this system by
the equation

1 ' ‘
V() =—sin® (xy — 3y) 4 %1 e

when p =1, k = 1, the control which gives an asymptotically stable solution for Eq. (15)
is written as

2
u=—Z Ve(x)[B1}11]

—3sin (x; — x3) éos (x1 —x3) — 2%y
- [ | an

2 sin (x4 ~— xg) cos (x4 ;xz)'+ Xy
Calculating d V/dt gives

N 1 1,
V(x)=-— [—2——sm 2 (x; —Xx3)+x,]? ———4—sm22 (%1 —x3)

3
- [TSiIIZ(xl '—XQ)+2x1]2 - [Sin2(x1 —x2)+x1]2 <0
(18)
It is evident that the ongm is a stable equilibrium point by usmg the nonlinear feedback

control Eq. (17). And this control Eq. (17) also minimizes the following cost function.

J=j:° [‘% sin22(x1 —x2)+9x1 Sin2(xl —x2)+6x12] dt (19)

Figure 1 illustrates the phase diagram of x; and x, showing how they start from
initial state (1.0, —1.0) for two cases of the optimal nonlinear feedback control and no
control. It will be seen that in the case of no control both x, and x, diverge, but in the
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Fig. 1 Phase diagram of x, and x, (Dotted line is for no control, solid line is
for optimal control.).

K17

1.0
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Fig. 2 Time response curves of x, and x, (Dotted lines are for no control,
solid lines are for optimal control.).

case of the optimal nonlinear feedback control the both converge to the origin.

Figure 2 shows the time responses of the states x; and x, for two cases respectively.
Both the x; and x, decrease in value and approach coincidence.and zero without oscil-
lations, . o
Figure 3 is the same as Fig. 2 but for u, and u,. It is the characteristic of optimal
regulator to take the large control values in the initial time.

Figures 4, 5 and 6 illustrate the dominating influence of the initial state (1.0,
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Fig. 3  Time response curves of u, and u,.
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Fig. 4 Phase diagram of x, and x, (Dotted line is for no control, solid line is
for optimal control.).
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Fig. 5 Time response curves of x, and x, (Dotted lines are for no control,
solid lines are for optimal control.).
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Fig. 6 Time response curves of u, and u,.

1.0). As the time increases, the shapes of curves approach coincidence and zero, and
there is little difference of their characteristics between no control and optimal control.

Hence, it will be appreciated that the success of this method depends on the system
states being of widely different values.
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(Example 2)
Next, we consider the nonlinear system, in Eq. (15),
—sin (xy — Xx3) cos (X3 — X3) — X4
f(x)= (20)

sin (x; — X3) cos (X5 — X3) — X,

As the Liapunov function, we choose

1 1
V(x) =% sin? (x; — x3) +——2-— x,2 +—2-x22 @1

When p = 3, k = 6, the optimal control and dV/dt are given as follows;

13
—(3sin(x; —x3) cos (x; —x,) +2x; —x;3) 7 v
u= - 13 (22)
—(—2sin (x; — x3) cos (x; — x2) — X +X3) 7

V(x)=— [sin (x; — x5) cos (x; —x;) +x,]
— [—sin (x4 — x3) cos (x; — x3) +x2]\2
20
— [3sin (x; — x3) cos (x; — x5) +2x; —x,].7
20

— [—2sin(x; —x3) cos(x; — x,) — X, +x2]T<O (23)

In this case, the optimal control Eq. (22) minimizes the following function.

20
wrf 3 . - :
J= [{—2—sm2(x1 —X3)+2x, —xz} T+ {—sm2(x1 —x3)
‘ 20 :
—xy+x,} 7 ) dt (24)
In a similar way, when p = 3, k = 1, the following equation are obtained.
3
— (3sin (x; — X5) cos (X1 — X3) +2x; —X,) 7 :
u= 3 25)

—(—2sin(x; —x3)cos(x; —x;) —x, +x2)T
V(x)=— [sin (x; — X3) cos (x; —X3) +x,]?
— [—sin (x; —x3) cos (x; —x3) +x,]2 o
— [3sin (¥, —X2) €08 (¥ — %;) +2%; _x,]'_z;

— [<2sin (xy —x3) cos(x; —x3) —x, +x2]7<0 (26)
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10
wrf 3 . = .
J=/, [{—?sm %o(xl —X5) +2x4 —xz} 7+ {—sm2(x1 - X3)

—xy4x, ) 7 )dt @7

Figure 7 illustrates the pase diagram of x; and x, for two cases of p =3, k =6 and
p=3, k=1. Though the x, and x, converge to the origin in either case, a little dif-
ference of their characteristics of convergency can be seen.

X2

4071

20t

-40 20 ¢ 20 40 x

-20F .

-40}

Fig. 7 Phase diagram of x, and x, (Dotted line is for the case of p =3,k = 6,
solid line is for the case of p = 3, Kk = 1.).

Figures 8 and 9 show the time responses of the states x;, x, and the control varia-
bles u, and u,. In the case of p=3, k=6, both the deviations of x; and x, decrease in
value rapidly in the early time, but it takes sufficient time until the ultimate convergence
to the origin. In the case of p=3, k=1, the deviations of x; and x, moderately converage
to ';efb.' These differences of control characteristics can be deduced from the time
response characteristics of u; and u, in Fig. 9, that is, the time responses of control
variables u; and u, are largely different in the case of p =3, ¥ =6 and in the case of
p =3, k=1. In the case of p = 3, k = 6, seeing the optimal control function Eq. (22), it
is obvious that the absolute values of u; and u, rapidly decrease according to the
decrease of x, and x,. As for the case of p =3, k = 1, the optimal control variables ,
and u, have reasonable values, even when the states x; and x, have approached zero.
Thus the optimal control in the case of p = 3, k = 1 shows better characteristics of con-
vergence in the neighbor of zero. On the contrary, the optimal control in the case of
p =3, k = 6 is effective for the large deviations of the states x; and x, . Therefore it is to
be desired that the suitable values of p and k that meets the purpose of control are
chosen.
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Fig. 8 Time response curves of x, and x, (Dotted lines are for the case of
p =3, k = 6, solid lines are for the case of p =3,k =1.).

Uplz

40

20

Fig. 9 Time response curves of u, and u, (Dotted lines are for the case of
p = 3, k = 6, solid lines are for the caseof p = 3,k = 1.).
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(Example 3)
It is generally difficult to determine V (x)that contents the conditions, V(x)> 0,

V(x) <0, Vy(x)f(x) <O. |
We next consider, as such example, the system that f(x) is given the following equa-
tion in Eq. (15).
f(x)= (e +x5, —x1 +x2)T (28)
In this case, we choose the next equation for V{(x).
V(x)=x* +x.° ‘ (29)
Repeating the procedure used for the previous example, whenp =1,k =1
— 8x 13 + 4x 23 ]
u= ‘ (30)
4x 13 — 4x23
The optimal control Eq. (30) minimizes the following cost function
T=[7[16 (5x,% — 6x,3x5> +2x,°) + 4x; x5 (57 —x,)

—4(x% +x,%)] dt : 31

In Fig. 10, 11 and 12 are shown the phase diagram of x,, x, and their time
responses.

Y|
010 Qe 10 20 x,
10t
20

Fig. 10 Phase diagram of x, and x, (Dotted line is for no control, solid line is
for optimal control.).
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Fig.11 Time response curves of x, and x, (Dotted lines are for no control,
solid lines are for optimal control.).
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Fig. 12 Time response curves of u, and u, .
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In the examples 1 and 2 we were able to find a well-conditioned Liapunov function
to derive the nonlinear feedback control for the problem. Unfortunately, equation (29)
for example 3 is not always V<0, and so it is difficult to use it in showing that this is
the optimum system as were able to do for examples 1 and 2. However, it has been
shown that in the domain in which the state deviations are large, the control using it
drives the system states to a neighbor of the origin. It is apparent that the examples 1
and 2 are superior to example 3 in terms of response time for a nonlinear system
control.

It must be emphasized that the concept of this paper is the direction in which we
find improvements in the response time of the system. We comment that these improve-
ments come about basically due to the new optimal function which demands upon our
resource.

5. Conclusions

We have shown that certain nonlinear systems can be controlled by using the non-
linear state feedback control. In this paper the method is limited to the nonlinear dif-
ferential equation systems which are nonlinear with respect to the state variables. How-
ever this type of system is seen sometimes in the generator equations in power system.
Hence, although the system considered as the numerical examples in this paper was not
ones in power system, it is expected that the method proposed here will be useful to
control the transient behaviour of the generator in power system.
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