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A Method ef Optimal Centrol in Nonlinear Systems

Hiroaki KAWABATA", Hidekuni HASHrzUME"", YoShio INAGAKI",

  Yoshiaki SHIRAO ", Toshikuni NAGAHARA " and Masao KIDO"

                (Received June 16, 1986)

   The derivation of optimal nonlineaf feedback control laws for nonlinear systems

with non-quadratic perforrnance critearia is presented by using inverse optimum con-

trol problem. The nonlinear systems under the- conslderation are,restricted to the

systems which are nonlinear with respect to the state variables. [Ihe validity of this

method is shown by numerical examples.

                          1. lntroduction

   It has been long time since the optimal state feedback control law of a linear system

that is rePresented by the L.Q.G. problem has constructed. And it has beeri reported

that these theories are effective in the domain that is approximately linearized in an

actual nonlmear system in various fieldsi-4). ' '' '' ''' ' ' ･ ･
   However, the nonlinear regulator is essentiafiy demanded in the nonlinear system

which shows the remarkable nonlinearity so that various methods of the optimal regu-

lator for the nonlinear systems have been considered. For example, the method approxi-

mating the nonlinear system by the connection of severaj 1inear syst.ems, and the

method using liapunov function are proposed.'

   ln this paper we propose a new method that asymptotically stabilizes the pon-

1inear system and minimizes a certain cost function by "sing a Liapunov function. It will

be eonsidered that this methOd is one improving on the method proposed by Jacobson.
  '      tt t / tt ttt tt tttt tt/t tttt tt                       t.. tt tt                                                            '

      ' 2. PfoblemStatement,
   I.pt us consider the optimal control problem such that the system is nonlinear with

respect to the state variables only;

                                     '

        ab=f(x)+Bu ' ' ･ (1)
where x and u are the n × 1 state vector and the r × 1 control vector,f(x)is nonlinear

vector valued function o'f n dimensions which is diffeTential with respect to state vector

x, and B is a matrix of appropriate dimehsions. Equation (1) is a fammaar nonlinear dif-

ferential equation, for instance, the equation of the transient motion of the generator in

power system.
   Now we define the cost performance functi6n as

       J=.c"Eq(x)+ 2(2pk++ki+i)iS, .}Zl,IIIIIfiliUk+i ]dt (2)

 *
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where q(x) is a positive function of the state x, ui is the i-th component of control

vector u and p, k are integer respectively.

   It is the purpose of this paper to find the optimal control that minimizes the cost

function Eq. (2) in the nonlinear system.

                 3. StabilizationandOptimalControl

   Supposing the positive function V(x) of the state vector x,

ing control using the gradient of V(x).

we consider the foilow- f

                      2k+1      " = -i,[{Vlt(X)Bl;} 2P+i . Ip

where Vlt(x) denotes the gradient of the liapunov function

respectively, and 1;･ is given by

             i'
          -      1;= [o, o, -･, o, 1,o, ･･･, e] T

          s...-..------.,--.-.-.d..-v

                 r
Each components ofthe vector u are defined by

                   2k+1
      ui=-[V],(x)bi] 2P" i'-'･ 1,2,3,･-,i

(3)

V(x), p and k are integer

(4)

(5)

where bi is the i-th column vector of the matrix B.

(Theorem)

   Suppose that there exists a radially unbounded, positive function V(x), such that

V],(x)f(x)is negative semi-difinite. Then the control of Eq. (5) globally asymptotically

stabilizes Eq. (1) and minimizes the cost function Eq. (2) in the class of control func-

tions which causes x(t). O as t . oo.

(Prooij

   First, we show that the positive function V(x) satisfies a liapunov function of the

system Eq. (1).

      ti(x)= Vis (x)･ab = V3, (x) Lf(x)-B,S, {( Vbe (x)Bi;) 2P+i .II }]

                             '                       '                                2lp+k+1)
          =pJlt(x)i(x)-,z.',[vl,(x)bi] 2p+i (6)

Since the VN(x)f(x)is negative semi-definite and 2(p+k+ 1) is even, ti(x)<O and

V(x) becomes a liapunov function of Eq.(1). Control Eq. (5) therefbre globally

asymptotically stabtazes Eq. (1).

   Next, the algebraic Hamilton-Jacobi-Bellman equation for this case becomes as

fonows
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                                   '           '                         r 2(P+k+1) r'      m.,in [q(x)+ 2(;k++ki+' i) i;, ui 2k"i + vbe(x){f(x)+i;, biui}l=o

                                                       (7)

By differentiating about ui, we may write down

        2p+1

      ui2k'i +p?],(x)bi -'-o (8)
thus the control which minimizes the cost function is given by

                   2k+1
      ui ---- -[Vl (x)bi] 2P"i (g)
Substituting Eq. (9) into Eq. (7) yields

                                         '                         2p+l r 2ip+k+1)
      q(X)"- Plt(X)f(X)+ 2(p.k.1) ,Zf,[V],(x)bi] 2P+i (lo)

                                             '
Along a solution of Eq. (1) we have

      V(xo)- V(x..)+J"V(x)dt =O (1 1)

so that

                        tt            'r      V(xo) - V(x..)+J 'O P'lv (x) [f(x)+,Z.,biui] dt=O (12)

Adding Eq. (12) to Eq. (2) and substituting (1 O), there results

      J= V(xo) - V(x.)+J"[ Vl, (x) {f(x) +,Z.',biui} - Vlt (x)f(x)

                             2(p+k+1)                                                 2(p+k+1)         +2(;P+k+ll)iZ.',[v]t(x)bi] 2p+1 +2(;k++kl+1)iSl.i 2k+i ]dt

                                                       (13)

Since we chose ui from the class of functions which causesx(t) .O as t. eo, V(x(eo))

= O and the controls Eq. (9) minimize the integral in Eq. (13) to give' its minimum

value ofzero. Hence V(xo)becomes the minimum value ofX

      ･Ihiin=V(xo) (14)
                 4. NumericalExamplesandDiseussion

   This principle of the optimal control is valid for essentially nonlinear systems. To

show this, we present the simplest interesting system. Our analytical examples are rather
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elementary, whereas these examples do 4ot carry over into more compeix systems, the

behavior is in m ap. , y ways similar to that observed in the more complex cases.

(Example 1)

   Consider the second order nonlinear syst.em ,

      S =f(x) + Bu . (1 5)
                                                    '                    'where x = (xi , x2)T, f(x) = ( --Il sin 2 (xi - x2) - xi ,Sl sin 2 (xi - x2 ))T

                                '                    t t. t. t t t t /ttt ttt t ltt ttt ttt
      B.= ti Tii] ,u=(ui,u2)T

in terms of this rnatrix we may then express the liapunov function for this system by

the equation -'･ ,
                                   '                     /tt t t. tt                                            '                                '                                  '                               '      V(x)=tsln2 (xi -x2)+t xi2 J., ,. ,, (i6)

when p = 1 , k = 1, the control which gives an asymptotically stable solution fbr Eq. (15)

is written as

      "=-£, Vbe (x) [Bl,2]1,2 , ,

                                          '                                       tt                                          '       =[-32wa(i.i,IX.2,))C,O.i,((X.,',IX.2,))T.tr.,i]'' (17)

                         '                       t ttt t tCalculatingdP7dtgives ' ' '' '
                        '                          '                            '      V(x)'= - [÷S-sin 2 (xi -x2)+xi1･? - -S- sin22 (xi - x2)

                       '                                                         '            - [-;- sin 2 (xi - x2)+ 2xi]2 - [sin 2 (xi - x2)+xi]2 (O '

                                        , (18)
 '

 t-,, -,, ,/ .- , /-.                                      tttIt is evident that the origin is a stable equMbrium point by using the qonlinear feedback

control Eq. (17). And this control Eq. (17) also minimizes the following cost function.

                                                  '
                           . .t                  '            15               sin22(xi - x2)+ 9xi sin2 (xi - x2)+ 6xi2] dt (19)      J-nc[
            4
                                        '                      '
   Figure 1 maustrates the' phasie diagram ofxi and'x2 showing how they start from

initial state (1 .0, -1 .0) fbr two cases of the optimal nonlinear feedback contrpl and no

control. It will be seen that in the case of no control both xi and x2 diverge, but in the

'
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Fig. 2 Time respense curves of xi and x2
solid lines are for optimal contr61.).

(Dotted lines are for no control,

case of the optimal nonlinear feedback control the both converge to the origin.

   Figure 2 shows the time responses of the states xi and x2 for two cases respectively.

Bbth the xi and x2 decrease in value and approach coincidence･and zero without oscil-

                                          '
   Figure 3 is the same as Fig. 2 but for ui and u2.It is the characteristic of optima!

regulator to take the 1arge control values in the initia1 time.

   Figures 4, 5 and 6 illustrate the dominating infiuence of the initial state (1.0,
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Fig. 6 Nme response curves of ui and u2 .

1.0). As the time increases, the shapes of curves approach coincidence 'and zero, and

there is little difference of their characteristics between no control and optimal control.

   Hence, it wru be appreciated that the success of this method depends on the system

states being ofwidely different values.
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Mxample 2)

   Next, we consider the nonlinear system, in Eq. (15),

     f(x) . [- su1 (Xl -X2) COS (Xl -X2)-Xl                                   l

           L sin (xi - x2) cos (xi - 'x2) -x2 J

As the Liapunov function, we choose

             '                         '                        '                 '               '                  '      V(x) =Tlt sin2 (xi - x2) +-S- xi2 + -It x22

When p = 3, k = 6, the optimal control and dV71dt are given as fo11ows;

                                       L3
      ..[:2S,iSXI.1l2･l,iO:i,X2.il2;,.l.-2X.iJi.2,),Il,i,]

      P(x)= - [sin (xl - x2) cos (xl - x2)+x,]2

           - [- sin (Xl - x2) cos (xl - x2)+x2]'2

                                         Lt
           - [3 sin (xi - x2) cos (xi - x2)+ 2xi - x2] 7

                                          20'
           - [-2 sin (xl - x2) cos (xl - x2)-xl +x2]T< o

(20)

(21)

(22)

(23)

ln this case, the optimal control Eq. (22) minimizes the following function.

                              20  J="[{-ll-sin 2 (xl - x,) + 2x, - x, }T+ {- sin 2 (x, - x,)

   ,, ･ 20 ･                 ttt     - xl +x2} 7] dt

in a similar way, when p = 3, k = 1 , the following equation are obtained.

                                    i
        (3 sin (xl - x2) cos (xl - X2)+ 2Xl - X2) 73 )   ""t
      L-(-2 sin .(x, - x,) cos (x, -x2).x, +x2)T7' J

   V(X)=- [sin (xi -x2) cos (xl -x2)+x,]2 -

        - [- Sin (Xl - X2) COS (Xi - X2)+x2]2

                                      Lt
        - [3 sip (xl -x2)cos (xl -x2)+ 2xl -X2] 71o

        - [;2 sin (xl - x2) cos (xl -x2)-xl +x2] .7 <o

(24)

(25)･

(26)
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　　　Figure　7銀lustrates　the　pase　diagram　of　x　l　a盤dκ2　fヒ）r　two　cases　ofρ＝3，κ＝6alld

ρ＝3，た＝1．Thoug虹theκ1　andκ2　converge　to　the　orighl　i亘either　case，　a　httle　d量f」

fbrence　of　thek　characteristics　of　convergency　can　be　seen．

X
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40
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一40 一20 ’
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、
、

2ρ 40 X
1、

、
、

一2ρ

、　　、　　　、

、
、
、

・＼

一4、O

Fig．7　Phase　diagram　of；κ1　andκ2（Dotted　1垂ne　is　for　the　case　ofρ需3，た旨6，

　　　　　so賎d　hne　is　fol　the　case　ofρ＝36κ＝1．）．

　　　Figures　8　and　g　show　the　t㎞e　responses　of　the　statesκ1，κ2　a籍d　the．　control　varia・

blesε41　and諺2．In　the　case　ofρ墨3，1ヒ＝6，　both　the　deviations　of　x　l　andκ2　decrease　in

value　rapidly　hl　the　early　t㎞e，　but　it　takes　suf最cient　t㎞e　untn　the　ult㎞ate　convergence

to　the　origin．　In　the　case　ofρ＝3，κ＝1，the　deviations　ofκ1　andκ2　moderately　converage

to　l　ze歪。．’
shese　diffbrences　of　control　characterk；tics　can　be．　deduced丘om　the　time

lesponse　characteristics　of衡1　andπ2　in　Fig．9，　that　is，　the　time　res戸011ses　of　control

variables〃1　andμ2　are　largely　diffbrent㎞the．　case　ofρ＝3，1ヒ36and㎞the　case　of

ρ83，κ禺1．㎞the　case　ofρ＝3，κ冨6，seeing　the　opt㎞al　control　fUnct茸on　Eq．（22），　it

is　obvious　that　the　abso粟ute　values　of　I41　andμ2　rapidly．decrease．accordi蹴g　to　t血e

decrease　of：κ1　andκ2．As　fbr　the　case　ofρ胃3，た＝1，the　optimal　control　variablesμ1「

andπ2　have　reasonable　values，　even　when　the　states　x　l　andκ2　have　approached　zero．

Thus　the　optimal　co鍛trol　in　the　case　ofρ＝3，ん＝1shows　better　chamcteristics　of　con・

vergence　in　the　nei菖hbor　of　zero．　On　the　contraly，　the　optimal．control　hl　the　case　of

ρ＝3，κ＝6is　e簿ctive　fbr　the　large．　dev圭ations　bf　the　states　x　l　a難d　x2・Therefヒ～re　it　is　to

be　desired　that　the　suitable　values　ofρand滝that　meets．the　purpose　of　control　are

chose11．
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  (Example 3)

' It is generally difficult to determine V(x)that contents the conditions,

  .  V(x) ( O, Vbe (x)f(x) ( O.

     We next consider, as such example,

  tion in Eq. (15). . -

        f(x)= (x12 +x2,-xl +x22)T

     In this case, we choose the next equation fbr V(x).

        V(x) = x14 + x24

  Repeating the procedure used for the previous example, when p = 1 , k = 1

        u-[-21:l:`az3,]

  The optimal control Eq. (30) minimizes the fbllowing cost function

                                            '        J= J:e[16 (5xi6 - 6xi3x23 + 2x26)+ 4xix2 (x22 -xi2)

           -4(xi5 +x25),] dt ･

     In Fig.10, 11 and 12 are shown the phase diagram of xi,x2 and

 responses.

X
2
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  ' in the examples 1 and 2 we were able to find a well-conditioned Liapunov function

to derive the nonlinear feedback control fbr the problem. Unfortunately, equation (29)

                       .for example 3 is not always V( O, and so it is difficult to use it in showing that this is

the optirrium system as were able to do fbr examples 1 and 2. However, it has been

shown that in the domain in which the state deviations are large, the control using it

drives the system states to a neighbor of the origin. It is apparent that the examples1

and 2 are superior to example 3 in terms of response time for a nonliRear system

control.

   It must be emphasized that the concept of this paper is the direction in which we

find improvements in the response time of the system. We comment that these improve-

ments come about basically due to the new optimal function which demands upon our

resource.

                           5. Conclusions

   We have shown that certain nonlinear systems can be controlled by using the non-

1inear state feedback control. ln this paper the method is limited to the nonlinear dif-

ferential equation systems which are nonlinear with respect to the state variables. How-

ever this type of system is seen sometimes in the generator equations in power system.

Hence, although the system considered as the numerical examples in this paper was not

ones in power system, it is expected that the method proposed here wM be usefu1 to

control the transient behaviour of the generator in power system.

1
)2)

3
)4)
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