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A design method for approximate pole placement is developed by using nonlinear
programming. The approach is especially useful in the design of output feedback con-
trol system for large space structures, where the total number of actuators and sensors
is small compared to the number of critical vibrational modes and exact pole place-
ment is not possible. Two types of objective functions are proposed: one is the weight-
ed sum of the pole location errors in the complex plane and. the other is the function
of the mode damping ratios. Both of these objective functions provide reasonable
design parameters when they are applied to a numerical example of a tendon control
system for a flexible beam structure.

1. Introduction

The dimensions of space structures being considered for future application are quite
large. That of a solar power satellite, for instance, would be on the order of several
kilometers. These large space structures (LSS) could be carried into orbit and deployed
or assembled there, and they would be extremely mechanically flexible due to the size
of these structures and lightweight construction materials. Further, they have very low
rigidity and light damping, which may require active control technology to damp out
vibrations caused by periodic or random disturbances in space environment.

A variety of ideas of actively controlled LSS has been proposed with their hardware
implementations. The authors presented in the previous work an idea of tendon control
system for a beam-like truss structure and investigated the stability of the closed-loop
system using direct output feedback.!) LSS has a large number of vibrational modes,
and thus exact pole location of all these critical modes by output feedback is not
possible when the number of available control devices is limited.

In this paper, a general approach to optimum design of output feedback control is
proposed via a nonlinear programming technique. This approach is quite useful for ap-
proximate pole placement and it also provides a systematic design procedure consider-
ing the modal contribution to the control performance. Numerical examples of a tendon
control system are given to demonstrate the capability of the proposed approach.

2. Output Feedback Control of Flexible Structures

In control problems, large complex structures in space are approximated as a more
simple structural element such as a beam, plate, or thin shell.?) Let us consider here a
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beam-like truss structure with uniform elements and approximate it as an equivalent
beam element. If the transverse shear rigidity is large, the dynamic behavior of the
structure is governed by Euler-Bernoulli beam equation:

__ 22 *y(x,
y ;gf ) LB g)ff D Fix) @2.1)
Flx, 1)= i’f‘%f—” 22)

pA : mass per unit length
ET : equivallent bending rigidity

where y(x,t) represents instantaneous displacements of the beam off its equilibrium
position, and F(x,t) and M(x,t) are respectively applied control force and moment
distributions.

The displacement y(x,t) can be represented by a linear combination of space-
dependent eigen functions muitiplied by time-dependent generalized coordinates,
H,(1):

Y(1)= E Yal(x)Hn(1) @3)

Introducing Eq.(2.3) into Eq.(2.1) and applying orthogonality conditions of eigen
functions, one can derive the mode equations for the generalized coordinates:

2
d*g;&'*wszfm(t):Qm(t) (m=1,2,..) (24)
O (8) = [F(x,1) Y, () @)

where @, (t) are so-called generalized modal control forces.

The design objective of direct output feedback control using sensors and actuators
located on the structural element is addressed here. The sensor outputs are multiplied
by appropriate gain factors directly to generate the actuator commands. No state
estimation is involved in this approach and, consequently the on-board computer
requirement is reduced. The designer substantially can choose the type of the sensors
(e.g. linear or angular displacement/velocity sensors) and actuators (e.g. thrusters or
torquers). However, the maximum number of available control devices and their pos-
sible placement are usually limited.

Here we consider a direct output feedback control using one actuator and a couple
of displacement/velocity sensors. If, for instance, angular displacement/velocity sensors
and a moment actuator are adopted for the system, the control moment M(x, t) and
generalized force Q,,(¢) are given as follows

M(x,t)=~{K, ay( 1) Kz—%(%f’tl)}a(x_z,,) (2.6)
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where K; and K, are feedback gains,l, and /; are actuator and sensor positions, re-
spectively, and § (x) denotes Dirac delta function.

Thus, characteristic equation of the closed-loop system can be derived in case of
lower N modes considered:

£u(5) =N+ D sV oy P, 2N=2k 4 p  2N=-QIeH) ..

+D2N__1S+D2N=0 (28)
where
o
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n=1
Dyi=(K,/K;)D &8 T Wi w2
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(ny #ny % $n,k=1,2,,N) t(29)
N XN N N
=K. Y Y 2052 2
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(n¥n $ny $--¥m,k=1,2,-,N) g

The factors B,, are given in Table 1, according to the type of applied actuator and
$ensors.

Table 1  Value of the factor By, in Eq.(2.9).

SENSOR ACTUATOR B,
LINEAR THRUSTER Y, (U9 Y,(p)/edl
ANGULAR THRUSTER Y, (U Y,()/eAl

3. Optimum Design via Nonlinear Programming

The basic objective of the structural control system is pole placement of the critical
modes. In output feedback control, exact pole placement is possible only when the con-
trol devices (i.e. sensors and actuators) satisfy the observability and controllability con-
ditions, and their ‘total number exceeds the twice the number of controlled modes.?) If
these requirements cannot be satisfied, as usual in LSS control, exact pole placement is
not possible. However an approximate pole placement algorithm could be employed to
relocate the poles into some prescribed region of the complex plane or to minimize the
location errors. A genéral approach to this problem is proposed in this section.

Since fundamental purpose of the approximate pole placement can be regarded as
to relocate the closed-loop poles to the desired locations in the complex plane as close
as possible, this problem generally could be solved by using an optimization technique.
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The total pole location errors in the complex plane would be a reasonable candidate
for the objective function to be minimized in this approach:

2N
1Ky Kasla 1) = 2,01 | PUKy Ko s ) — Py |? 3.1

where Py(K,K3;l,,l) and Py (i=1, 2, -, 2N) are the 2N characteristic roots of the
closed-loop system and their desired locations, and a;(i=1, 2, -+, 2N) are associated
weighting factors. '

Another index of performance could be defined, considering the desired damping
ratios of V critical modes, §'d].(]' =1,2,,N):

N
JZ(KI,K2;layls)= ?a]' {gf(Kl ’K2;la’ ls) - i‘11]‘}2 (3'2)

where

a-
G =—_J—/|al,2]+—ﬁjz’Pi=ai+\/__lﬁi

Thus, approximate poles location problem reduces to the determination of the
optimum gains (K, and K,) and control device placements (/, and /) which minimize
the objective function defined as above. The problem constraints are that Py(K,; ,K,,1,,
I) (i=1, 2, -, 2N) satisfy the characteristic equation and the values of design para-
meters (i.e. K ,K,,l,, and [;) are within some prescribed boundary: i.e.

fc(Pi(Kl’K2;la’ls))=0 (i=1129 ’2N) (33)

gj(Kl’KZ;la’ ls)<0 (]= 1$ 21 ) nc) (34)

The optimization problem with equality and inequality constraints generally can be
solved by using multiplier method.®> However, straightforward application of this tech-
nique to the equality constraint, eq.(3.3), is difficult because the characteristic roots P,
are implicit functions of the design parameters. Henceforth, the proposed optimization
algorithm explicitly solves the updated characteristic equation for the roots to re-
compute the objective function and its gradients. Then, the augmented Lagrangean
function is defined by

Le(x, 2)=J(x) +]_'>;fl z—ltj[max {0, N+1g;(x)} 2= M1 (3.5)

where 2 =(\;, A5, -, )\nc)T andr=(ty,t,, -, t,,c)T are penalty parameters.

In the optimization scheme the following steps are carried out:

Step O: Given initial design parameters x° = (K, K31, ), 0 <A ER"c,
0<t°€R", €>0,k=0.

Step 1: Solve the characteristic equation f, (x* + §x) = 0 and obtain 2N roots
Py,Py, -, Py

Step 2: Compute objective function J(x* * 8x) and augmented Lagrangean func-
tion L,k(xk + 8x,2%).

Step 3: Approximate gradients 8Lz%/0x by central differences and improve design
parameters iteratively for unconstrained minimization by use of a con-
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jugate gradient method.5) Repeat Steps 1 and 2 for updated design para-
meters. If optimal x* is obtained then go to Step 4.

Step 4: Update penalty parameters 2% and #* according to ordinary multiplier
method.®) If

k
Qk}l <e

max l max{g,-(xk), -
i .
then complete the iteration, and otherwise return to Step 1 with k =k + 1.

4. Numerical Example

A numerical example is given in this section to illustrate the application of the pro-
posed design procedure. The problem analysed here is taken from the tendon control
system for a beamlike space structure formerly studied by the authors.)) The flexible
truss structure deployed from the rigid spacecraft is modeled as a cantilever beam with
an equivallent bending rigidity ET=7.17 X 107 [Nm], mass per unit length p4 = 0.875
[Kg/m] and length I=150[m] (See Ref. 1 for more detailed data). In Table 2 the
mode frequencies are given up to the fourth mode. The modes with higher frequencies
are truncated from the dynamic model.

As shown in Fig. 1, the tendon actuator is a type of torquer consisting of a couple
of force actuators with linkages of tensile wires and generates control moment at the
arm point. In the following we design direct output feedback control using angular dis-

Table 2 Natural frequencies of a beam.

MODE NUMBER | FREQUENCY w, (rad/sec)
n=1 1.41359
n=2 8.86272
n=3 24.82514
n=4 48.64171
< Ly ———— |- tendon
— —> moment arm
P | [
Pl e
4
Z A
] ] L
~] . .~ force actuator V /M
/-—'
-] «—>
-~ N
tension
js M
< 2

Fig.1 Tendon control system for beam vibration suppression.
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placement/velocity sensors located at the same position, i.e. [, = I; = I,. Such a place-
ment of the actuator and sensor at the same position of the structure is refered to “col-
location”, and has advantages in that it assures stable closed-loop pole locations in the
case of a proper velocity damping and the spillover terms due to unmodeled modes do
not cause instability. v

The design parameters of this control system are the feedback gains K; and K, for
the angular displacement and angular velocity, respectively, and the collocation position
I.. Closed-loop poles of the system moves in the complex plane according to these three
parameters, as shown, for instance, in Fig. 2.

'm ||||
21205 % 50 2710 =10 50
K, = K;=0
K
R, % R,
~50 -50
a) b)

Fig. 2 Root locus plot of closed-loop system using angula velocity feedback.

Numerical analysis of optimization, using the two proposed objective functions, is
described in the following.

Examine first the objective function J, and optimize the damping ratios for the
critical modes. The proposed optimization algorithm is applied, taking the feedback
gains K; and K, as design parameters whereas the collocation position /, is preassigned
and fixed in the optimization. In the optimization, the desired damping ratios are
assumed to be §'d]. =0.5 and the weighting factors are set g; = 1 for all j. Inequality con-
straints are introduced as

Re{ PUK,.Kpilly) } <O (i=1,2,,2N)
where Re{ . } means the real part of { . } .

The optimum gains KT and K¥ are sought for a number of different collocation
positions and the resulting optimum objective function J, (K%, K¥; 1) is plotted in Fig.
3 as a function of [,/I. The optimum gains, achieved damping ratios and pole locations
are listed in Table 3 for three collocation positions, (i.e. /,/I = 0.083, 0.6 and 1.0) where
the objective function exhibits distinct local minima.

Fig. 4 illustrates the variation of the objective function in the (K;, K;) plane. No
local minimum is observed in this example. The results of optimization for different
values of the desired (target) damping ratios are shown in Table 4. The collocation posi-
tion is fixed at the beam edge and the optimum gains are sought for three values of
§‘dl.(i.e. §di= 0.2,0.4 and 0.6).

The objective function J; is useful as long as the closed-loop poles have complex
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0.083 0.6 1.0 ¢/ c/ 1
Fig. 3 Variation of minimum objective function as a function of collocation
position.

Table 3 Results of optimization for three different collocation positions. (lc/l =0.083,0.6,1.0)
(2) 1./l =0.083

FEEDBACK GAINS MODAL DAMPING RATIOS
OPTIMUM J,
K, K, & §, s § a
—7.187 X 10°¢ 7.704 X 10° 0.1026 0.5037 0.3666 0.5393 0.2114
RE. PART —0.2414 | -2.906 |-12.18 —7.946
POLE LOCATIONS
IM. PART 0.4139 7.374 19.02 36.73
®)1,/1=0.6
FEEDBACK GAINS MODAL DAMPING RATIOS
OPTIMUM J,
K, K, 2 £ £ £
—1.178 X 10% | 6.100 X 10° 0.1535 0.5356 0.2047 0.2453 0.4846
RE. PART -0.7523 | —1.897 -7.391 |-17.32
POLE LOCATIONS
IM. PART 1.186 9.068 29.21 31.26
©I/1=1.0
FEEDBACK GAINS MODAL DAMPING RATIOS
OPTIMUM J,
K, K, $ £, $s $4
—4.017 X 10% | 1.731 x 10° 0.09147 0.5044 0.4544 0.49653 0.2011
RE. PART —-0.4284 | —4.325 | -11.60 -7.952
POLE LOCATIONS
IM. PART 0.7334 8477 20.29 38.74

roots. However, in many cases, when the feedback gains are increased, some of the poles
likely to move to the real axis and the use of performance index based on damping ratio
becomes ineffective.
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10

Fig. 4 Shape of objective function.

"Table 4 Optimum gains and damping ratios for different target damping ratios.

OPTIMUM GAINS MODAL DAMPING RATIOS
OPTIMUM J,

K, K, ¢, £ ts $4

OBJECTIVE
FUNCTION

él(&’,-—O.Z)’ —2.988 x 10°| 1.031 X 10° | 0.0020872 | 0.1924 | 0.2243 | 0.2037 0.1623

.54:1(5’,'—0.4)’ —3.681 X 10% | 1.586 x 10*| 0.03732 0.3906 | 0.3909 | 0.4079| 0.2074
i=

'gl(i’,-—O.G)’ —4.239 X 10° | 1.856 X 10° 0.1750 0.6187 | 0.5157| 0.5900 | 0.1908
l:

The use of the objective function J; seems to be more reasonable and has a general
capability for approximate pole placement. In this example, the placement of the target
pole location is determined for providing the same damping ratios in each mode ({g,
=0447,j=1, 2, 3, 4) as shown in Fig. 5. The weighting factor a;= l/wf is used in the
objective function to expect the uniform improvement in each mode. The result of gain
optimization for the case of collocation position I/l = 1.0 is summarized in Table 5.

5. Conclusion

A design method to determine the optimum feedback gains and sensor/actuator col-
location position for LSS control systems is proposed. This approach employs a non-
linear programming technique which determines the optimum design parameters so as to
minimize the pole location errors in the complex plane. A numerical example shows
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Fig. 5 Placement of desired poles in the complex plane with equal damping
ratio.
Table 5 Optimum gains obtained by using the objective function J;.
OPTIMUM GAINS POLE PLACEMENT
OPTIMUM J,
Kl KZ Pl PZ P3 P4
- 0.3165 - 3.617 -11.15 —8.463
—2.508%x10% | 1.677x10° 0.3011 + 1.1131i + 89131 | + 22.031i + 39.071
‘ £=0.2735 £=0.3760 ¢=0.4515 | ¢=0.2117
- 0.6299 —3.980 -10.73 —21.46
TARGET POLE LOCATIONS
TPO £1.252i | £7.9600 | + 21461 | +4293i
I Pai— Pi‘
— 0.2425 0.1151 0.02851 0.2787

that this optimization approach is capable of designing output feedback control system
for flexible structures with a small number of control devices.
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