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   A design method for approximate pole placement is developed by using nonlinear

programming. The approach is especially usefu1 in the design of output feedback con-

trol systern fbr large space structures, where the total number ofactuators and sensors

is small compared to the number of critical vibrational modes and exact pole place-

ment is not possible. Two types of objective functions are proposed: one is the weight-

ed sum of the pole location errors in the cornplex plane and- the other is the function

of the mode damping ratios. Both of these objective functions provide reasonable

design parameters when they are applied to a numerical example of a tendon control

system for a flexible beam structure.

                            1. Introduction

   The dimensions of space structures being considered for future application are quite

large. That of a solar power satellite, for instance, would be on the order of several

kilometers. These large space structures (LSS) could be carried into orbit and deployed

or assembled there, and they Would be extremely mechanically fiexible due to the size

of these structures and lightweight construction materials. Further, they have very low

rigidity and light damping, which may require active controi techno!ogy to damp out

vibrations caused by periodic or random disturbances in space environment.

   A variety of ideas of actively controlled LSS has been proposed with their hardware

implementations. The authors presented in the previous work an idea of tendon control

system for a beam-1ike truss structure and investigated the stability of the closed-loop

system using direct output feedback.i) LSS has a large number of vibrational modes,

and thus exact pole location of all these critical modes by output feedback is not

possible when the number of available control devices is limited.

   In this paper, a general approach to optimum design of output feedback control is

proposed via a nonlinear programming technique. This approach is quite usefu1 for ap-

proximate pole placement and it also provides a systematic desigri procedure consider-

ing the modal contribution to the control performance. Numerical examples of a tendon

control system are given to demonstrate the capability of the proposed approach.

              2. 0utput Feedback Control of Flexible Structures

   In control problems, large complex structures in space are approximated as a more
simple structural element such as a beam, plate, or thin shell.2) Let us consider here a
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beam-like truss structure with uniform elements and approximate it as an equivalent

beam element. If the transverse shear rigidity is large, the dynamic behavior of the

structure is governed by Euler-Bernoulli beam equation:

       p-t 02yo(,i,t) .l-i:lr a`g.(,x,t)=F(.,,) (2.1)

                 OM(x,t)
       F(x, t) = -                                                            (2.2)
                   ax

              pA : mass per unit length

              Elr : equivallentbendingrigidity

where y(x, t) represents instantaneous displacements of the beam off its equilibrium

position, and F(x, t) and M(x, t) are respectively applied control force and moment

distributions.

   The displacement 7(x,t) can be represented by a linear combination of space-

dependent eigen functions multiplied by time-dependent generalized coordinates,

Hn (t):

              eo       Y(X,t)=Z Yn(X)Hn(t) (23)             n=1

    Introducing Eq.(2.3) into Eq.(2.1) and applying orthogonality conditions of eigen

functions, one can derive the mode equations for the generalized coordinates:

       d2dHtin, (t) +cJ 2. Hh, (t)= e. (t) (m = 1, 2, ".) (2 ･4)

       e.(t)=J:F(x,t)Yh,(x)cix/p-tl (2.5) '

where e. (t) are so-called generalized modal control forces,

   The design objective of direct output feedback control using sensors and actuators

located on the structural element is addressed here. The sensor outputs are multiplied

by appropriate gain factors directly to generate the actuator commands. No state

estimation is involved in this approach and, consequently the on-board computer

requirement is reduced. The designer substantially can choose the type of the sensors

(e.g. Iinear or angular displacement/velocity sensors) and actuators (e.g. thrusters or

torquers). However, the maximum number of available control devices and their pos-

sible placement are usually limited.

   He,re we consider a direct output feedback control using one actuator and a couple

of displacement/velocity sensors. If, for instance, angular displacement/velocity sensors

and a moment actuator are adopted for the system, the control moment M(x,t) and

generalized force e. (t) are given as follows

      M(.,t)=. {K, oyg.k,t) .K, oa, (oyo(f ,t) )}6(. - la) (2 .6)
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e.(+)=-
Ym ' ( la)

p-tl
.¥, Yh'( ls) {Ki Hh (t) + K2 Ah (t)} (2.7)

where Ki and K2 are feedback gains,la and k are

spectively, and 6 (x) denotes Dirac delta function.

   Thus, characteristic equation of the closed-loop

lower IV modes considered:

actuator and sensor posltlons, re-

system can be derived in case of

.t}(s) = s2N + Di s2N-i + ･･･ + D2ks2N-2k+ D2 k+i s2N- (2 k+i)+ ･･･

+D2N.1s+D2N=O (2.8)

where

'

       NDi =K2 ,Z         Bn
       n=1
                  NND2k=(KilK2)D2k-1 +.P.1 n,=Zn,+1 """n"ilnZk.1+1 tuZ' tuZ2 "' WZk

              (nl t n2 S -･ t nk,k,= 1, 2, ･-, N)

         NNN ND2k+1"K2nEl n?=1 n2;n,+1 """h'iL-nZk-1+IB"WZi CO$2 "' CJ3k

          '              (n tnl i n2 t ･･･ i nk,k= 1, 2, -･, N)

(2.9)

The factors B. are given in Table 1, according to the type of applied actuator and

sensors.

Table 1 Value of the factor Bn in Eq.(2.9).

SENSOR ACTUATOR Bn

THRUSTER Yn(ls)Yn(la)1iltTl
LINEAR
DISP.IVELOC. TORQUER Yn(ls)Yn(la)/Ttl

THRUSTER Yh(ls)Yn(la)lp-tl
ANGULAR
DISP./VELOC. TORQUER' Yr.(l,)Yh(l.)1p-tl

               3. 0ptimumDesignviaNonlinearProgramming

   The basic objective of the structurai control system is pole placement of the critical

modes. In output feedback control, exact pole placement is possible only when the con-

trol devices (i.e. sensors and actuators) satisfy the observability and controllability con-

ditions, and their'total number exceeds the twice the number ofcontrolled modes.3) If

these requirements cannot be satisfied, as usual in LSS control, exact pole placement is

not possible. However an approximate pole placement algorithm could be employed to

relocate the poies into some prescribed' region of the complex plane or to minimize the

location errors. A general approach to this problem is proposed in this section.

   Since fundamental purpose of the approximate pole placement can be regarded as

to relocate the closed-loop poles to the desired locations in the complex plane as close

as possible, this problem generally could be so!ved by.using an optimization technique.
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   The total pole location errors in the complex plane would be a reasonable candidate

for the objective function to be minimized in this approach:

                      2N       J!(Ki,K2;la,ls)=iZ.iai 4(Ki,K2;la,k)-Pdi2 (3･1)

where Plr(Ki,K2 ;la,k) and Pai(i= 1, 2, "', 2N) are the 2N characteristic roots of the

closed-loop system and their desired locations, and ai(i-- 1, 2, ･･･, 2N) are associated

weighting factors.

   Another index of performance could be defined, considering the desired damping

ratios of IV critical modes, gdi(i = 1 , 2, "', N) :

                      N       J2(Ki,K2;la,k)" ;. ai {st(Ki,K2;la,k) - gdi }2 (3.2)

where

       st=stj&･e-eq+A&

   Thus, approximate poles location problem reduces to the determination of the

optimum gains (Ki and K2) and control device placemehts (la and l,) which minimize

the objective function defined as above. The problem constraints are that Pi(Ki ,K2 ,la,

l,) (i= 1, 2, ･･･, 2N) satisfy the characteristic equation and the values of design para-

meters (i.e. Ki ,K2 ,la, and k) are within some prescribed boundary: i.e.

       fb (Pt(Ki, K2;la, l,))=O (i=1, 2, -･, 2N) (3 .3)

      g) (Ki,K2;la, k) <O (i= 1, 2, '-, n.) (3 .4)

   The optimization problem with equality and inequality constraints generally can be

solved by using multiplier method.4) However, straightforward application of this tech-

nique to the equality constraint, eq.(3.3), is difficult because the characteristic roots P2

are implicit functions of the desigri parameters. Henceforth, the proposed optimization

algorithm explicitly solves the updated characteristic equation for the roots to re-

compute the objective function and its gradients. Then, the augmented Lagrangean

function is defined by

                    '              Lt (x, Z) = J(x) +ii.IS, i [max {o, )v+ (ig} (x )} 2- )N; ] (3 .s)

where Z = (Xi , X2 , ･･･, X..)T and t = (ti , t2 , ･･･, t..)T are penalty parameters.

   In the optimizatibn scheme the following steps are carried out:

   Step O: Given initial design parameters xO = (Ki , K2 ; la, l,), O (Z6 ERnc,

          o<tO ER"e, e>O,k=O.
   Step 1: Solve the characteristic equation n(xk ± 6x) = O and obtain 2N roots

         Pi,P2,･･･,4N･

   Step 2: Compute objective function J(xk ± 6x) and augmented Lagrangean func-

          tion Ltk(xk ± 6x, z,k ).

   Step 3: Approximate gradients OLtk/ax by central differences and improve design

          parameters iterativelY for unconstrained minimization by use of a con-
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jugate gradient method.5) Repeat Steps 1 and 2 for updated design para-

meters. If optimal xk is obtained then go to Step 4.

Update penalty parameters 2k and tk according to ordinary multiplier

method.4) If

   m,a.x max,{gi(xk),- }/ikk} (e

then complete the iteration, and otherwise return to Step 1 with k = k + 1.

                        4. NumericalExample

   A numerical example is given in this section to illustrate the application of the pro-

posed design procedure. The problem analysed here is taken from the tendon control
system for a beamlike space structure formerly studied by the authors.i) The flexible

truss structure deployed from the rigid spacecraft is modeled as a cantilever beam with

an equivallent bending rigidity Eii= 7.17 × 10' [Nm] , mass per unit length ZltT= O.875

[Kglm] and length l=150[m] (See Ref. 1 for more detailed data). In Table 2 the

mode frequencies are giVen up to the fourth mode. The modes with higher frequencies

are truncated from the dynamic model.

   As shown in Fig. 1, the tendon actuator is a type of torquer consisting ofa couple

of force actuators with linkages of tensile wires and generates control moment at the

arm point. In the following we desigrt direct output feedback control using angular dis-

                    Table 2 Natural frequencies ofa beam.

MODENUMBER FREQUENCYw.(rad/sec)

n=1 1.41359

n=2 8.86272

n=3 24.82514

n=4 48.64171

2a -tendon

momentarm

sensor

･e.forceactuator M
etension

2s

2

Fig. 1 Tendon control system for beam vibration suppression.
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placement/velocity sensors located at the same position, i.e. la = ig = %. Such a place-

ment of the actuator and sensor at the same position of the structure is refered to "col-

location", and has advantages in that it assures stable closed-loop pole locations in the

case of a proper velocity damping and the spMover terms due to unmodeled modes do

not cause instability.

   The design parameters of this control system are the feedback gainsKi andK2 for

the angular displacement and angular velocity, respectively, and the collocation position

l.. Closed-loop poles of the system moves in the complex plane according to these three

parameters, as shown, for instance, in Fig. 2.

R
e

t /t =O.5
 c
Kl =o

K2 =ONee

l
m
sc

R
e

lcll = 1･O

Ki=o '
K2 = oNoo

l
m
so

          -- sc -sc
                 a) b)     Fig. 2 Root locus plot of closed-loop system using angula velocity feedback.

   Numerical analysis of optimization, using the two proposed objective functions, is

described in the following.

   Examine first the objective function J2 and optimize the damping ratios for the

critical modes. The proposed optimization algorithn is applied, taking the feedback

gains Ki and K2 as design parameters whereas the collocation position l. is preassigned

and fixed in the optimization. In the optimization, the desired damping ratios are

assumed to be gdi -- O.5 and the weighting factors are set dy = 1 for allf. Inequality con-

straints are introduced as

       Re { Pi(Ki ,K2 ;la ,l,) } <O (i -- 1, 2, ･･･, 27V)

where Re{･} means the real part of{･}.

   The optimum gains Kf and KS are sought for a number of different collocation

positions and the resulting optimum objective function J2 (Kf, K!; l.) is plotted in Fig.

3 as a function of l./l. The optimum gains, achieved damping ratios and pole locations

are listed in Table 3 for three collocation positions, (i.e. I.ll = O.083, O.6 and 1 .0) where

the objective function exhibits distinct local minima.

   Fig. 4 illustrates the variation of the objective function in the (K! , K2) plane. No

local minimum is observed in this example. The results of optimization for different

values of the desired (target) damping ratios are shown in Table 4. The collocation posi-

tion is fixed at the beam edge and the optimum gains are sought for three values of

gdi(i･e･ gdi= o.2, o.4 and o.6).

   The objective function J2 is usefu1 as long as the closed-loop poles have complex
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O.5

e.25

o.o

i
:
i
'

l
i
l
I
l
:

l
i
:

        o.os3 o.6 1･O tc/1
     Fig. 3 Variation of rninimurn objective function as a function of collocation

          posltlon.
Table 3 Results of optimization for three different collocation positions. (lc/l = O.083, O.6, 1 .0)

(a) l.ft = O.083

FEEDBACKGAINS MODALDAMPINGRATIOS

K, K,
opTIMUMJ,

S
i

S
2

g
3

S
4

-7.187×lo6 7.704×105 O.1026 O.5037 O.3666 O.5393 O.2114

RE.PART -O.2414 -2.906 -12.18 +-
7.946

POLELOCATIONS
,IM.PART O.4139 7.374 19.02 36.73

(b)lell=O･6

FEEDBACKGAINS MODALDAMPINGRATIOS

K, K,
oPTIMUMJ,

s
t

S
l

S
g

S
4

-1.178×10S 6.100×105 O.1535 O.5356 O.2047 O.2453 O.4846

RE.?ART -O.7523 -1.897 -7.391 -17.32
POLELOCATIONS

IM.PART 1.186 9D68 29.21 31.26

(c) l./l = 1.0

FEEDBACKGAINS MODALDAMPINGRATIOS

K, K2
oPTIMUMJ,

g
l

S
2

S
3

s
t
4

-4.017×10S 1.731×loS O.09147 O.5044 O.4544 O.4965 O.2011

RE.PART -O.4284 -4.325 -11.60 -7.952
POLE' LOCATIONS

IM.PART O.7334 8.477 20.29 38.74

roots. However, in many cases, when the feedback gains are increased, some of the poles

likeiy to move to the real axis and the use of performance index based on damping ratio

becomes ineffective.
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K
2

J2(Kt,K2;{=t)

to3

lo2

Table 4

IO

O.5

o.o

-- ro

-lo2

  -' lo3

idi

1.exio5

･oxta5

               Kf,K: ) = (-
-lo4

 s
   -10 .Io6

  Shape of objective function.

J2 = O.0914T

4.eiTxio5, 1.T31xlo5 )

        Fig.4

Optimum gains and damping ratios for different target damping ratios.

OPTIMUMGAINS MODALDAMPINGRATIOSOBJECTIVE
FUNCTION K, K,

OPTIMUMJ2
S
i

S
2

S
e

Y
4

iS.}1(Si-O.2)2
-2.988xloS 1.031×105 O.O020872 O.I924 O.2243 O.2037 O.1623'

(gi-o.4)2
i=1 -3.681×10S 1.586×lo5 O.03732 O.3906 O.3909 O.4079 O.2074

iS.,(gi-o.6)2

-4.239×lo5 1.856×105 O.1750 O.6187 O.5157 O.5900 O.1908

   The use of the objective function Ji seems to be more reasonable and has a general

capability for approximate pole placement. In this example, the placement of the target

e.o6?,2xc,a;.ig",,i;,dsleim,ige,1.fo.r.?.:o,vi,2'1"g.8h,e,S.':,&ili.M,/j,lg,g,aS,9ji7.e,S.?･}.Igl8,di.(g,dg

objective function to expect the unifbrm improvement in each mode. The result of gain

optimization for the case of collocation position l.ll = 1 .0 is summarized in Table 5.

                            5. Conclusion

   A desigri method to determine the optimum feedback gains and sensor/actuator col-

location position for LSS control systems is proposed. This approach.employs- a non-

linear programming technique which determines the optimum design parameters so as to

minimize the pole location errors in the complex plane. A numerical example shows
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Re

e = O.447

Pd4
t '

P d3

'

Im

..-

t
.-.-

P d2

  P   dl

--

to4

W3

02

to1

Fig. 5 Placement of desired poles

     ratio.

in the complex plane with equal damping

Table 5 Optimum gains obtained by using the objective function J, .

OPTIMUMGAINS POLEPLACEMENT

Kl K2
opTIMUMJ,

P
l

P
2

P
s

P,

-2.508×105 1.677×lo5 O.3011'

-O.3165

}Ll13i
S=O.2735

-3.617

}8.913i
S=O.3760

-11.15
}22.03i･

'
g
=
O
.
4
5
1
5

-8.463

}39.07i
g=o.2117

TARGETPOLELOCATIONS
-O.6299

}1.252i

-3.980

}7.960i

-10.73

}21.46i

-21.46

}42.93i1
p
,
,
-
p
,
1
w
i

O.2425 O.1151 O.02851 O.2787

that this optimization approach is capable of designing output feedback control system

for flexible structures with a smal1 number of control devices. .
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