
Semi-automatic Program Refinement from
Specifications Using Library Modules

言語: English

出版者:

公開日: 2010-04-06

キーワード (Ja):

キーワード (En):

作成者: Fujita, Yoneharu, Nishida, Fujio, Shinoiri,

Osamu

メールアドレス:

所属:

メタデータ

https://doi.org/10.24729/00008546URL

75

Semi-automatic Program Refinement from Specifications Using

 Library Modules

Yoneharu FUJITA", Fujio NISHIDA" and Osamu SHIONOIRI*

(Received June 15} 1985)

 This paper describes an approach to a semi-automatic program refinement from

specifications.

 Speeifications can be written in a kind of procedural expressions or inputDutput

expressions. The system called SAPRE checks feasibility of the specifications, refines

them semi-autQmaticaliy by interacting with the user or referring to library rnodules

which are constructed on a hierarchical logical basis and finally generates the cor-

responding prog!am in a compiler language specified by the user. An experimental

system is working now.

 1. Introduction

 In recent years, program specification techniques have been actively studied. In

some approaches of them, specifications are described in a restricted natural language

1ike PSL, analyzed semi-automatically from various aspects and summarized into a pro-

gram document3).

 On the other hand program synthesis has been also studied for the past two decades

and automatic construction and modification of programs can be made when the in-

ference steps required for construction of programs are considerably smal1.

 Different kinds ofjobs are usuaily processed by different programs constructed on

their job basis except the use of subroutines expressed by a programing language con-

cretely, and a vast number of programs have been made so far. However if programs are

classified from the view point of their algoritrrrns, many parts of programs of different

kinds can be found to consist of the same fundamental procedures and functions.

 Hence if the program specifications and refinement are made in a top-down manner

of data processing from planning to coding by using library modules, library modules

applicable to the program specifications wil1 be found, combined with each other and

expanded at each level to a program according to the details of the specifications

without serious difficulty4)5)6)7).

 Along this 1ine the present paper describes an approach to semi-automatic program

refinement using library modules. The specifications are given by procedural expressions

and IN-OUT expressions. These are described formally at the present stage of experi-

ments but wil1 also be written in an informal form such as a restricted natural language

1ike PSL in the near future.

 The system called the Semi-Automatic Program Refinement and Expansion system

abbreviated to SAPRE searches library modules appropriate to given specifications and

refines the specification by applying the library modules. Each library module has an

operation part described in the same form as the specifications and involves query items

about user's options for the refinement. The results of the refinement are shown in

* Department of Electrical Engineering

t

76 Yoneharu FUJITA, Fojio NISHIDA, and Osamu SHIONOIRI

kind of diagrams of HPO and the interaction is done between the user and the machine

through a display.

 The refinement is repeated until the specification is finally expanded into a target

programming language.

 In applying a library-module to refinement of specification or one of the de-

scendants, unification in the second order logic is applied in a 1imited version with

reasonable efficiency.

 2. ProgramSpecMcation

 There are various fields in which specifications are needed. [Eherefore, the relevant

expression form of specification can not be restricted to one form. From this point of

view three kinds of program specifications can be used in this paper. They are a state-

expression, a procedural expression and a formal Pascal-like expression.

2.1. Proceduralexpressions

 The procedural expression used here is similar to those used in various programming

languages. The procedural expression usea here usually has case labels,prefixed to the

arguments for readability and convenience of conversion to a restricted natural language

expression 1ike PSL.

 The main case labels and the definitions are shown as fo11ows:

OBJect: theobjectentityofoperation.

SOURce: the location of the data base from which the object is brought.

GOal: the location of the data base or the value to which the processed object is

 brought.

KEY: the key parameter used for processing the object.

Example 1

 sort ((]BJ:t(1 .. 5000,1 .. 9), KEY:t ($, 9),

 GO: t (1 .. 5000, 1 .. 9)) ･ (l a)
 se arch (OIY:t ($,1 .. m), caIVD: P (t ($, 1 .. m), r (1 .. m)),

 SO:t(1 ..n,1..m), GO: (1 ..l,1..m)), (lb)

where t (1 .. 5000, 1 .. 9) denotes a set consisting of 5000 tuples from t(1,1.. 9) to

t(5000, 1..9) and the symbol "$" denotes an arbitrary value in the range specified in

a glven set.

 These expressions correspond to the foilowing imperative sentences respectively:

 "sort t (1 .. 5000, 1 .. 9) by taking t ($, 9) as the key!" (2a)
 "search t($,1 .. m) under the condition P (t ($,1 ..m),r(1 .. m)) from t(1 ..n,

1..m) and store it in ans(1 ..l,1..m)!" ･ (2b)
 Expr. (1) and (2) can be converted to each other by a kind of simple rewriting rules.

 A procedure p (Ci : ti, ..., Ch: t., GO: t), which has the GOal case can be also

rewritten as follows:

t: =P (Ci : tb ･･･, Ch : tn), (3)

where q and ti (i -` 1, ..., n) are a case label and an argument respectively.

Semi-automatic jP)'ognxm Rojinement from Specijieations Ulging Libnit:y Mbdules 77

2.2. Stateexpressions

 A state e.xpression consists of a pair of an input condition and an output condition.

 The formal expression of the condition usually takes a predicate form as follows:

 aN: Pix), OUT: e(x)), (4)
where P(x) takes a conjunctive normal form and e(x) takes a diejunctive normal form or

a coajunctive implication form;

 b (" pti . ei).

 The case labels are aiso prefixed to the arguments optionally in the same way as the

procedural expressions.

 If p denotes a procedure which leads to the output state, the output condition can
be also expressed as{p}. This is a convenient expression if it is defficult to express the

output condition briefly.

Example 2
 (17V: GIV (OIY: t(1 .. 5000, 1 .. 8)),

 OUT: Vie (1 ..5000) (t (k, 9)=sum (t (i,4..8)))), (5a)

where GIV(OBJ: t) means that t is given as a datum.

 The expression (5a) can be converted to the following declarative sentences and

vlce versa.

 llV: "t (1 .. 5000, 1 .. 8) is given."

 OUT: "for any ie (1 ..5000) t(i, 9) is equal to the sum of entities

 fromt(i, 4) tot(i, ,8)." (5b)
2.3. Pascal-1ikeexpressions

 The usage of a compiler language like Pascal in specifications is also desirable and

moreover, necessary for increase in flexibility of expressions such as iterative statements.

However, it is desirable that the programming language expressions can be immediately

converted to the other languages like C and LIst' in expansion from specifications to

these programming languages. For this purpose the formal expressions (6.la) and (6.2a)

corresponding to Pascal-1ike statements (6.lb) and (6.2b) are implemented as follows:

 do (Fon:i: 1, ro: n, 0P: (I?V: i, OUT: o)) (6.la)

 efor i: =l tondo (IZV: i, OUT: o), (6.lb)
 ' do (VtlHILE: P, 0P: (llV: i, OUT: o)) ' (6.2a)

 owhilePdo (jUV: i, OUT: o). (6.2b)

 From the above formal expressions, the expansion to the other language expres-

sions can be easily obtained by a conversion table.

,

78 Yoneharu FUJITA, Fojio NISHIDA, and Osamu SHIONOIRI

 In this paper, specifications are given by a sequence of the above three kinds of

expressions in a mixed form. In order that the sequence of specifications is executable,

the input conditions of state expressions and the arguments of procedural expressions

except the arguments of GOal must be predetermined by the input data of the specifica-

tions or by the intermediate results using the input data. SAPRE checks whether or not

the necessary condition holds.

Example 3

(a) Suppose that the data of 5000 applicants are given in an array mark (1 ..5000,

 1 . . 9) and the columns from the 5th to the 8th are marks in an examination. Then

 the specifications which store the sum of the marks into the 9th column of the

 table and sorts the 5000 tuples in the descending order of the sum are expressed by

 a sequence of Expr. (5a) followed by Expr. (1a).

(b) Suppose a reservation system of a hotel which receives a request and retrieves

 rooms satisfying a request condition of the form r(1 . . m) from a room table to an

 answer table. If the request is a reservation the retrieved room is reserved using a

 room table.

The above specifications can be represented as follows:

request = "inquiry" V request = "reservation"

. search (OIY: room ($,il ..i2), caIVD: A (I70R:i:=il, ro
 (room ($,i), req (i))), SO: room (il ..i2,il,i2), GO: ans (il.

request = "reservation" A ke ans (il . . i2,il . .i2)

. update (Oev: room (i, reservation), COAID: room (i, key) = k,

 SO: room (il ..i2,il ..i2), GO: 1),

:i2, QBJ: Ee
. i2, il ..i2)) ;

(7)

where the last expression means updating of the value ofroom (i, resen,ation) to unity
and A (roR:i: =il, TO:i2, OIY: e(i))means ie eij)･i
 i--'il

3. ModuleLibrariesandUnification

3,1. Modulelibraries

 In order to refine given specifications semi-automatically, SAPRE has procedural

modules in a library. These modules are classified into arithmetic-operation, table-

operation, input-output operation and so on.

 Each module consists of a heading part comprising a procedural expression and an

input-output expression, a type description part, an operation part and a supplementary

part as shown in Table 1. The two former parts are used for examining the applicabilities

of modules to given specifications.

 The types are classified into a scalar type and a composite type. The former consists

of integer, real, character and others, while the latter consists of array records and

others. A two-dimentional array consisting of tuples ofa (n, ml . . m2) (n e an ordered

set of (nl ..n2)) is denoted by a(nl .. n2, ml..m2) and the (n, m) element is

denoted by a (n, m).

 The operation part describes the procedures that bring the input state to the output

Semi-automatic P)'otgram Rdinement from Specifications Clsing Libnary Mbdules 79

state. The procedures are also described in a form used fbr specifications.

 The inquiry item to the user is implemented in the following form:

? select (tl, t2, ..., tn), (8)

which urges the user to specify one of the given arguments.

 The supplementary part, which is omitted here, describes a subdivision of the

operation method such as linear search, and also a rough measure of required steps.

 The procedure symbol f * in the arithmetic operation denotes a repeated applica-

tion of a binary operationfsuch as repeated addition or multiplication over n numbers.

The repeated application can be defined if the binary'operation fis associative and com-

mutatlve.

3.2. Unification

 Every library module takes a general form to cover a wide class of specifications. It

often involves variable function symbols and variable predicate symbols. Hence, refine-

ment of specifications requires unification of a library module with given specifications

in the second order ligic. It is well known that there is no most general unifier in the

second order logic and the unification tree is not closed generally. However, if the

unification is limited to the unilateral direction from a library module to given specifica-

tions or one of the descendants, the unification tree is closed and the unification pro-

cedures can be carried out with reasonable efficiency.

 Let us suppose two objects a and P, a is a literal consisting of symbols ai . . ak . . an

and is included in a procedural expression in a library module or in its input or output

predicate as follows:

 (rv: P(X), Our: e(x,z), on: op(x,z)). (9)

Similarly, B is a literal consisting 'of symbols bi.. bk..b. and is 'included in given

specifications or one of the descendants.

 Assume that ak and bk are the leftmost symbols of disagreement in the objects or

and 6 respectively. Then the simplified version of the unification procedure of or and B

used here is described as follows:

(1) In the case ofak,being an individual variable;

 The unification procedure in the first order logic is applied by the

 stitution;

following sub-

e={ak -bk bk+1 ･ ･ bk+t}, (1O)

where bk bk+i . . hk+i (O (1 (m-k) is a subobject ofB.

(2) In the case of ak being the head of a subobject

 p-place predicate symbol;

of a p-place function symbol or a

(a) Projection

80 Yoneharu FUJITA, Ftijio NISHIDA, and Osamu SHIONOIRI

If the type of the i-th argument of the function or the predicate is equal to that of

ak, the subobject is projected to the i-th argument by the fbllowing substitution;

 ' e={ak -Xu! ..up ･ui ･}, ' (1 1)
where 1 <i(p.

(b) Imitation

 Let bk be a q-place function symbol or a q-place predicate symbol. Then the sub-

 object in a is instantiated by the following substitution so that it imitates the sub-

 object which has bk as the first symbol;

 e={ak -Xui ..up･bkhi ..hq･},

 where hi =nui . . up, (1 (i (q) andn is ap-place predicate symbol or ap-place

 function symbol which does not appear in a nor 6.

 In the above unification, the substitution is done for all the variable ak appearing in

Expr. (9).

 Now the next theorem describes that the unilateral unification described here ends

in finite steps.

Theorem 1

 If unification is restricted to one

tion tree is closed.

direction from one object to another, the unifica-

Proof

 Let us assume that ak and bk are the leftmost symbols and unification is restricted

to one direction from or to B which is kept constant.

 If ak is a constant, this unification branch is pruned here because the execution of

unification is impossible here.

 If ak is a variable, the unification procedure (1) or (2) is tried. In this case, if the

type of ak does not coincide with that of the subobject of 6, the unification branch is

also pruned. Otherwise ak is unified with bk . . bk+i. Though several diffbrent branches

of unification are generated for each symbol of disagreement in general, the length of

the remaining disagreement part of6 is always reduced by at least one every unification.

HenCe the unification tree is closed.

Example 4

(a) Two aritlmetic objects a: f(x, y) and 6:-(+(x,Jv), /(x,y)) are unified by the sub-

 stitution

 f- ivv･ -(+ (u, v),1 (u, v)).

(b' ,'
,ZO,,'ggi2,a'.Zb,k2CiS,S:,,P,X,gS',ft,'.'S2.l,:,('g.isg,:?3,l..a.n,d,g,:d3re,hi,,E..e,[.'OOM($'"'.

Semi-automatic Program Re，β'nement from Specifications Using Library Modules 81

P←AUI (vl 印 201V2)AEQ(u10MO));

11←jl，

12←j2，

x ←AUlu2・room(ul， u2)・，

r←AU.req (u)・

where u 1 (v 1 . . v2) u~ (vl . . v2) is the abbreviation of u 1 (v 1) . . u 1 (v2) u2

(vl) . . u2 (v2) and ;1・lQωiswritten as ^ (FOR :j:=jl， TO: j2， OBJ: Qω)
in SAPRE as shown inExample 3(b).

4. Refinement and Modification

Specifications are modified and refined by using a module library. SAPRE searches

modueles applicable to given specifications or to its parts by referring to the operation

kind， the procedures or the input-output expressions， and the types of the involved

subobjects of library modules.

4.1. Refmement

Let us suppose that SAPRE finds a library module that involves given specifications

as an instance. If there are such library modules more than one which are different from

each other in detailed operations， a relevant module is selected from them by the user or

SAPRE under the support of the supplementary parts. The scheme of refinement is

replaced by the unified result of the OP part of the module together with the type of

the involved objects and the result can be also shown by a diagram like HIPO. Then

selection is urged to be made by the user.

If the user designates orie of the arguments of selection， SAPRE adopts the selected
string. One kind of selection is that of block structure or nonblock one. The selection

will be made reasonably if the user knows in advance whether or not the module will be

used at many places in the programs.

Example 5

Let us refine the following procedural part of the first specification in Example

3(b):
search(OBJ:room($，jl. .j2)，SO:room(il. .i2，jl..j2)，

COND:AEQ(…(札仰

SAPRE searches the module library and finds that the procedural expression of the

table-search module is unifiable with Expr. (13) by the following substitutions:

x ←AUlu2・room(u 1， u2)・，

ml←jl，m2←j2， nl←i1， n2←i2，

P←AUl (vl 川 向1V2)jgIEQ(U10・)，刈')).，

r←M ・陀q(u)・，

Z ←AUlu2・ans(ul， u2)・，

'

82 Yoneharu FUJITA, Fujio NISHIDA, and Osamu SHIONOIRI

 The application of the above substitutions to the 0P part of the module and the

adoption of block structure yield the following refinement:

 make block
 Vie (il . . i2) (i.iti, Ee (room (i, i), req U))

 . add (onJ: room (i,il ..i2), GO: ans (il ..i2,il ..i2))).

 Subsequently, the part of `add' is rewritten by further refining the part and adopt-

ing caution as follows:

 k:=k+1;'

 k) i2 . cal1 monitor;

 z (k, il ..i2):= room (i, il ..i2);

4.2. Modification

 If there are several modules each of which contains only a part of the specifications

as an instance, refinement of the specifications is tried by modifying the specifications

and partitioning them. Some of the main rules are shown as follows:

(1) partition ofspecifications

(a) (IZV:Pi (X),OUT: ei (x,z), OP: pri (0BJ: x, GO:z)),

 (IN: P2 (x), OUT: e2 (x,z), OP: pr2 (QBJ: x, GO:z))

 Pi (x) A ei (x,z) -> P2 (x)

 (llV: Pi (x), OUT: e2 (x,z), 0P: pri (QBJ: x, GO:yi);pr2 (OIII:yi,GO:z))

(b) (IN: P (x), OUT: e2 (x,zi), QP: pri (osJ:y, GO:zi)),

 (IZV:P(x), OUT: e2 (x,z2), 0P: pr2 (OBJ: x, GO: z2))

 zl l z2

 (llV:P (x), OUT: ei (x,zi) A e2 (x,z2), OP:{pri (QBJ: x, GO: zi),

 pr2 (QBJ: x, GO:z2)})

 The above configurations mean that the precedent conditions over a horizontal line

lead the consequent conditions under the line. When SAPRE finds that given specifica-

tions involve a library module as a part, it tries to apply the partitioning rules to the

specifications from the consequent conditions to the precedent conditions.

Example 6

 (I7V: GIV (0BJ: x (1 ..n)),

 OUT: z = sum {(x (i) - average (x (1 ..n)))**2lx (i) ex (1 ..n)}/n)

 If the average function is not ready for a procedure cal1, the specifications are

divided into two parts by the above rule (a) as follows:

'

Semi-automatic' bognim Rdinement from Specijications Clsing Librarzy Modules 83

(I?V: GIV (onJ: x (1 ..n)), OUT: ui = average (x (1 ..n)),

ew: averzrge (OBJ: x (1 .. n), GO: ui))

(I7V: GIV (OIY: x (1 ..n))Aui = average (x (1 ..n)),

OUT: z= sum{ (x (i) -ui)**2 x (i) ex(1 . . n)}/n,

aP:z:= sum {(x (i) -ui)**2 x(i) ex (1 ..n)}ln)

(2) ModificationofSpecifications

 In order that a library module is applicable to a part of given specifications, the

specifications are also modified by using specific knowledge which are stored in a know-

ledge base according to their special fields. The 1imited version of unification in the

second order logic is also used in the modification if it is required.

Example 7
 Let us assume in Exarnple 5 that the room table is separated into a room-reserva-

tion table tr and a room£haracteristic table tc. The reservation tabie is to be updated

every day while the characteristic table is aimost invariable. Under the assumption that

the number of the tables searched by the procedure `search' is restricted to only one at a

time, the output condition corresponding to the Expr. (13) takes the fbllowing form:

 ans･2 ={(tr･ 1, tc･ 1) tr･ letr･ 2,A (tr･ 1, rr･ 1),

 tc･ letc･ 2, Ptr (tc･ 1, rc･ 1),

 tr･ 1 (key) = tc･ 1 (key)} , (14)

where the following abbreviated forms are used:
 tr･ 1 g tr ($,il ..i3), tc･1 4 tc ($,i3 + 1 ..f2),

 tr･2 4 tr (il ..i2,il ..i3), tc･2 g tc (il ..i2,i3 + 1..i2),

 ,r･ 1 g rr ij1 ..J'3), rc･2 g rc U3 + 1 ..i2).

 (tr･ 1, tc･ 1) denotes ajoined form of tuples tr･1 and tc･1. rr･1 and re･1 denote the

room-reservation part and the room characteristic part of a request respectively. tr･ 1

(kay) denotes the key-attribute value of a tuple tr･ 1.

 By inspecting Table 1, SAPRE finds the OUTput predicate of the procedure lioin-

key' which includes a part of Expr. (14), then tries to modify Expr. (14) to a closer

form to the OUTput predicate. Using the axiom

 P(x)7xe{y Pty)} (15)
in the knowledge base, SAPRE generates the following modified form of Expr. (14):

 ans･ 2 = {(tr･ 1, tc･ 1) tr･le{yl･1 yl･letr･ 2, jP}' (yl ･1, rr･ 1)}

 tc･1e{y2･1 y2･1ete･2,"Ptr (y2･1,re･1)},

84 Yoneharu FUJITA, Fojio NISHIDA, and Osamu SHIONOIRI

Table 1 A part of library modules

Arithmeticoperation

(1)PROC
IN
OUT
TYPE
op

f･*(OBJ:g(x(il..i2)),GO:z)
GIV(OBJ:x(il..i2)),febinaryarithmeticoperator,geunaryarithmeticoperator

z=f･*(OBJ:g(x(il..i2)))'x(il..i2):arrayof?select(real,integer),z:varof?select(real,integer)
TYPEy:varof?select(real,integer);
?select(block).putstring("makeblock");
y:=g(x(il));
do(FOR:i:=il+1,TO:i2,OP:7:=f(y,g(x(i))));
z:=y

(2)PROC
IN
OUT
TYPE
op

sum(OBJ:g(x(il..i2)),GO:z)
GIV(OBJ:x(il..i2)),geunaryarithrneticoperator
z=+･*(OBJ:g(x(il..i2)))
x(il..i2):arrayof?select(real,integer),z;varof?select(real,integer)

+･*(OBJ:g(x(il..i2)),GO:z)

Tableoperation

(1)PROC
IN
OUT
TYPE

op

add(OBJ:x(ml..m2),GO:z(nl..n2,ml..m2))

?select(block).putstring("rnakeblock");
n:=n+1'･'
?select(caution).putstring("n)n2-callmonitor");
z(n,ml..m2):=x(ml..m2)

(2)PRoc

IN
OUT
TYPE

op

search(OBJ:x(*,ml..m2),SO:x(nl..n2,ml..m2),
COND:P(x(*,ml..m2),r(ml..m2)),
GO:z(nl..n2,ml..m2))

GIV(OBJ:x(nl..n2,ml..m2),P,r(ml..m2))
z(nl..n2,ml..m2)={x(i,ml..m2)lP(x(i,ml..m2),r(ml..m2))}x(nl..n2,ml..m2):arrayofcharacter,z(nl..n2,ml..m2);arrayofcharacter,r(ml..m2):arrayofcharacter,n:varofinteger,P:twoplacepredicate?select(block).putsuing("makeblock");$"optimizeyourtestcondition";Vie(nl..n2)(P(x(i,'ml..m2),r(ml..m2))-add(OBJ:x(i,ml..m2),GO:z(nl..n2,ml..m2)))

(3)PROC

IN

OUT

TYPE

op

join･key(OBJ:(xl(ll..I2,ml..m2),x2(l3..I4,m3..m4)),

Semiautomatic ltqgram Rojinement from Specijircations Clsing Libnary Mbdules 85

. tr･ 1 (kay) = tc･ 1 (kay)}.

 The application of the partitioning rule (a) to the above yields the following pro-

cedures:

 seareh (onJ: tr･ 1, SO: tr･ 2, caArD:b (tr･ 1, rr･ 1), GO:z1･2);

 seareh (onJ: tc･ 1, SO: tc･2,(DND: Pb (tc･ 1, re･ 1), GO: z2･2);

 ioin-kay (osJ: (z1･2, z2･2), KEY: z1･1 (kay) = z2･1 (kay), GO: ans･ 2) (16)

where

 ans･ 2 g ans (il .. i2,il ..i2),

 zl･2 4zl (il ..i2,il ..i2), z2･2 g z2 (il ..i2,1'3 + 1 ..i3).

 5. ExpansiontoProgramExpressions

 After specifications have been refined to several modules consisting of well-defined

formal expressions and optimized globally, these modules are expanded into a target

language designated by users. Programs to be expanded consists of a declarative part

and a execution part.' The former part is constructed by using information about types

and block selection specified in refinement. The latter part is generated from operation

parts by a kind of rewriting rules ofprogramming languages as shown in Expr. (6).

 The next example shows the main execution part of Expr. (16) expanded to ISO

Pascal.

Example 8

 Suppose that the expression form of the module `search' is designated to a block in

Example 7 and test predicates ,P7 and Pb are defined in the declarative part of the main

program, then succeeding to the declarative part the input statement of data and the

procedure search, the execution parts are expanded as fbllows:

 procedure seareh (x: auay (...),z: ...,i: ...,r: ...,p: ...)

 begin

 .

.

i: = o;

seareh (tr (il ..i2,il ..i3), zl (il ..i2,il ..

i: =o;

seareh (tc (il.. i2,i3 + 1..i2), z2 (il ..i2,i3 + 1

 re ij3 + 1 ..i2), Pb);

for l: = il to i2 do

 begin

 ll: :il･
 ,

i3), i, rr ij1 ,.

.72), i,

i3),b);

86 Yoneharu FUJITA, Ftijio NISHIDA, and Osamu SHIONOIRI

while (zl (l, kay /1)O z2 (ll,

 do U: U+ 1;

n:=n+1;
if n > n2 then monitor;

fori: =il to i3 do

 ans [n,i]: =z1 [l,i];

fori: =i3 + 1 to i2 do

 ans [n,i]: =z2 [ll,i]

end

key 2)) and (ll <== i2)

.

end

 6. Conclusion

 SAPRE refined many specifications by the aids of library modules and expanded

them to several compiler languages designated by the users. The unilateral unification

was carried out with reasonable eflficiency and usefu1 for semiautomatic refinement by

interaction with users.

 Automatic 1inking facilities of modules and specifications by some restricted

natural languages are to be introduced to SAPRE in the near future.

 References

1) T. Hetrzykowski, A complete mechanization of secondorder type theory, JACM, 20 (2), 333

 (1973).
2) J.L. Darlington, Automatic Synthesis of SNOBOL programs, Computer oriented learning pro-

 cesses, J.C. Simon (ed.), Nordhoff-Leyden, 443 (1976).

3) D, Teichrow and E.A. Hershey, PSL/PSA: a computer-aided technique for structured docu-
 mentation and analysis of information processing systems, IEEE trans, SE-3 (1), 41 (1977).

4) D.R. Barstow, "Knowledge-based program construction", Elsevier North Holland, Inc. (1979).

5) J. Foissequ et al., Program development with or without coding. IFIP, 327 (1980).

6) Y. Fujita and F. Nishida, A ftogram Synthesis by hierarchical Definition System, IECE of

 Japan, Trans, J61-D (2), 103 (1978).

7) Fiijio Nishida and Yoneharu Fujita, Semi-Automatic Program Refinement from Specification

 Using Library Modules, IPS of JAPAN, Trans, 25 (5), 785 (1984).

