On the Fourier coefficients of Eisenstein series of Nebentype for $\Gamma 0(\mathrm{~N})$

メタデータ	言語：eng
	出版者：
	公開日：2010－04－06
	キーワード（Ja）：
	キーワード（En）：
	作成者：Chuman，Yasuhiro メールアドレス： 所属：
URL	https：／／doi．org／10．24729／00008551

On the Fourier Coefficients of Eisenstein Series of Nebentype for $\Gamma_{0}(N)$

Yasuhiro CHUMAN*

(Recieved June 15, 1985)

The Fourier coefficients of Eisenstein series of Nebentype for the congruence subgroups of level N are given explicitly.

1. Introduction

Let Z denote a ring of rational integers and $S L_{2}(Z)$ denote the elliptic modular group defined by

$$
S L_{2}(Z)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a d-b c=1, a, b, c, d \in Z\right\} .
$$

Let $\Gamma(N)$ denote the principal congruence subgroup (of $S L_{2}(Z)$) of level N, i.e.,

$$
\Gamma(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left|\in S L_{2}(Z)\right|(a \equiv d \equiv 1, b \equiv c \equiv 0 \bmod N)\right\} .
$$

We denote by $\Gamma_{0}(N)$ the congruence subgroup of level N defined as follow:

$$
\Gamma_{0}(N)=\left\{\left.\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \in S L_{2}(Z) \right\rvert\, c \equiv 0 \bmod N\right\}
$$

Let \boldsymbol{C} denote the complex field, and H denote the complex upperhalf plane i.e.

$$
H=\{z \in C \mid \operatorname{Im}(z)>0\}
$$

For every integer $k, L \in S L_{2}(Z)$, and a function $f(\tau)$ on H, we write

$$
\left.f(\tau)\right|_{k} L=f\left(\frac{a \tau+\mathrm{b}}{c \tau+d}\right)(c \tau+d)^{-k}
$$

Let k be an integer. A C-valued function $f(\tau)$ on H is called a modulor form of weight k with respect to $\Gamma(N)$, if $f(\tau)$ satisfies the following three conditions:
(i) $f(\tau)$ is holomorphic on H;
(ii) $\left.f(\tau)\right|_{k} L=f(\tau)$ for all $L \in \Gamma(N)$;
(iii) $f(\tau)$ is holomorphic at every cusp of $\Gamma(N)$.

Let $N=p_{1}{ }^{r_{1}} p_{2}{ }^{r_{2}} \ldots p_{s}^{r_{s}}$ be the prime decomposition of N. Then we define the quadratic Dirichlet character $\chi \bmod N$ by

$$
\chi(n)=\chi_{N}(n)=\left(\frac{n}{p_{1}}\right)^{r_{1}}\left(\frac{n}{p_{2}}\right)^{r_{2}} \cdots \cdots\left(\frac{n}{p_{s}}\right)^{r_{s}} \text { for all } n \in Z
$$

[^0]where (-) denotes the Legendre symbol.
Let $F(\tau)$ be a modular form of weight k with respect to $\Gamma(N)$. If $F(\tau)$ satisfies the additional condition:
$$
\left.F(\tau)\right|_{k} L=\chi(d) F(\tau) \text { for all } L=\binom{a b}{c d} \in \Gamma(N)
$$
then $F(\tau)$ is called a modular form of (Neben) type ($-k, N, \chi$). The aim of the present paper is to constract a complete system of Eisenstein series of type ($-k, N, \chi$) and to give their Fourier coefficients explicitely. It is remarked that the proof of Theorem announced in [2] is contained in this note.

2. Eisenstein Series of Type ($-k, N, \chi$)

Let the notation be as in the preceeding sections. Hereafter we assume $\chi(-1)$ $=(-1)^{k}$. This assumption is necessary to assure the existence of non-zero modular forms of type ($-k, N, \chi$).

First of all we shall review some results for the Eisenstein series $G_{k}\left(\tau ; a_{1}, a_{2}, N\right)$ of the group $\Gamma(N)$ (Hecke [5]).

Let a_{1}, a_{2} and k be rational integers. If $k>2$, then the series $G_{k}\left(\tau ; a_{1}, a_{2}, N\right)$ is a function on H defined as follows.
(1) $\quad G_{k}\left(\tau ; a_{1}, a_{2}, N\right)=\sum_{\substack{m_{1} \equiv a_{1}\left(\bmod N \\ m_{2} \equiv a_{2}(\bmod N)\right.}}^{\prime}\left(m_{1} \tau+m_{2}\right)^{-k}$,
where τ. denotes a variable on H and the summation Σ^{\prime} runs through the pair of integers such that $\left(m_{1}, m_{2}\right) \equiv\left(a_{1}, a_{2}\right) \bmod N,\left(m_{1}, m_{2}\right) \neq(0,0)$.

It is well known that their Fourier expansions at the cusp $i \infty$ of $\Gamma(N)$ is given as follows.

$$
\text { (2) } \begin{aligned}
& G_{k}\left(\tau ; a_{1}, a_{2}, N\right)=\delta\left(a_{1} / N\right)_{m_{2} \equiv a_{2}(N)} 1 / m^{k} \\
& \quad+(-2 \pi i)^{k} N^{-k} /(k-1)!\sum_{\substack{m m_{1}>0 \\
m_{1} \equiv a_{1}(N)}} m^{k-1} \operatorname{sgn}(m) \xi_{N}^{a_{1} m} \exp \left(2 \pi i m m_{1} \tau / N\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& \delta(x)= \begin{cases}1 & \text { if } x \text { is a rational integer } \\
0 & \text { oterwise }\end{cases} \\
& \xi_{N}=\exp (2 \pi i / N)
\end{aligned}
$$

and

$$
\operatorname{sgn}(x)=x /|x| \text { for } x \neq 0 ; \operatorname{sgn}(0)=0 .
$$

If $k=2$, there we define $G_{k}\left(\tau, a_{1}, a_{2}, N\right)$ by the following Fourier series:
(3) $G_{k}\left(\tau ; a_{1}, a_{2}, N\right)=-2 \pi i N^{-2} /(\tau-\bar{\tau})$

$$
+\delta\left(a_{1} / N\right) \sum_{m_{2}=a_{2}(N)} 1 / m^{2}-4 \pi^{2} / N^{2} \sum_{\substack{m m_{1}>0 \\ m_{1} \equiv a_{1}(N)}}|m| \xi_{N}^{a_{1} m} \exp \left(2 \pi i m m_{1} \tau / N\right)
$$

(See p. 469 of [5] for the original definition of $G_{2}\left(\tau, a_{1}, a_{2}, N\right)$.)
For every $k \geqslant 2$, we know that the series $G_{k}\left(\tau ; a_{1}, a_{2}, N\right)$ satisfy the following properties (4) and (5).
(4) $G_{k}\left(\tau ; a_{1}, a_{2}, N\right)=G_{k}\left(\tau ; b_{1}, b_{2}, N\right)$, if $a_{1} \equiv b_{1}$ and $a_{2} \equiv b_{2}(\bmod N)$.
(5) $\left.G_{k}\left(\tau ; a_{1}, a_{2}, N\right)\right|_{k} L=G_{k}\left(\tau ; a a_{1}+c a_{2}, b a_{1}+d a_{2}, N\right)$, for each $L=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ in $S L_{2}(Z)$.

Let $G_{k}\left(\tau ; a_{1}, a_{2}, N\right)$ denote as follows with the integers a_{1}, a_{2} such that $\left(a_{1}, a_{2}, N\right)$ $=1$:

$$
G_{\kappa}^{*}\left(\tau ; a_{1}, a_{2}, N\right)=\sum_{\substack{m_{i} \equiv a_{i}(N) \\\left(m_{1}, m_{2}\right)=1}}\left(m_{1} \tau+m_{2}\right)^{-k}
$$

Then it is well known that $G_{\kappa}^{*}\left(\tau ; a_{1}, a_{2}, N\right)$ is not zero at parabolic vertex $-a_{2} / a_{1}$ and zero at otherwise. And the relation between $G_{k}\left(\tau ; a_{1}, a_{2}, N\right)$ and $G_{k}^{*}\left(\tau ; a_{1}, a_{2}, N\right)$ is as follows:
(6) $G_{k}\left(\tau ; a_{1}, a_{2}, N\right)=\sum_{t m o d N} G_{\kappa}^{*}\left(\tau ; t a_{1}, t a_{2}, N\right) \sum_{t n \equiv 1(N)} 1 / n$
(7) $G_{\kappa}^{*}\left(\tau ; a_{1}, a_{2}, N\right)=\sum_{t \bmod N} G_{k}\left(\tau ; a_{1}, a_{2}, N\right) c_{t}$,

$$
c_{t}=\sum_{\substack{n=1(N) \\ n>0}} \mu(n) / n^{k},
$$

where $\mu(n)$ is Mobiuss function.

Lemma 1. Let Γ_{∞} denote the isotropy subgroup of $\Gamma(1)$ at the cusp $i \infty$. Then cardinality of $\Gamma_{0}(N) \Gamma(1) / \Gamma_{\infty}$ is equal to $\Sigma_{t N} \varphi((t, N / t))$ (here we denote by φ the Euler functon), and also is equal to the number of iquivalent classes of cusps of $\Gamma_{0}(N)$. Moreover each class of cusps $\Gamma_{0}(N)$ is represented a pair of coprime integers $\{x, r\}$, where r is a positive divisor of N and x is uniquely determined $\bmod (r, N / r)$.

Proof. We refer to [1] or [3] for the proof of this lemma.
Q.E.D.

For each class of cusps represented by the pair $\{x, r\}$ let us define the Eisenstein series $E_{\{x, r\}}^{*}(\tau)$ as follows:
(8) $E_{\{x, r\}}^{*}(\tau)=\sum_{\substack{a \\ b \bmod N}} \chi_{N}(a) G_{k}\left(\tau ; x r a, x r b+a^{\prime}, N\right)$,
where a^{\prime} is an integer uniquely determined $\bmod N$ such that $a a^{\prime} \equiv 1(N)$.
Theorem 1. Let $E_{\{x, r\}}^{*}(\tau)$ be the series defined as above. Then the following state-
ments hold:
(i) $E_{\{x, r\}}^{*}(\tau)$ are modular form of type $(-k, N, \chi)$.
(ii) Every modular form of type $(-k, N, \chi)$ is expressed as linear combination of $E_{\{x, r)}^{*}(\tau)$ mod cusps forms.

Proof. For the class $\{x, r\}$, it is well known that x is chosen in such a way $0<x<N$, $(x, N)=1$ and that the class $\{x, r\}$ contains the cusp $-1 / x r$ (see [1]).

Let L be a element of $\Gamma_{0}(N)$ such that $L=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Then by (4) and (5), we have the following:
(9) $\left.G_{k}(\tau ; x r, 1, N)\right|_{k} L=G_{k}(\tau ; x r a, x r b+d, N)$.
$\operatorname{Put} E_{\{x, r\}}^{* *}(\tau)=\sum_{\substack{a \\ b \\ \text { mod } \\ \text { mod } N}} \chi(a) G_{\kappa}^{*}\left(\tau ; x r a, x r b+a^{\prime}, N\right)$.
Then it is easy to see that $E_{\{x, r\}}^{*}(\tau)$ is not zero at any cusps in $\{x, r\}$ and zero at other cusps. Futher $E_{\{x, r\}}^{*}(\tau)$ and $E_{\{x, r\}}^{* *}(\tau)$ satisfy the similar linear relations to (6) and (7).

Invew of (5), (8) and (9), it is easy to see that $E_{\{x, r\}}^{*}(\tau)$ are modular form of type $(-k, N, \chi)$ of weight k for $\Gamma_{0}(N)$.

Let $f(\tau)$ be an arbitrary modular form of type $(-k, N, \chi)$ for $\Gamma_{0}(N)$ with value $a_{\{x, r\}}$ at the cusp $-1 / x r$, and $e_{\{x, r\}}$ be value of $E^{*}{ }_{\{x, r\}}(\tau)$ at the cusp $-1 / x r$. Then

$$
f(\tau)-\sum_{\{x, r\}} a_{\{x, r\}} / e_{\{x, r\}} E_{\{x, r\}}^{*}(\tau)
$$

is a cusp form of type $(-k, N, \chi)$ for $\Gamma_{0}(N)$.
Q.E.D.

3. The Fourier Coefficients of $E_{\{, t\}}(\tau)$

We consider the normalised Eisenstein series $E_{\{\langle t\}}(\tau)$ in place of $E_{\{\langle t\}}^{*}(\tau)$. Then by (2) or (3) $E_{\{h t\}}(\tau)$ are given as follows.

$$
\begin{aligned}
& 2(-2 \pi i)^{k} E_{\{1,1\}}(\tau)=(k-1)!\sum_{\substack{a \bmod N \\
\bmod N}} \chi(a) G_{k}(\tau ; a, b, N), \\
& 2(2 \pi)^{k} E_{\{1, N\}}(\tau)=\gamma_{k}(k-1)!N^{k-1 / 2} \sum_{a \text { mod } N} \chi(a) G_{k}(\tau ; 0, a, N),
\end{aligned}
$$

and for $\{x, r\}$ other than $\{1, l\}$ and $\{1, N\}$,

$$
\begin{aligned}
& 2(-2 \pi i)^{k}(r, N / r) E_{\{x, r\}}(\tau)=r^{k-1}(k-1)!\chi_{N / r}(x) \\
& \times \sum_{\substack{a \bmod N \\
b \bmod N}} \chi(a) G_{k}\left(\tau ; x r a, x r b+a^{\prime}, N\right)
\end{aligned}
$$

Put $r_{1}=r /(r, N / r)$ and define $A_{k}(m, a)$ as follows:

$$
A_{k}(m, a) \sum_{i m o d r_{1}} \chi_{r}(a+N i / r) \xi^{(a+N i r) m}
$$

Then it is easy to see that the following (10) are formed:
(10) $A_{r}(m, a)=A_{r}(m, b)$ if $a \equiv b \bmod N / r$.

Theorem 2. Keep the notations as above. Then the Fourier expantions with respect to $z=\exp (2 \pi i)$ of $E_{\{x, r\}}(\tau)$ are given as follows.

$$
\begin{aligned}
& E_{\{1,1\}}(\tau)=\sum_{n=1}^{\infty} c_{0}(n) z^{n}, c_{0}(n)=\sum_{d \mid n} d^{k-1} \chi(n / d) ; \\
& E_{\{1, N\}}(\tau)=c_{\infty}(0)+\sum_{n=1}^{\infty} c_{\infty}(n) z^{n}, \\
& C_{\infty}(N)= \begin{cases}\sum_{d n} d^{k-1} \chi(d) & \text { if } n=0, \\
\gamma_{k} N^{k-1 / 2}(k-1)!(2 \pi)^{-k} L(k, \chi) & \text { if } n=0,\end{cases}
\end{aligned}
$$

where $L(k, \chi)=\sum_{n=1}^{\infty} \chi(n) l / n^{k}$.
And for $\{x, r\}$ other than $\{1,1\}$ and $\{1, N\}$

$$
\begin{aligned}
& E_{\{x, r\}}(\tau)=\sum_{n=1}^{\infty} c_{\{x, r\}}(n) z^{n}, \\
& \quad c_{\{x, r\}}(n)=\sum_{d \mid n} d^{k-1} \chi_{N / r}(n / d) A_{r}\left(d, n x^{\prime} / d\right) .
\end{aligned}
$$

Proof. For the Fourier coefficients of $E_{\{1,1\}}(\tau)$ and $E_{\{1, N\}}(\tau)$, we refer to [2]. For the purpose of expanding $E_{\{x, r\}}(\tau)$, we start from giving the following obvious equalitys (11) and (12):

$$
\text { (11) } \sum_{b \bmod N} \xi_{N / r}^{b m}= \begin{cases}N & \text { if } m \text { is divided by } N / r, \\ 0 & \text { otherwise },\end{cases}
$$

$$
\text { (12) } \sum_{c \equiv a(N / r)} \chi_{r}(c) \xi_{r}^{c m}=(r, N / r) A_{r}(m, a)
$$

Next, by (2) or (3) we have

By (11)

$$
\begin{aligned}
& r^{k-1}(k-1)!E_{\{x, r\}}(\tau) \\
& =(-2 \pi i)^{k} \sum_{a m o d N} \chi(a) \sum_{\substack{m m_{1}>0 \\
m_{1}=x r a(N)}} m^{k-1} \operatorname{sgn}(m) \xi_{r}^{a^{\prime} m} \exp \left(2 \pi i m m_{1} \tau / r\right)
\end{aligned}
$$

$$
\begin{aligned}
& N^{k}(k-1)!E_{\{x, \mathrm{r}\}}^{*}(\tau)=N^{k}(k-1)!\sum_{\substack{a \\
b \bmod N}} \chi(a) G_{k}\left(\tau ; r x a, r x b+a^{\prime}, N\right) \\
& =(-2 \pi i)^{k} \sum_{\substack{a \bmod N \\
b \bmod N}} \chi(a) \sum_{\substack{m_{m_{1}}>0 \\
m_{1}=x n a(N)}} m^{k-1} \operatorname{sgn}(m) \xi_{N}^{\left(r x b+a^{\prime}\right) m} \exp \left(2 \pi i m m_{1} \tau / N\right) \\
& =(-2 \pi i)^{k}\left(\sum_{b m o d} \xi_{N}^{x b m}\right)_{a} \sum_{m o d N} \chi(a) \sum_{\substack{m m_{1}>0 \\
m_{1}=x r a(N)}} m^{k-1} \operatorname{sgn}(m) \xi_{N}^{a_{N}^{\prime m}} \\
& \times \exp \left(2 \pi i m m_{1} \tau / N\right) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& =(-2 \pi i)^{k} \sum_{a m o d N / r} \chi_{N / r}(a) \sum_{\substack{m m_{1}>0 \\
m_{1}=x \operatorname{xra}(N)}}\left(\sum_{c \equiv a(N / r)} \chi_{r}(c) \xi_{r}^{c m}\right) m^{k-1} \operatorname{sgn}(m) \\
& \times \exp \left(2 \pi i m m_{1} \tau / r\right) .
\end{aligned}
$$

By (12)

$$
\begin{aligned}
& r^{k-1}(k-1)!E_{\{x, r\}}(\tau)=(-2 \pi i)^{k}(r, N / r) \sum_{a m o d N / r} \chi_{N / r}(a) \\
& \times \sum_{m_{1} m_{1}>0} m^{k-1} \operatorname{sgn}(m) \sum_{i m o d} \chi_{r_{1}} \chi_{r}(a+N i / r) \xi_{r}^{(a+N i / r) m} \exp \left(2 \pi i m m_{1} \tau / r\right) \\
& =(-2 \pi i)(r, N / r) \sum_{a} \sum_{m o d N / r} \chi_{N / r}(a) \sum_{\substack{m m_{1}>0 \\
m_{1} \equiv x n a(N)}} m^{k-1} \operatorname{sgn}(m) A_{r}(m, a) \\
& \times \exp \left(2 \pi i m m_{1} \tau / r\right) \\
& =2(-2 \pi i)(r, N / r) \sum_{a m o d N / r} \chi_{N / r}(a) \sum_{\substack{m_{1}=x a(N / r) \\
m_{1}>0}} m^{k-1} A_{r}(m, a) \exp \left(2 \pi i m m_{1} \tau\right) .
\end{aligned}
$$

Put $z=\exp (2 \pi i)$, then by (10) we have

$$
\begin{aligned}
& r^{k-1}(k-1)!E_{\{x, r\}}(\tau) \\
& =2(-2 \pi i)(r, N / r) \sum_{a} \sum_{m o d} \sum_{N / r} \sum_{\substack{m_{1} \\
m_{1}>0}} m^{k-1} \chi_{N / r}\left(x^{\prime} m_{1}\right) A\left(m, x^{\prime} m\right) \\
& =2(-2 \pi i)(r, N / r) \chi_{N / r}(x) \sum_{n=1}^{\infty} \sum_{d \mid n} d^{k-1} \chi_{N / r}(n / r) A_{r}\left(d, n x^{\prime} / d\right) z^{n} \\
& =2(-2 \pi i)(r, N / r) \chi_{N / r}(x) \sum_{n=1}^{\infty} c_{\{x, r\}}(n) z^{n} .
\end{aligned}
$$

Q.E.D.

Corollary. Let the notations be as above. Then we have the following relation among $E_{\{x, r\}}(\tau)$.

$$
\sum_{x}^{\dot{x}} E_{\{x, r\}}(\tau)=\widetilde{\gamma}_{r} r^{1 / 2} \sum_{n=1}^{\infty} \sum_{d \mid n} d^{k-1} \chi_{r}(d) \chi_{N / r}(n / d) z^{n}
$$

where $\widetilde{\gamma}_{l}$ is defined as follows:

$$
\widetilde{\gamma}_{l}= \begin{cases}1 & \text { if } l \equiv 1 \bmod 4 \\ i(=\sqrt{-1}) & \text { if } l \equiv 3 \bmod 4\end{cases}
$$

Proof. Here, we shall give a detailed way in which x is chosen. Put $x=x(r, i)$ with a positive integer i such that $l \leqslant i \leqslant \varphi((r, N / r))$. Then $x(r, i)$ is chosen as follows (see [1]):

$$
x(r, i)= \begin{cases}i & \text { if }(N, i)=1 \\ j & \text { if }(N, i) \neq 1\end{cases}
$$

where j is a positive integer such that $j \equiv i \bmod r,(j, N)=1$ and $\varphi((r, N / r))<j<N$.
Let x be as above. Then we have the following equality by applying Gussian Sum and since $r_{1}=r /(r, N / r)$.

$$
\begin{aligned}
& \sum_{x} c_{\{x, r\}}(n) \\
& =\sum_{d \mid n} \chi_{N / r}(n / d) \sum_{x}\left(\sum_{i \text { mod } r_{1}} \chi_{r}\left(n x^{\prime} / d+N i / r\right) \xi_{r}^{\left(n x^{\prime} / d+N / r\right) d}\right) \\
& =\sum_{d \mid n} \chi_{N / r}(n / d) \sum_{c \bmod r} \chi_{r}(c) \xi_{r}^{\xi_{r}^{d}} \\
& = \\
& \tilde{\gamma}_{r} \sqrt{r} \sum_{d \mid n} \chi_{r}(d) \chi_{N / r}(n / d) .
\end{aligned}
$$

Q.E.D.

Now, Let r be square, then $\chi_{r}(*)=1$. Hence we have

$$
\begin{aligned}
& \sum_{i m o d r_{1}} \chi_{r}\left(n x^{\prime} / d+N i / r\right) \xi_{r}^{\left(n x^{\prime} / d+N i / r\right) d}=\sum_{i m o d} r_{1} \chi_{r}(n / d+N i / r) d \\
= & \xi_{r}^{n x^{\prime}} \sum_{i \text { mod } r_{1}} \xi_{r_{1}}^{d i} \\
= & \begin{cases}\varphi\left(r_{1}\right) \xi_{g}^{n_{1} x^{\prime}} & \text { if } r_{1} \text { devides } d, \\
0 & \text { if otherwise. }\end{cases}
\end{aligned}
$$

where $r_{2}=N / r(r, N / r), g=(r, N / r)$ and $n_{1}=n / r_{1}$.
Next, if r is square free and $(r, N / r)=1$, then $x=1$ and $r_{1}=r$. Hence we have the following equality by using Gussian Sum:

$$
\begin{aligned}
& \sum_{i m o d r_{1}} \chi_{r}\left(n x^{\prime} / d+N i / r\right) \xi_{r}^{\left(n x^{\prime} / d+N i / r\right) d}=\sum_{i m o d r} \chi_{r}(n / d+N i / r) \xi_{r}^{(n / d+N i / r) d} \\
= & \sum_{c m o d} \chi_{r}(c) \xi_{r}^{c d} \\
= & \tilde{\gamma}_{r} \sqrt{r} \chi_{r}(d) .
\end{aligned}
$$

Here we have the following proposition.
Proposition 1. Let the notations be as above. Then if r is square,

$$
A_{r}\left(d, n x^{\prime} / d\right)= \begin{cases}\varphi\left(r_{1}\right) \xi_{g}^{n_{1} x^{\prime}} & \left(\text { if } r_{1} \text { devides } d\right) \\ 0 & \text { (otherwise })\end{cases}
$$

and if r is square free and $(r, N / r)=1$,

$$
A_{r}\left(d, n x^{\prime} / d\right)=\tilde{\gamma}_{r} \sqrt{r} \chi_{r}(d)
$$

Reference

1) Y. Chuman, Generators and relations of $\Gamma_{0}(N)$, J. Math. Kyoto Univ. 13 (1973), 381-390.
2) - On the Fourier coefficients of Eisenstein series for $\Gamma_{0}(N)$, Bulletin of Univ. Osaka Prefect. Vol. 32, No. 1, (1983), 83-91.
3) A. Ogg, Rational points on certain modular elliptic curves, Proc. Symp. Pure. Math, 24 (1973) 221-231.
4) E. Hecke, Theorie der Eisensteinschen Reihen hoherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetick, Abh. Math. Sem. Hamburg. 5 (1927), 199-224 (= Math. Werke, 461-486).

[^0]: * College of Integrated Arts and Sciences.

