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On the Fourier Coefficients of Eisenstein Series of Nébentype for I'H(N)

Yasuhiro CHUMAN *

(Recieved June 15, 1985)

The Fourier coefficients of Eisenstein series of Nebentype for the congruence
subgroups of level N are given explicitly.

1. Introduction

Let Z denote a ring of rational integers and SL,(Z) denote the elliptic modular
group defined by

SL, (Z){(gé,’) | ad—be=1,a,b,c,d€Z}.
Let I'(V) denote the principal congruence subgroup (of SL,(Z) ) of level N, i.e.,
(V)= {(‘;Z) ‘ eSLz(Z)](azdz 1, bzcsOmodN)}.
We denote by I'g(V) the congruence subgroup of level N defined as follow:
To(N) = {(‘;g)ESLz(Z) | e=0 modN}.
Let C denote the complex field, and H denote the complex upperhalf plane i.e.
H={zeC| Im(z)>0}.
For every integer k, L € SL,(Z), and a function f{(7) on H, we write

1) | k= F(EE2) (er+ay ™

Let k be an integer. A C-valued function f(r) on H is called a modulor form of
weight k with respect to (), if f(7) satisfies the following three conditions:

(i) f(7) is holomorphic on H;

(i) f(r)| &L = f(7) for all L ET'(WV);
(iii) f(r) is holomorphic at every cusp of I'(%V).

Let N=py"1p," ... p/s be the prime decomposition of N, Then we define the
quadratic Dirichlet character X mod NV by

¥. ¥,

x(n) = xn(n) =(—;—1—) 1 (piz) L (pis) * forallnez,
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where (—) denotes the Legendre symbol.
Let F(r) be a modular form of weight k with respect to I'(V). If F(7) satisfies the
additional condition:

PG)| L = X(@)F() for all L= (% z) erm),

then F(7) is called a modular form of (Neben) type (—k, N, ). The aim of the present
paper is to constract a complete system of Eisenstein series of type (—k, N, X) and to
give their Fourier coefficients explicitely. It is remarked that the proof of Theorem
announced in [2] is contained in this note.

2. Eisenstein Series of Type (=k, N, x)

Let the notation be as in the preceeding sections. Hereafter we assume X(—1)
= (—1)*. This assumption is necessary to assure the existence of non-zero modular forms
of type (=&, N, x).

First of all we shall review some results for the Eisenstein series G, (7;ay,a,,N) of
the group I'(NV) (Hecke [5]).

Let a,, a, and k be rational integers. If k > 2, then the series Gy (7;a,,a,,N) isa
function on A defined as follows.

!
(1) Gy(r;ay,a,,N)= 2 (my7+my)™*
m,=a, gmod
m, =q, (mod

where 7 denotes a variable on H and the summation " runs through the pair of integers
such that (m;,m;)= (a1, a;) mod N, (m,, mz)_¢ (0, 0).

It is well known that their Fourier expansions at the cusp ie of I'(V) is given as
follows.

@ Ge (a0, M=s@/y) 2 1m*

2 =a, (V)
+ (—2m Nk — 1) 1 m% Ly M Len(m) 4™ exp rimmy 1/,
m‘E‘a‘ @)

where

5 (x) = { 1 if x is a rational integer

0 oterwise,

£y = exp (2mi/N),

and

sgn (x) =x/| x| for x % 0; sgn (0) = 0.
If k =2, there we define Gy, (7, a,, a,, N) by the following Fourier series:

(3) Gi(r;ay,a,,N)= 27iN2 /(1 — T)
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+ 8 (a;y/N) 2 1/m? — 4n*/N? > | m| 3" exp(2mimm, 7/N) .
m,=a, (N) mm_1>((2N) !
m, =a, .

(See p. 469 of [5] for the original definition of G, (7, a,, a2, N).)
For every k = 2, we know that the series Gy (7;4;, a5, N) satisfy the following pro-
perties (4) and (5). '

(4) Gk (T;a19a2’]v)=Gk (T;b15b2’N)s ifal Ebl anda2 EbZ (mOdJV)'

(5) Gi (TQﬂl,az,N)lkL=Gk (7;aay + cay, ba; +da,, N), for

each L =((Z Z) in SL,(2).

Let G (1;a,, a5, N) denote as follows with the integers a,, a, such that (¢, a;,N)
=1:

Gf(f;ax,az,f\’)=m_3f( (myr +my)7%,
A

Then it is well known that G,’f (7; a1, a5, V) is not zero at parabolic vertex —a, Ja,
and zero at otherwise. And the relation between G(r; a,, a,, N) and Gy, (1;4,, a5, N)
is as follows:

(6) Gi(riay, a3, N)= = Girstay,tay,N) 2 1/n

t mod N m=1(N)

(1) Gimsan,a, M= = Gylrsar,ar, Ny,
e= 2 unyn,

where u(n) is Mobiuss function.

Lemma 1. Let T, denote the isotropy subgroup of I'(1) at the cusp i. Then
cardinality of To(NN\(1)/Tw is equal to t?ng( (t, Njt) ) (here we denote by ¢ the Euler
functon), and also is equal to the number of iquivalent classes of cusps of T'y(N).
Moreover each class of cusps I'o(N) is represented a pair of coprime integers {x, r},
where r is a positive divisor of N and x is uniquely determined mod (r, NJr).

Proof. We refer to [1] or [3] for the proof of this lemma.

Q.ED.

For each class of cusps represented by the pair{ x, 7 }let us define the Eisenstein
series Ekx, r)(7) as follows:

* — X . '
®) Efury ()= 2 X@Gy(rixra, xrb+d',N),
b mod N

where @' is an integer uniquely determined mod N such that aa’=1 (V).

Theorem 1. Let E ’fx, r} (1) be the series defined as above. Then the following state-
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ments hold:

(i) E fx,,} (7) are modular form of type (—k, N, x).

(ii) Every modular form of type (—k, N, x) is expressed as linear combination of
E *{x, ,}(T) mod cusps forms,

Proof. For the class{x, r}, it is well known that x is chosen in such a way 0 <x <N,
(x,N) =1 and that the class{x, 7}contains the cusp —1/xr (see [1]).

Let L be a element of I'g(NV) such that L =(‘; 3) . Then by (4) and (5), we have the
following:

(9) G(r;xr,1,N) | wl = Gy(r;xra,xrb +d,N) .

e e = *e. '
Put E{5 (1) =) m%i X QGK(7;xra, xrb +a', N) .
b mod N
Then it is easy to see that £ Tx, +1(7)is not zero at any cusps in { x,  } and zero at

other cusps. Futher Ef‘ x,r}(7) and E’{ :,,} () satisfy the similar linear relations to (6)
and (7).

Invew of (5), (8) and (9), it is easy to see that E’fx,,} (7) are modular form of
type (—k, N, x) of weight k for I'y(V).

Let f(7) be an arbitrary modular form of type (—k, N, x) for I'q(V) with value
a(x,} at the cusp —1/x7, and €{xr) be value ofE*{x',} (7) at the cusp —1/xr. Then

A7) —{g}a{x,r} /e{x.r}E?x,r}(T)

is a cusp form of type (—k, N, x) for T (V). Q.ED.

3. The Fourier Coefficients of E{;;}(7)

We consider the normalised Eisenstein series £{; ;} () in place of £ f,,,}('r). Then by
(2)or(3) E{; (1) are given as follows.

2(2mFE (D) = (k- 1) ! .
b

n X@G(7;0,b,N)
N

3
3sM

200 Eqn)@=mk - 1) N2 2 x(@)Gy(r;0,0,N),

and for{ x, r}other than{1, /}and{l, N},
2 (=2mi)*(r, N\NE (e} =1k = 1)1 xyp(x)

X, m%d N x(@Gx (1;xra,xrb +d',N).
b mod N

Put r, =r/(r, N/r) and define A, (m, a) as follows:
2 i (@+Nifrym
Ax(m,a) o 1, Xr (@ + Nifr) g .

Then it is easy to see that the following (10) are formed:
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(10) A,(m,a)=A,(m,b)if a =b mod Njr.

Theorem 2. Keep the notations as above. Then the Fourier expantions with respect
to z =exp(2mi) of E{x,,}(7) are given as follows.

Ean® =n§1‘c° (m)z", co(r) =d?n d*~x(n/d);
E{1,n} (1) = ¢ (0) +§1 Col()2"

2@ ifn=0,

Co)=
{ VN 12k - 1)1 Qr)y %Lk, %) ifn=0,

where L(k, X) =n§:31 x(n) Iyn¥ .
And for {x, r} other than {1, 1} and {1, N}
E(xr y7) =nizl c{x,r}(n)zn )
Cx,r} (1) =d[2ndk—l Xnp(n/d)A,(d, nx'/d) .

Proof. For the Fourier coefficients of E{l,l}(T) and E {1LN} (1), we refer to [2].
For the purpose of expanding E(,,}(), we start from giving the following obvious

equalitys (11) and (12):

. N if m is divided by N/r,
m —
(1 1) b mod NE { .

otherwise,

12) 2 % ("= NA,im,a).

Next, by (2) or (3) we have

Ne(k—1)! E’{kx’r}(r) =Nk - 1)! p x(@)Gy (r;rxa,rxb +a',N)
a mod N
b mod N

= (~271i)"a ”%d x(@) E mk=1 sgn(m) 51(\’,"”‘““')'" exp (2mimm, 7/N)
b mod N m1 —xm(N)

=(=2mi k e xbm a k-1 a'm
) ( Ny )a mod NX( )m% " sgn(m) gN
m, =xra (N)

X exp (2w mm,7/N) .
By (11)
Pk = 1)1 Efxry(T)

= (—271i)ka ”%d Nx(a)mé oo mk=1 sgn(m) 2 exp(2mimm, 7/r)

m, =xra(N)
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-Cmf T @ (cazaav,,)"'(") £m) k=1 sgn (m)
m!_xm(N)

X exp(2aimmy 1/r) .

By (12)

Pl k- 1)1 By @) =(2m* Ny 2 xwpl@)
. a mod Njr

“Lsgn(m) 2, x,(a+Nifr) 2(;'+N'7' ym exp (2aimm, 7/r)
X mm,>0 imod r,
m, =xra(N)

=(—2m)(r,‘N/r) 2 /XN/r(a) 2 o m*=1sgn(m) A4 (m, a)
ml—xm(N)

X exp 2mimm, 7/r)

=2 (=2m) (r, N/r) 2 v xN/,(a) > m*=1 4, (m, a@)exp(2mimm, ) .

m,—xa( 13)
m;

Put z = exp (2mi), then by (10) we have

Pk = D! E(x,)(1)

=2(=2m) (r, NJr) = S My m)A(m, x'm)
a mod Nfr m, ia‘c)a(N/r)
my

=2(=2m) (0, N Xy @) 2 20 & xanp () A, (@, nx'jdyz"

= 2(-2mi) (r, N/r)xN,,(x)gl ez} (M)z" .

Q.E.D.

Corollary. Let the notations be as above. Then we have the following relation
among E{ ,}(7) .

I Epen@=7,r'P 2 % d e @xp (2"

where %, is defined as follows:

~

1 _ if I=1 mod 4,
7'1={

if=v/-1) -ifl=3mod4.
Proof. Here, we shall give a detailed way in which x is chosen. Put x = x(r, /) with

a positive integer i such that I < i < ¢((r, N/r)). Then x(r, i) is chosen as follows

(see [1]):
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if(V,)=1,

i
x(r,z')={
i if (N, 0) #1,

where j is a positive integer such that j=imodr, (j, N)=1 and ¢ ((r, N/r)) <j<N.
Let x be as above. Then we have the following equality by applying Gussian Sum
and since ry =r/(r, N/r).

2 cx,r}()

x

EI xwp(nfd) 2 ( Zd 3o (x'/d + Niff) £, € 14+NIN4 )
din x ‘imodr,

2 xvpnfd) 2 x(0) £°
dln c modr

v g x(d) X (nfd) .
Q.E.D.

Now, Let 7 be square, then X,(*) = 1. Hence we have

S x, (nx'/d + Nifr) §014NiNd = 3y (n/d + Nifr)d

imod r, imod r,

=g > ;i‘i

i mod ry

{ o(r) E1* ifry devides d,
0 if otherwise.
where r, = N/r (r, Njr), g = (r, N/r) and ny =n/r,.

Next, if r is square free and (¥, N/r) = I, then x = I and r; =r. Hence we have the
following equality by using Gussian Sum:

2 x,(nx'/d +Ni/r) Egnx'/d+Ni/r)d — 2 Xr(n/d +Ni/r) E(rn/d+Ni/r)d
imodr

imod r,

= 2 X0

cmodr
=%,V x,(d) .

Here we have the following proposition.

Proposition 1. Let the notations be as above. Then if r is square,
p(r) &g X (if r, devides d),

Ad, nx'/d) = {
0 (otherwise),
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and if r is square free and (r, Njr) =1,

A,d, nx’/d) = Wr\/r_Xr(d) .
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