
A Continuous System Simulation Method Using
Multimicroprocessor System TCMS

言語: eng

出版者: 

公開日: 2010-04-06

キーワード (Ja): 

キーワード (En): 

作成者: Kosako, Hideo, Mihara, Jun-ichi, Kojima,

Yoshiaki

メールアドレス: 

所属: 

メタデータ

https://doi.org/10.24729/00008555URL



113

A Continuous System Simulation Method Using
     Multimicroprocessor System TCMS

By Hideo KOsAKo", Jun-ichi MIHARA", and Yoshiaki KOJIMA*

                    (Received Nov. 15, 1984)

   This paper describes a new simulation method for continuous systems and tests
it by experiments with a compact mp. Itimicroprocessor system TCMS we have recently

developed. In the proposed paethod operational tasks are allocated autornatically

to processors during the multioperation without using any task seheduling technique.

                           1. Introduction

    On the digital simulation of continuous systems, most of recent studies tend to

improve the operation speed and the cost performance by using a large number of

processors. These processors constitute all together a simulator for continuous systems.

There are a number of such simulators in active use. HOSSi) consists of thirty-four

high-performance mini-computers; FKCSS2) eonsists of sixty-four microprocessors;

IDDS-13) is a small scale multimicroprocessor system (using Z80A) designed to examine

an optimum task scheduling, etc.

   There is a fixed task allocation method employed in these simulators. The method

allocates operational tasks in advance to a processor for the implementation of the

continuous system simulation. The disadvantages of this method are:

   (1) There is a reduction in the rate of the utilization of processors.

   (2) It is impossibie to carry out the multioperation if the number of the tasks

involved exceeds that of the processors.

   To circumvent these disadvantages, a task scheduling technique3) has been used.

In this case, however, it is not easy to write a program which gives an optimum

scheduling.

   For this reason a new method is proposed in this paper, which requires no schedul-

ing procedure for task allocation. In the present system it is assumed that apacket

is a simulation language which can simulate approximately the function of an analogue

computing element. Then, a simulation program, which is named "packet prograrn",

is a set of such packets and is stored in the common memory of the multiprocessor

system. The processors thus hold the packet program in common.

   Each processor fetches a packet from the packet program and interprets it as a

single instruction to execute a specified task independently, and can fetch another

packet immediately after the completion of the task.

   Thus, in the method described here, in which packets are used as media of alloca-

tion, the task allocation is automatically carried out to processors. On the contrary, the

scheduling in the fixed task allocation method is regarded as manual allocation oftasks

to processors.

* Department of Electronics, Coilege of Engineering.



114 Hideo KOSAKO, Junichi MIHARA, and Yoshiaki KOJIMA

              2. Parallel operations for the continuous system

   The simulation method to be described wil1 be applicable only to a system of K

ordinary differential equations

!dzyt

dx
fli(gi, g2, ""'････, gK)

i=1, 2,･---･･,K

(1)

where .lti may be non-linear operations such as multiplication, division, and so on.

   This section outlines the configuration of the multlmicroprocessor system which

we constructed and named TCMS, and describes a new representation of Eq. (1)

adapted and computation procedures of performing a packet program.

2.1 Multimicroprocessorsystem,TCMS4)

   A block diagram of the TCMS is shown in Fig. 1(a). The TCMS is designed

to have a cluster of up to eight proces'sor units (PUs) which have their own local

memories (LMs) and work independently. Al! of these processor units are connected

mutually by time-shared buses via the common memory (CM).

xa DISK PR

HC

To

lvs

  7
PU

 =--

  'PUI

-.- "

i2g:; sc

CM

ROM ROM

   Host Computer
    MZ-80B

  T7 pv, Pros:?t:r

:::" J

   Selector

   :O,M.:O,y" ( 8KB )

(a} Block diagram of TCMS

 e  i
lus

MPs

L

  T.
  t MPN
-------"

Lcl

(4KB)

Microprocelssors

Mpe:Master (6so9E)
MF;lf :S1ave

x
:

O.5vs
sc

LM

Selector

Local Memery
 ( DRAM )

(b) A PUi ( i=O,1,...,7 )

(64KB)

Fig.1 Multi-microprocessorsystem,TCMS

   Each processor unit has two 6809E microprocessors, one of which is called "master

microprocessor" MPM and the other "slave microprocessor" MRs. Let Tdenote the

memory cycle time for the storage device of the 6809E. Then the two microprocessors

in a PU can obtain words through a selector by turns from the local memory (LM) at

intervals of 772.

   The CM and a host-computer (HC) are connected to the master microprocessors
(Mllu s) in the PUs as shown in Fig. 1 (b). Clock E-i (iel,I= {O, 1, ･････････, 7})

is fed to the MPM of PUi (iel). The timing chart for Ei is given in Fig. 2. Each

clock has a delay ofT78 from the previous one.



A eontinuous system simulation method using multimicroproeessor system 'TC:bfS 115

m-o
e

r
2

T
7

A

   Dn

Letch Dr

   Dw

 le T=lvs -
ncpm-il,:Pil'

tmu1i'2-.--....-....-I'li'[}mui::･iigi:d

   -125ns-  irw,-tir
Mi

i

latch

1

I ,

Fig. 2 Access timing of each PU to CM.

S
a

PAo '-Nv PA7'

    Ccl

PDo "V PD7

O'N

   stSi..1

wo

Ro

rtv

t.v

N7

R7

ll tl1
1
l

S
d..O,:N,

A

Dw

[El!,,1

lt ll

CM

･8KB

Dr

LRo "v LR7

LPo tV LI}7

i
i

Fig.3 Selector switches in the TCMS

   Two multiplexers (one of which is an address bus multiplexer and the other a data

bus multiplexer) and latch registers are used to connect the eight PUs to the CM, as

shown in Fig. 3.

   Both multiplexers are switched to combine the buses from all the PUs in turn to

the CM at intervals of T78.

   Let Ta be the access time of the CM. If

TaS T/ 8 (2)

then a 778-interval time-slot is assigned to each PU for access to the CM.

   In Fig. 2, the symbols To, Ti, '''･･･''', T7 are time-slots assigned to the processor

units PUo,PUt,･････････,PU7, respectively. The 6809E microprocessors of the

PUs are known to have 1 pts memory cycle time ( T = 1 pts) and hence the time-slot

is 125ns in width in the present system.



116 Hideo KOSAKO, Junichi MIHARA, and Yoshiaki KOJIMA

   The symbol LRi(iEI) in Fig. 3 denotes the buffer register in which the data

Drread out of the CM is placed. The symbol LPi(i6I) denotes the pulse which is

used to send the Dr to the buffer register LRi. By the read instructionRi, the data in

theLRiis transferred to thePUithrough the data bus.

   Let D and A denote a data and an address in the CM, respectively. IfaPUIand a

PUk {le =modb(i +1)} perform, respectively, parallel operations `WriteD to address

A' and `Read addressA, then the data D is moved from thePUito thePUh at the

transfer rate of 125 ns.

2.2 A program of continuous systems - - - - packet program

   A packet as a simulation language is assumed to be able to simulate the function

of an analogue computing element in the analogue program required for solving Eq. (1).

   Let Ri denote the packet corresponding to the analogue computing element
7'(7'EJ, K$M, 1={ 1 , 2, ''''''"', M}), and be representated in the form

Pi== ¢i(ny, ", E) or L= q-<q, L) (3)

Here, ¢i denotes a summing integrator and ¢i indicates an operator except ¢i, for

example, adder (¢A) or multiplier (¢M).

In Eq. (3),

e= (a,･k, a,･t. '''"''")

"= (W, ng), Y? - ( Y£ Y£, Y2, ･････････)

for 7', k, leL 1={1, 2, ･････････, M}

E= (.E9, ,E7i, ,Fl;-2, ･････････)

for 7':-sgK

(4)

where, fbr instance, aJk is the coefficient between the output of analogue computing

element k and the input of element 7'; Y?, YkO, YtO, ,F19, ,F17i, "Fl;2･･･ are the address

numbers in the CM, which wM be described in detail later.

   A set of packets,{Ri17'eJ, J={ 1 , 2, ･･･M}} , i.e, a packet program, is stored

in the CM with the data that is the contents in addresses )(}(i= 1, 2, ･･･M) and

E(1'=1, 2,･･･K). Each packet in the program is read out of the CM byaPU,

and it operates as a single instruction to the PU.



A eontinuous system simulation ntethod using multimicroprocessor system reMS 117

2.3 Principle of numerical integration for multiprocessing of packets

   Consider Eq. (1) to be the homogeneous linear equations

ddYtsj = fli, fli= lii., ajkgh

7' = 1, 2,----･K

(5)

with constant coefficients aj･h's. The program for solving Eq. (5) can be expressed as

a set of integration packets mentioned in section 2.2,

Ri :¢J(aj, L, E)

7'= 1, 2, ･････････, K

(6)

where ¢i is the operator which instructs a PU to perform a numerical integration.

   The integration by operator ¢i is carried out for a fixed value h> O, sufficiently'

small increment of the independent variable x.

   Let the initial condition be yJ'(xo)=gj'owhere 7'= 1, 2, ･･････, Kand set Xn=

xo+nh, n= O, 1, 2,'''. Let gpm and yJ{n denote the numbers at the nth step of

approximation to calculate gyJ-(xn)and fli(jcn, gin, y2n, ･･･, yKn), respectively. Then,

yj'n and yJ'･n can be expressed as follws:

Yin 'Yi(Xn)

gj"n= ./)n= f)(Xn, Zfin, Y2n, '"'''''', gKn) UYS'(Xn)

n= O, 1, 2,･----

(7)

If the round-off error is negligible, the difference yJ･n-yJ･(xn) includes only the

truncation error at the nth step, where gJ･(xn), is the exact solution.

   Integration formulas may be divided into two classes, `open' and `close' types:

the former are effective to obtain predictors and the latter usefu1 for correctors. The

`open' integration formulas are used to get solutions explicitly. In the `open' type

fbrmulas, gyJ･<n+o, the approximate solution at the (n+1) th step, is expressed as a

linear combination of values of71ii for O $ i S- n.

   Thus, the operation of packet program uses the formulas of this type to solve

differential equations numerically. Some examples of the `open' integration formulas

are given below.



118 Hideo KOSAKO, Junichi MIHARA, and Yoshiaki KOJIMA

Let gJ･(n+i) be expressed in the form

YJ'(n+1)= gjn+h'gjn

7'= 1, 2, -･･･････, K

n= O, 1, 2, ･････････

(8)

Then the fbllowing forms are used as gJ+n.

gJ'n=ftn

gJ'n= ( 3 hn-ft(n- i)) 12

9J'n= (23.ICIin-16.ICIi(n-o+ 5 fli{n-2)) 112

gJ'n= (55.Ein-59ft(n-i>+37.11i(n-2)- 9 f)(n-3)) /24

(9 -a)

( 9 -b)

( 9 -c)

(9 -d)

where, according to Eqs. (5) and (7),

           K      71in=2 ajkyhn
           k=1

(10)

Equation (9-a) shows the Euler rule. Equations (9-b), (90c) and (9-d) are known as

the 2nd-order, 3rd-order, and 4th-order Adams-Bashforth rules, respectively.

   Now, the purpose of the operator ¢i in thepacketIEIi is to evaluate yJ･(n+i) and
hn in terms of Eqs. (8), (9) and (10). In the case of (9d), for example, the (n+1) th

step of the integration requires the knowledge of the past va!ues of 'gin, y2n, ''',,

gJ'n, "', YKn and fli(n-i), .fi(n-2), fli(n-3), which are assumed to be stored in addresses

YiO, Yl9, ･･･, Y?, ･･･, YXI and E;}, ]Fl;-2, E73 respectively. The resulting values gJ'(n+i)

and f3n are stored in addresses }']J and E9, respectively.

   After gi<n+o, gy2(n+o, ''', gK(n+i) and fin, f>n, "', f)rn are found, the data are

transferred to prepare for the next step in the computation as follows:

( Y7) . Y?, (IF}-2) . EI3, (E7i) . EI2

and (,F19)- "Ei-' fbr 7'=1, 2, -･･･････K

where the parentheses are used

namely, the notation( Y?). Y?

address YP.

to indicate

means the

the contents in the memory addresses,

contents of address Yl; to be stored into



A continuous syStem simulation method usirrg multimicroproeessor system T(ZllfS 119

   The choice of which `open' integration formula rules are used can be attained

merely by describing it in the packet. For example, if the 3rd-order Adams-Bashforth

rule (9-c) is chosen, then the description in the packetAis as follows:

A=
e=
"-
E=

¢,,(&, ", E)

(aJ'k, aJ't, '"'''''')

( Y;, Y?), Y9- ( YP , Y,O, Y,O, ･････････)

(E9, jFl;i, D-2)

(11)

where, for instance, YhO js the shared memory address where gkn is stored. The value

Ykn is used to compute gJJ{n+o.

   Note that to compute Yj'(n+i) requires the knowledge of gkn, gk(n-i), gk(n-2)

or gh(n-3)(le =1, 2,'''K) but at the start(n =O)only the value yho are known.

The points at which the starting values are computed can be successive samples of

values xi>xo. For the ith-order Adams-Bashforth rule these points are xi, x2, ･･･,

and xi-i .

   The first few starting values must be computed with an accuracy at least as high

as that of the numerical integration procedure to be used. There is no formula for

choosing the value of h with which to start the integration. If the Euler rule is used,

then only one initial condition is required to start computation. For a given integer

IV'l 2, let h'=h/IV', and integer n'<(i- 1 )IV'. Then the Euler rule for the

computation at the (n'+ 1)th step is expressed as fbllws:

       NNN       gyJ'(n'+i)=gyJ'n'+h'flin, ' }
         7'= l, 2, ''''""', K; n' =o, 1, ････v･･･, (i -1)Nt-1, i (12)

where

       Y-VJ･nr :gJ'(xo+hrn')

       .7i]nr t .11i(jco+h'n', y'Vin,, gN2n,, ''"''''', g'VtKnr)

moreover

      g-L",･(hNr)=Yjh

      ft<hNr)=flik for le=O, 1,･････････,
i-1.

2.4 Dynamicprocessingproceduresofpacketprograms

   The chief function of a PU is to perform the instructions contained in the packet

which is sent from the CM to the LM of the PU. Now, the computation procedure



120 Hideo KOSAKO, Junichi MIHARA, and Yoshialci KOJIMA.

for perfbrming a packet program with the multiprocessor system will be described.

Consider, as an example, the block diagram of an integration packetRi shown in Fig. 4.

The packetPJ･ js expressed as fbllows:

      jRi= ¢i2(e, ", E) (13)
where
      q= (aJ'k, aJ-l)

      Y;-(Yl;, Yl£ Y£, YD

      E== (,F:?, ,Fl;-i )

Note that the 2nd-order Adams-Bashforth rule is chosen as a integration formula.

                             y･

                                 B

                    Yk (!ff[ (X')=Yi

                    yt ¢t

               Fig. 4 The block diagram of an integration packet 17

 ..t PUo

pUir

 t"-

-LP:2-LU

Read IP :

Write 2Y +1

Read ili :

   Cenvert

   Operate

Write resttlts
fdOn intO Yi

respeetively

PUi÷Ad
into M

pui÷ Pi

P,. to t*-

i
j

,",dEs}is and

   s

Operation ot I}F in

 the PUi

CM

-
IPA Apsudoprogra

pointer

m
lA

.
'
i
4
h
t

P.
1

Apacket
program

:
N
Y!-'re

Yln+1)Vln

---.

v1)Vdn
i--Ynl)VMn

l--'---T"-, -- T
'ro

n
f-

"-1

,1lL--H-.--L----FO-F-i
-J

Fig. 5 The progedure of processing of a 4f ( i E J )

.t



A continuous system simulation method using multimicroptocessor system ncMS 121

Start

Initialize(YfO)withvi.,computefieand

Vii(=ViN'),beforefie-r;･1andyii-YsO･.

(i=1,2".,K).1-n

Al--'-M,n+1-n

t
'
t
'

operatePi

OperatePm
SeeFig･

,a

5

(i<M)P
As.=AM?

T

(Ydt)-YfOand(RiO).:)br;1

ieri=1,2,...,M

(n<N)P
n:=N?

Stop

T

Fig. 6 Iterattve operation of program

IV : A number of iterations required

    Figure 5 shows the procedure for processing the packet Ri after a PUi (iel,

I= {e, 1, ''', 7})fetches the ]Ri from the CM, assuming that the packetAis stored

in the successive addresses beginning atAJ･.

   Step 1 and 1': At the starting point of taking a packet from the CM, aPUi reads

the content AJ･ of the address pp which indicates the psudo program pointer. Then,

the PUi replaces the contents of the pp, namelyA,･ with AJ"+i.

   Step 2: The PUi takes a packet Ri stored in the successive addresses beginning

          at AJ' ･

   Step 3: Then, the PUi converts the jRi into the following object packet R)':

ny- ¢i2(q, ", tir)



122 Hideo KOSAKO, Junichi MIHARA, and Yoshialti KOJIMA

where Y,･ and 4 are the contents ofaddresses L andL, respectively.

   Step 4: The operation program expressed by ¢i2 is performed. (Then gJ･(n+i)
and.fin are obtained using Eqs. (8), (9-b) and (10).)

   Step 5: gJ･(n+i) and,An･ are stored at addressesY7andE9,respectively.

   Described above is the way how a single PU processes a single packet for a fixed

value x in the computation. If more than one PU are used, packets are processed

simultaneously. By repeating the above procedures for a given packet program {Bli --

1 , 2 , "', M},, the simulation is accomplished as shown in Fig. 6

   We cal1 the above technique a shared-packet-program method fbr the continuous

system stmulations.

       3. Examples of the continuous system simulation using the TCMS

   This section describes simple examples of the continuous system simulation using

the TCMS. The specifications for the system used are as fo11ows:

   (1) Classification of operation packet: Integrator, adder and multiplier

   (2) Maximumnumberofpackets: 128
   (3) Number system: Floating-point number system (4 byte-length)

   (4) Numerical integration formulas in use: Euler rule andthe 2nd-order Adams-

Bashforth rule (which wil1 be called A-B rule fbr short)

   (5) Number of processor units: 4 or 8

   The first example is to check on the truncation error of the formulas when a

single processor unit is used. The tests are performed for simple programs which give

solutions eX(x>O ),sinx, cosx, and so on. One of these results is shown in Table 1.

The values in Table 1 are the truncation errors for eX obtained by the packet program

shown in Fig. 7. It can be seen, from Table 1, that the 2nd-order A-B rule is about

thirty times as fast as the Euler rule in the computation speed of obtaining the same

order of accuracy.

1

1
ex

Fig. 7 A program for a test of truncation errors



A continuous system simulation method using mttltimicroprocessor system TCIIlfS

 Table 1 Truncation errors ofa function eX solved by the packet

        program (Fig. 7).

        Op. time denotes a real time required to the operation by x = 10

        for a starting value x = O.

        ' By Euler rule

123

x h=2'4 h=2'6 h=2'8 h=2dO h=2-12

2 5.82E-2 1.53E-2 3.89E-3 9.76E-4 2.42E-4

4 1.13E-1 3.05E-2 7.76E-3 1.95E-3 4.87E-4

6 1.65E-1 4.53E-2 1.16E-2 2.92E-3 7.32E4

8 2.13E･1 6.00E-2 1.55E-2 3.89E-3 9.75E-4

10 2.59E-1 7.44E-2 1.93E-2 4.87E-3 1.22E-3

Op.time O.6(sec) 2(sec) 6(sec) 23(sec) 92(sec)

By Adams-Bashforth rule

x h=2'4 h=2-6 h=2'S h=2-1O h=2"12

2 4.94E-3 3.22E-4 2.04E-5 3.67E-6 1.73E-6

4 8.05E-3 5.23E-4 3.22E-5 2.40E-6 1.08E-6

6 1.11E2 7.24E-4 4.51E-5 2.46E･6 1.12E-6

8 1.42E-2 9.25E-4 5.66E･5 3.31E-7 -1.72E-7

10 1.73E-2 1.13E-3 6.88E-5 -5.54E7 3.61E-8

Op.time O.8(sec) 3(sec) 10(sec) 39(sec) l62(sec)

The second example is to solve a Van der Pol equation

       Sltjl;2 - g(l-gy2) ldt + g ., o

with the initial conditions g'(O)== Oand y(O)== 2

in Eq. (14). Then Eq. (14) can be written as

       dy,
       dt == e(Yi-g3)- Y2= fi

       gdy!
       dt = gi == h

              2       Y3= Y!' Y2

-`. Let yi=dy/dt and

 (14)

Y2=Y

(15)

   With Eqs. (8), (9-b) and (10), the solutions gri and zt2 of Eq. (15) are fround

approximately as successive samples of values ytn. and y2n (n= O, 1, 2, '''), res-

pectively. 'Ihe initial conditions are 'yio =0( O)= O and g2o=gy(O) = 2-`. The

program solving Eq. (15) is shown in Fig. 8. This program can be expressed in the

packet program



124 Hideo KOSAKO, Junichi MIHARA, and Yoshiaki KOJIMA

       Pi: ¢i2(aii, ai2, ai3, Yi', YiO, YiO, Z9, Y30, F9, Fi-i)

       P2: ¢i2(a2i, Y2i, Y20, Y,O, F,O, n-i)

       P3: ¢nda3i, a32, a32, Y3i, YIP, YiO, Y20, }i9)

 where all=-a13=6,a21=a31=a32= 1and a12=-1.

    By using Eq. (12), the starting values for the 2nd-order A-B rule can be obtained

 as fo11ows:

                      N        Yj(n'+o=aJ'nr+ h'flin, (7'= 1 , 2 )

        in'= e (YNin,-g3n,) -g"2nr

        g-'3(n+i) = Zilin" Z7;n'

           n'= O, 1, ･･･････-N'- 1; IV'=h/h'

 where y'h'nv= gtji, gNJ･o=yjo(1' -- 1, 2, 3)

                 - and LN'=Ai, .Lio=f)o (7'= 1, 2)

 The values Vinr and gJ'{n,+o are stored into addressesY? andYY, respectively, and

 the values .7i3o and.LN, are stored into addresses JFIJ-i and jF19, respectively. The solution

 starts to find gj･2 using the 2nd-order A-B Rule after the values of gJ･i and .fii(7'=:

 1 , 2 , 3 )are computed with Eq. (16) for the initial conditions gio= O andg2o= 2 -`.

    The waveforms in Fig. 9 are obtained by using the packet program for Eq. (14)

 in the case ofe= 1 and h= 2-6, h'=2-'O(AI'=2`). The waveform gAB is the

 result computed by the 2nd-order A-B rule and the waveform S shows the difference

 S= yE- yAB where gE denotes the result by the Euler rule.

                                           fe(o)                        n (o) ,

-1

-t
e

P
l   Yl = -[I}t 2-

i
e
3 x

1 n

Fig. 8 A program to solve Van der Pol equation



A continuous system simulation method using multimieroproeessor system ncMS 125

VAB

2Van-der-Pol

1

ZC4B
s

o

-1

-2

5 a
n

8
e.2

O.1

B

D.I

-O.2

Fig. 9 A solution of Eq. (14), yAB , and differencevalues S=yE-gAB

   The last example is to examine the function of the TCMS on the parallel processing.

Let m and M denote the number of processors and packets, respectively. In general the

processing time of a packet program may be considered, in the case ofM>m, to be

proportional to M and inversely proportional to m. Let t(Mi, mi) and t(M2, m2)

denote, respectively, the processing tlmes forM=Mi, m=mi and M=M2, m== m2.

Then, the following relationship wil1 hold:

                   Mlm2       t(Mi, Mi)=uam, t(ua, m2) (17)
   Figure 10 shows the test program used. The program consists ofMpackets with

M-2 dummy packets among them, where M takes a value of the interval 2 S M$ 128.

   The results of executing the test program for M=2h,k== 1, 2,･･･, 7 are

shown in Table 2, From Table 2, for instance, t(8,4) = 4.4 msec and t(64,8) = 16.8

msec. Hence t(64,8) fie 4t(8,4), which, as expected, satisfies Eq. (17) approximately.

   It is clear from the above that multiprocessor system is of high level in the through-

put for parallel operation of packets when M> m and M7m is an integer.

                      1O
P
l

P
2

P
3

1 1 1

P
4

1

Fig. 10

                       ll
                       ll                       tl
A test program for examining the function of the parallel processirig



126 Hideo KOSAKO, Junichi MIHARA, and Yoshiaki KOJIMA

Table 2 The time required to multi-operate M packets with m

processor-mits for a stepwise h

t(M,m)msec

M t(M,4) t<M,8>.N..

2 2.4 2.4

4 2.6 2.4

8 4.4 42
16 8.o 5.8

32 15.2 9.4

64 29.6 16.8

128 58.6 31.6

                          4. Concluslon

   In this paper we described a new method for simulating continuous systems by

using the multiprocessor system TCMS.

   The advantages of this method are:

   (1) Since each analogue computing element can be expressed by packet form, it is

easy to write a simulation program by usingJhe packets.

   (2) Tasks are allocated to processors automatically by means of a shared-packet-

program method. In this case it is not necessary to use the task scheduling technique,

which is invented for the purpose of improving the throughput in the fixed task

allocation method.

   (3) The more ,the number of packets in a given packet program exceeds that of

processors, the higher the multiprocessor system is with regard to the throughput.

   Thus we come to a conclusion that the simulation method presented here could be

applied to the following general-purpose multimicroprocessor systems: (1) Every

processor unit is lmked to a shared memory (or common memory) in which a packet

program is stored. (2) Each processor unit has the private memory (local memory)

with a capacity for storing a packet interpreter and an operational task library.

1
)2
)3
)4)

                  References
S. Koyama, K. Makino, N. Miki, J. Simulation, 1, 42 (1981).

T. Nakagawa, J. SICE, 21,477 (1982).

H. Kasahara, S. Narita, J. Simulatioza 2, 142 (1983).

H. Kosako, Y. Goto, H. Kisaku, Y. Kojima, J. Simulation, 3, 113 (1984).


