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Geometry of Catastrophe Model

Atsuo MURATA ¥, Yasufumi KUME ** and Fumio HASHIMOTO **

(Received Nov. 15, 1984)

The method for drawing the cuspoid (fold, cusp, swallowtail and butterfly)
catastrophe manifold and the swallowtail bifurcation set by 3-dimensional space is
shown. Moreover, the method for drawing the ruled surface and bifurcation set of
elementary catastrophe by 2-dimensional space is established. Based on these results,
the geometrical features of cuspoid catastrophe are discussed.

1. Introduction

Catastrophe theory, which was originated by Rene Thom, has been applied to
many fields such as behavioral science, psychology, physics and economics, etc!),
Catastrophe theory describes discontinuous phenomenon under gradually changing
situation. However, there exist many problems in the application of catastrophe theory.
One of the problems is that it is impossible to grasp exactly the geometrical features of
higher-dimentional catastrophe model more than 4-dimension. So far, precise geometry
of catastrophe model is represented only by 2-dimensional ruled surface developed by
A. B. R. Woodcock and T. Poston?). Precise representation of catastrophe model
by 3-dimensional space is not realized. '

This paper describes the method for drawing the geometry of cuspoid (fold, cusp,
swallowtail and butterfly) catastrophe by 3-dimensional space, and their geometrical
features are discussed.

2. Geometry of Cuspoid Catastrophe

In this section, the geometry of cuspoid catastrophe is shown, and their features
are discussed. Cuspoid catastrophe has one state variable. Fold, cusp, swallowtail and
butterfly, etc. are included in this type of catastrophe. The classification of elementary
catastrophe is shown in Table 1. Codimension means the number of control variables.
Universal unfolding equals to the potential function.

2.1 Cusp Catastrophe

Cusp catastrophe is most frequently applied to many fields, and has the following
properties:
1: The state variable is bimodal for some values of control factors.
2 : Abrupt, catastrophic changes are observed between upper and lower attractors.
3 : There is hysterisis, that is, the abrupt change from one attractor to another which
takes place at different values of control factors depending on- the direction of change.
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4 : There is an inaccessible zone of behavior for some values of control factors.
5 : There is the possibility of divergent behavior.
Cusp catastrophe manifold is shown in Fig. 1, and is given by the following equation.

~x’+bx+a=0 (1)

where x is the state variable, and @ and b are normal factor and splitting factor, res-
pectively. Dual cusp is taken up here.

Fig. 1 is drawn as follows. First, the value of b-axis is fixed, and the value of
x-axis is increased at a constant interval. Then, the corresponding value of @-axis is
calculated, and one curve is drawn. The cusp catastrophe manifold is constituted
by the set of curves when the value of b is varied. The increment of vertical direction is
constant, because the value of X increases at a constant interval. In this case, one
value of horizontal direction corresponds to one value of vertical direction. In other
words, this is one-to-one mapping. The value X of horizontal direction corresponding
to the value Y of vertical direction is memorized as follows.

I=Y/s (2)

uh=Xx (3)

6 : increment of vertical direction

——

, \\\ =—i—x"+%bx2+ax
/ \\\ ar 3 -
=P =-x3+bx+a=0
/ ‘

Fig. 1 Cusp catastrophe manifold
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Fig.2 Flow chart for drawing cusp catastrophe manifold
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The calculated point (X, Y')is plotted only when X is greater than Xmex or less than
Xmin . Xmax and Xmm are the maximum value and the minimum value of U(7), res-

pectively. If the point (X,Y) is plotted, X{ie., U(J)} is memorized as Xmax or

Xmin . This procedure is summarized in Fig. 2. Swallowtail catastrophe manifold and

butterfly catastrophe manifold can be drawn similarly.

2.2 Swallowtail Catastrophe

Fig. 3 and Fig. 4 are the swallowtail catastrophe manifold for c> 0 andc< 0,
respectively. Fig. 5 shows the swallowtail bifurcation set. On the bifurcation set,

catastrophic change occurs. The shape of catastrophe manifold and bifurcation set
differ forc> 0andc < 0.

Fig. 5 cannot be drawn by means of the procedure shown in Fig. 2. The swallow-
tail bifurcation set is given by

s+ cxt+bx+a=0

(4)
4x* +2cx+b5=0

%

)

‘\ “;. a

=i syl 3.1, 2
F—Sx +3cx +2bx +ax

AEF % pex2+bx+a=0
dx

Fig. 3 Swallowtail catastrophe manifold (¢ >0)
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Here x is the state variable, and a,b, and ¢ are control variables. The value of Cis fixed,
and the values of @ and b are calculated when the value of X increases at a constant
interval. In this case, neither vertical direction to horizontal direction nor horizontal
direction to vertical direction follows one-to-one mapping. Accordingly, Fig. 5 is
drawn as follows.

The coordinate (X,Y") for the minimum value of € is memorized as the boundary
value. One curve for the fixed value of C is divided into three parts so that one value
of the horizontal direction corresponds to one value of the vertical direction. (See
Fig. 6) For the sake of convenience, the part of solid line shall be called triangular cone.
Furthermore the triangular cone is divided into three part, that is, left side part, middle
part and right side part. The procedure of Fig. 2 can be applied to each part. However,
in this case both values of horizontal direction and vertical direction do not change
at a constant interval. So, the linear approximation is used between (X,Y) and (X',
Y’), and the coordinate of these points between (X,Y ) and (X’,Y") are calculated.
The coordinate(X",Y")is the points calculated one step before. The value of X-coodi-
nate for these points are newly set-up as maximum or minimum. In this way, the
treatment shown in Fig. 2 is possible. This procedure is summarized in Fig. 7 and
Fig.8.

\ l:left upper side of
\ triangular cone
1 4 / 2:triangular cone

\ /! 3:right upper side of
\ r 3 triangular cone

left side right side
part part

middle part

Fig. 6 Name of boundary for drawing the swallowtail bifurcation set
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2.3 Butterfly Catastrophe

Butterfly catastrophe manifold for various values of ¢ and d are shown from Fig.9
to Fig. 13. These are drawn in a similar procedure to Fig. 2. Control parametera, b, C
and d are called normal factor, splitting factor, bias factor and butterfly factor, res-
pectively. Fig. 14 is the bifurcation set for various values of candd. In this catastrophe,
the state variable is trimodal for some values of control factors. In Fig.9 and Fig. 10,
the statevariable is bimodal inside the bifurcation set. On the other hand, in Fig. 11,
Fig. 12 and Fig. 13, the state variable is trimodal inside the shadowed area of Fig. 14
(c),(d),(e). This is the main feature of butterfly catastrophe. In general, it is difficult
to understand the picture of butterfly catastrophe manifold corresponding to Fig. 11,
Fig. 12 and Fig. 13, and such an exact and plain figure is not shown so far. Fig. 9 and
Fig.10 are qualitatively the same with Fig. 1. In short, the cusp catastrophe is contained
in the butterfly catastrophe. The butterfly catastrophe is not applied so frequently
as the cusp catastrophe. In applying this catastrophe, it is important to understand its

geometry accurately.

///x
Z—
Z—
- a
e
=== \\ F=‘%x6+%dx“+%cx3+%bx2+ax
%—:—- =—x5+dx3+cx2+bx+a=0

Fig. 9 Butterfly catastrophe manifold (¢ >>0,d <0)
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(7

F=—lx6+%dx“+lcx3+%bxz+ax

§ ar :x5+dx3+jx2+bx+a=o

Fig. 10 Butterfly catastrophe manifold (¢ <0,d <0)

— i 1 1 1 1
........ = 64 4 4 342px?+
S F 6x 4dx 3cx 2bx ax

=-x5+dx3+cx2+bx+a=0

Fig. 11 Butterfly catastrophe manifold (¢ = 0,d >>0)
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Fig. 12 Butterfly catastrophe manifold (¢ >0,d > 0)

=—%x6+%dx“+%cx3+%bx2+ax

ar =-x54+dx3+cx2+bx+a=0

dx

Fig. 13 Butterfly catastrophe manifold (¢ <0,d >0)
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Fig. 14 Butterfly bifurcation set
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3. Conclusions
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In this paper, the method for drawing the cuspoid catastrophe manifold and the
swallowtail bifurcation set was shown, and their geometry was discussed. Aside from
this, the method for representing the elementary catastrophe shown in Table. 1 was
established, It is necessary to grasp the geometrical feature in the application of ca-
tastrophe model.

Table 1. Elementary catastrophe

number of

State cod}m e Universal unfolding name representation method
variable nsion
1 F=1/3x?+ax fold | 3-dimensional manifold
a 3-dimensional manifold
2 F=t1/4x*+1/2bx%+ax cusp ruled surface
1 2-dimensional bifurcation set
wallow- 3-dimensional manifold
3 F =1/5x5+1/ 30x3+1/2bx2+ax § tail 3-dimensional bifurcation set
A ruled surface
3-dimensional manifold
4 F=tl/6x6+1/4dx4+1/3cx3+1/2bx2+ax butterfly | ruled surface
2-dimensional bifurcation set
_.3,.3 hyperbolic | 2-dimensional bifurcation set
=x"4+p° +ax p+hx+
3 Faxty taxy+bx+cy umbilic | ruled surface
3.2 2,2 elliptic 2-dimensional bifurcation set
=x.xy +a(x 4y °)+bx+
2 3 Fxtxy +a(x" 4y )tbxcy umbilic | ruled surface
Fetx 2yt rax2+by +ox+ parabolic. | 2-dimensional bifurcation set
4 X Yty haxTaby rexdy umbilic | ruled surface
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