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Boundary Element Analysis of Bending Problems
of Plates with Free or Fixed Edges

Tadakazu Katavama*, Hideto TAar** and Tsuyoshi SEKIvA*

(Received Nov. 15, 1983)

The bending and twisting moments and the transverse shearing force in a plate are
derived from the “moment functions” U and V. The field of (U, ¥) becomes analogous
to the displacement field of two-dimensional elasto-statics. The boundary conditions
are such that, on an unsupported edge, the boundary values of U and ¥ are known and
that the derivatives of I and V are specified on a fixed edge. This is the most advantage
of the method to the boundary element method. The moment components are obtained
from the strain components of the corresponding plane elasticity.

Numerical calculation was carried out by boundary element method with linear
elements. The results show that the BEM analysis can be applied precisely to the
bending of the plate with free edges.

1. Introduction

Many workers have been trying to apply the Boundary Element Method (BEM)
to the plate bending problems. Jaswon and Maiti¥ have applied their BEM for-
mulation for a stress function in two-dimensional elasticity to bending problems
of the uniformly loaded clamped or simply-supported plates. Maiti and Chakra-
barty® and Hansen® have proposed methods suitable for the restricted classes
of plate bending problems. In the plate bending problem, it is difficult to deal
with the free-edge conditions because of the second- and. third-order derivatives
of the deflection function. The numerical difficulties also arise for the free-edge
boundary conditions in the indirect BEM formulation.

More recently, Wu and Altiero® have suggested a little more general treat-
ment by embedding the plate of interest in the circular clamped plate for which
Green’s function for an unit load is known. They have determined a fictitious
line load and a normal moment along a contour which lies: outside of the plate
contour so as to satisfy the prescribed boundary conditions on the original boundary
and avoided the second order singularities in the integrant of the equations. Stern®
has employed a more direct approach and obtained a pair of integral equations
involving displacement, normal slope, bending moment and equivalent shear on
the boundary.

In the present work, an alternative approach is employed to obtain a formula-
tion for a bending problem of a plate with free edges, which is apropriate to apply
the BEM. The method is in spirit the same as the ones proposed by Southwell®
and extended to plates of variable thickness and mixed boundary conditions by
Fung” and further to the multiply-connected plates by Matsumoto and Sekiya®.
The “moment functions”, which was termed “stress functions” by Fung, are intro-
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duced in relation to the bending and twisting moments and the transverse shear
in the plate. Then an analogy between the plate bending problem and the plate
stretching problem is established much clearer than the former works. It is needed
to change partially the BEM program of the two-dimensional elasticity to calculate
the bending moments. Moments on the boundary are able to be computed from
boundary data after some algebraic operations. Numerical examples show that
the present method is very useful to analyze the moment distributions.

2. Analogy between bending- and stretching- problems of plates

2.1 Fundamental equations

The plate is assumed to be homogeneous and isotropic and to obey the Kirch-
hoff-Love assumption. Moreover, it is subjected to a distributed surface load
g and/or an edge load @, or moments M, or M, (Fig. 1). The equilibrium equa-
tions of this plate are well-known as

My "Qy () (b)

Fig. 1 Sign convention of moments and shearing forces.
oM, oM

¥ __0.=
5% Ty —0a=0,

90, | 99,
Ox dy

oM,, oM, N
9x 9y +0,=0

1)

+ -2 +¢=0

We define “load functions”, 2, and £,, such as

820, | 6°2,

Ty Yy 2
ox? + dy* 1 : @
Then, equations (1) are identically satisfied by introducing ‘“‘moment functions”,
U and V such that

_ov_o8, , __oy_os ,
0.~ %4, o--2¥ %8 )
vV AU :
Mm,=2Y_9, m=2Y_g 4
x ay 1 y ax 2v ()
and
aUu 4
M,=2" 4y, M,=—2" 5
xy ay +9 y % -+ ()

Here, equations (5) can be rewritten as
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Mo ] (6V+8U)

6
i »#~ 5 \ox dy ©

The equations governing U and ¥V are the compatibility equations -and .can
be derived from the relations between moments and deflection w, i.e.

_ o*w , 0w _ o'w | &*w
M"__D(—EJ”’F)’ My=—D(+ ax>

=D(1 ——u)

™

x6y

where D is the flexural rigidity of the plate and v is P01sson s ratio. From equa-
tions (4), (6) and (7), we have

ow —1/D{6U v }
— = — —y— —(2,—v82
9yt 1 x  ay —(@;—v2)
o%w —1/D{6V U }
— oY _yPY (9 —ve 8
It 1—s? 3y ax (2,—282,) )
*w _ —1/D (aV 6U> '
6x6y 2(1—v)\ox oy

By eliminating w from above equations, the governing equations of new functions
U and V become

=i el |y B ) e
iow oy o ) oaq ox oy )| aplimr @20
)

Comparing equations (9) with the governing equations of the stretching problems
of thin plates under the initial strains (see Appendix), it is concluded that both
systems of equations become identical if E* and »* are put in place of —1/D and
—v respectively, and 2, and £, are looked as the initial strains ¢, and ¢,, respec-
tively. Therefore we can interpret U and ¥V as the components of a displacement
and then the equivalent body force components X* and Y* are given by

_ 1D a(ﬂz—vﬁl), yr_ 1D 8

X* i
128 1—129y

2,—v4,) (10)

So, if the plane stress problem for the plate with body forces given by equations
(10) can be solved, the strain distributions give the moment ‘distributions of the
original bending problems (see Egs. (4) and (6)).

2.2 Boundary conditions

Values of U and V at the point on the boundary can be calculated as follows.
The differentials of U and ¥V on the boundary are given by
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dU— ( oU +3U1)d , de(—a—Vm—I—a—Vl>ds (11)
ox ox dy

where / and m are direction cosines of the outer normal n and s is an arc length
along the boundary (Fig. 1). Substituting equations (4) and (5) into equations
(11), we obtain

AU=—(mM,—IM ., Iyr—m8,)ds

12
dV=(mM ,,+IM,—myr--12,)ds (12)
Using the following relations
M,—IM,,=mM,—IM,
13)

mM ,,+IM,=IM,+mM,,

and integrating the results along the boundary, we obtain the boundary values
of U and V as follows:

U=U,— So (MM, —IM -+ I+ m@,)ds

s (14)
V=V, + S (M, +mM,,—myr+19,)ds
0
Similarly, v is given from equations (3) as
vtk | (@t 122 4m22 as 15)
dy

Uy, V, and v, are integration constants. This set of boundary conditions cor-
responds to the unsupported edge of the plate on which edge moments and shear-
ing force are specified. Especially, M,=M,,=Q,=0 along a free edge, and then
the boundary values of U and V are given by

V=t S ( agl—l_m 6y)ds
U=U,— So (r+m@,)ds (16)

V=V,— S: (myr—I182,)ds

for a free edge.
Another important boundary condition of the plate bending problem is the
fixed-edge condition, i.e. w=08w/0n=0. This implies dw/dx=8w/6y=0 and then

d <aw) o*w w d <6w>
(L) =—m 122 =0, =—m_— —_0 17
as\ax) = "o T axay ds \ay <’>’xé?yJr 1

Therefore, substituting equations (8) into above equations, the following boundary
conditions are obtained:
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—IID

b= 1— (‘92_”‘91)
1y
p,—ﬂ?(gl—mz)
where the following symbols are used:
_UDF(U 9% Lty 9V 9U)]
P=1"i\ox oy T2 m(ax+ay
19

:——1/D[ oV _ U\, 1+v,(8V 6_(])]
b= m(Gy 8x>+ 2 <8x+6y

These conditions are interpreted as the stress boundary conditions of the plane
stress problem. '

2.3 Extra conditions

Equations (14) or (16) can be rewritten as follows:
U=—Cy+CHU, V=Cx+Cy+V (20)

Here, terms U and V are able to be derived from edge moments, shearing force
and load functions £, and £, Constants C,, C, and C; are different on every
boundary contour of multiply-connected plate, but only one triplet may be set
equal zero since the derivatives of U and V are needed to derive the moments (see
equations (4) and (6)). These triplets of constants are to be determined for each
contour I'; which contains the free edge. The conditions to determine these con-
stants are the uniqueness conditions of the plate deflection w and its derivatives:

S dw=0, S a(2%)=0, S d(ﬁY)_—_o @1)
r; ry \ox ry \oy
Using the following relations
ow ow 8w
d( W g, d( )=2¥ ix+T%a
0x ax +6x6y ay 6x8y +6 2% @)
s 32 2) (22) )
8y ox dy
and equations (8), equations (21) may be rewritten as
S pads= I/D S K(2,—v2,)ds
_ 1/D
S pys =12 gr m(Q,—v@,)ds 23)

[, co—rpods= 12 tm-x(@,—ve)—1y(2,—velds

where p, and p, are quantities defined by equations (19). In the corresponding
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plane stress problem, these are the equilibrium conditions of the resultant force
and moment in each hole.

2.4 Removal of multivaluedness of U and V'

Sometimes it may happen that the boundary values of U and V derived from
equation (16) are multi-valued. In this case, single-valued functions U and ¥
are introduced as follows:

O=U—L 3 U, tan12 =%
2x xX—X;
i 24)
V=vV— L1V, tan1 =Y
2z xX—X;
where U; and V; are dislocations of U and V at point (x, y) on a contour I'; where
U and V are specified (Fig. 2). The governing equations and the boundary values
for the field (U, V) are obtained from equations (9) and (20). As a result, we have
additional terms in equations (10), (18), (20) and (23).

Fig. 2 Configuration of the plate with holes.

3. Application of the boundary element method

As shown above, the governing equations of moment functions are analogous
to those of the plane stress problem. The free edges in the bending problems cor-
respond to the edges on which displacements are specified, and the fixed edges to
the stressed edges in the plane stress problem. But there are some differences
between two problems, i.e. the unknown constants in equations (20) and the extra
equations (23) to determine these constants. Therefore, if we intend to use the
ordinary BEM program for plane elasto-static problems, it has to be modified
a little.

Fundamental integral equations® for a two-dimensional elasto-statics are, using
summation convention,

Cijj = S r (u¥p;—pFu)dl+ Sa ul; X A2 (25)

where £ is the domain of the plate, I' =I',4+I,++--+TI";, is the boundary of
the plate, and u;, p; and X; are the components of displacements, tractions and
body forces, respectively. c¢;; is the constant estimated by means of the rigid body
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conditions. u¥; is the fundamental solution which gives the displacement field
of the in finite elastic medium subjected to an unit load at point § in x;-direction.
p¥; is the i-th traction at point x due to the field u¥;. In an usual sequence, dis-
cretizing equation (25) and using the boundary conditions, the resulted systems
of equations are solved. But in our case, we have the specified values of displace-
ment given by equations (20) and the extra conditions (23), then unknowns increase
by three per such a contour. Equations (23) can be discretized with equation (25)
in the same way as the ordinary BEM formulation, and they are solved with equa-
tions (18) and (20).

The derivatives at inner point x which are used to compute the moments (see
equations (4) and (6)) are calculated from the equation

9y,
ax

i

= Utp—stumar+ | rhixae @6)

where kernel functions f* and g* are given as

1 { or or or or ar}
K= {(3—4y, ——8,. L8y S22
S 82G(1 —v)r ( ) ox; " ox, ax Ouwt2 0x; 0x; 0x,
~1 { [ or or or or ar]
" 1—2) s, s, 95 1497
8= dr(1—y )r? ( ) Ax; ax, 6x,- 7 dx; 8x ox,
Ja-zou+2 2l B a—2)(2-220 2,
x; Ox; Ox; Ox;
or or
—(1—2 ( 2———-> ,-} 27
(1-2v) ox, 0% n 27

and G=—1/2D(1—v), v,=—v[(1—v), r is the distance from an inner point x to
a point & on the boundary, n, is the outer unit normal vector and §;; is Kronecker’s
delta. We can not calculate the derivatives at points on the boundary because
of the strong singularities contained in the kernels. However the strains at the
boundary points can be calculated from the boundary data as follows (Fig. 3).

Ve

Fig. 3 Stresses on the boundary.

t

The normal and shear stresses and the tangential strain are computed from the
boundary data as

0,=p, COS &+p, sin a
Tp=—D, SiN @p, COS @ (28)

du . dv
=——S8ma-+-—Ccos a
=g et
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Then the rest of the strain components are obtained by means of the stress-strain
relations as follows:

0,=(2G€t+V30,,)/(1 —v,)
e, =((1 —2U8)0“/2G—Ue€t)/(l —v,) (29)

Tnt =Tnt/ G
4. Numerical examples

Numerical analyses were carried out by means of BEM with linear elements.
First example is shown in Fig. 4. This is one of the most difficult problem to ana-
lyze because the plate has the free edges and moreover is subjected to the concen-
trated load P. We put £,=2,=0, since ¢ =0 and assume v, = —P/2, U,=0,
V,=aP/2 in equations (16) to get the symmetric boundary conditions as

Pp.=p,=0 on fixed edge x=0
U=0, V=§—(x—a) sgn () on free edge y=4-5/2 (30)
U=§(§ —ly |) V=0 on free edge x=a

Fig. 4 Rectangular plate with three edges free and-a fourth edge fixed.

The bending moment distribution on the fixed edge x=0 is shown in Fig. 5 with
the results of the photo-elastic experiment®. The number N of the boundary

element is 20 or 30.

“Mx/P ‘
6 -
— experiment
2N o BEM N=
TN« BEM N-ao
A
/ 3
AT
- 1 -
-5 =~4 -3 -2-1 0 4 2 3 4 5

Yib

Fig. 5 Bending moment distributions on the fixed edge (b/a=4).
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The second example is the bending of the square plate with three edges fixed
and a fourth edge free (Fig. 6-a). Two loading cases, a uniformly distributed
load (case 1) and a hydrostatically distributed load (case IT), were considered (Fig.
6-b and c¢). Since the surface load g is applied to the plate, we need to find out

FREE
y T4E o
Y Wa— e |
oD g
(19
A \
a 9 - q
é—%_;éx.f.e 0 o
() (b (o)

" Fig. 6 Geometry of the plate and the loading form.

the load functions 2; in equation (2). We assumed £2,=g,x¥/4 and 2,=¢q,y%/4
for case I. Then the equivalent body force is obtained from -equation (10) as

X*=—vqx/2D(1—1?), Y*=—vq,y/2D(1—?) (1)
and the surface traction applied to the fixed edge is given as

pe=—lg(y*—vx)/4D(1—v?) , p,=—mg(x*—v)}/4AD(1—))  (32)
and the prescribed displacement on the free edge is assumed as

U=V=0 (33)
On the other hand, we assumed £2,=g,x%/6a, £,==0 for case II. Thus the body force

becomes
X*=—vgx*2aD(1—v%), Y*=0 (34)

and the boundary conditions are given as

U=V=0 (3%
on a free edge and

P,=vlgx*(6aD(1—v?) , p,=mqx>/6aD(1—v*) (36)

on a fixed edge. The obtained results for the typical points shown in Fig. 6-a
are compared in Table 1 with the values from Ref. 11.

To assure applicability of the present method to the perforated plate, the nu-
merical analysis was carried out for the circular ring plate with fixed outer edge. The
bending  analysis also become difficult when the plate has holes, but fortunately
the exact solutions are easily obtained in this case. When the moment M, is uni-
formly distributed along the edge of the central hole, the boundary condition is
given as

U=—Cy+Cy—Mx, V=Cx+C;—M,y on the inner edge
P:=py=0 on the outer edge

37)
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Table 1 Moments of square plates with three edges fixed and a fourth edge free.
M=M]jqu?, v=1/6

Load A B c D E
case N = ¥, V) i v v
M, M., M, M, M, M,
2 —0.0588 00151 00308 00460 —00613 —0.0889
40 ~00584 00140 00304 00440 —00641 —0.0880
I 64 —00555 00135 00307 00434 —00660 —0.0859
Buite ey —00510 00138 00317 00444 —0.0614 —0.0853
2 —00376 00109 0012 00106 —0022 —0.0153
40 —00367 00097 00126 0009 —0.0283 —0.0133
I 64 —0.0360 00092 00127 0009 —00291 —0.0117
Bt et —0.0299 00094 00135 00095 —0.0269 ~—0.0146

and the extra conditions to determine the constants C; are

fp,ds:O » }pyds=0 » § (xpy_'ypz)ds=0 (38)

for the inner boundary. The numerical calculation was carried out to the case
which the ratio of the outer and the inner radii (b/a) is equal to 2 and the number
of the boundary element is 24 per each contour. The obtained moments are com-
pared with the exact one (Fig. 7).

1.0 & I
\l\ o calculated
— exact
075 | l
05 L M
2 : |
*o25|— .
Mg )”O,___()—-—O
0 | | Lo
12 % 16 18 ria 20
-025 07(
s L

Fig. 7 Bending moment distributions on the radial line in the
concentric circular plate under the uniform bending
moment M, at the hole (b/a=2, 48 elements).

Next we consider the case that the plate is subjected to the uniform surface
load ¢ and the hole is free from stress. As load functions, we take 2,=gx%4
and 2,=¢y%*4. But in this case, the displacements on the inner boundary have
discrepancies U,=—qa’zy and V,=ga’zx where x*-+y?=q¢?. Then we introduce
a single-valued displacement such as

U= U—}—qazyl tant Y | P=y— gax L tan=1 2 . 39
2 x 2 x
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For this system, we have the body force;
s gx {(1+v)a2_,__p}

2D(1 —®) U x2+y?
e (e ) 0
2D(1 —AH L x24y2

the boundary conditions;
U=—Cy+C,—q(x*+3a’x—4a%)/12 @)
V=Cx+C3—q(*+34a%)/12 Xtyt=d?

along the edge of the central hole and

X2 eis
b= )

” “2)
p _‘;—'—_ xz_ 2 2 2 2:: 2
e R

along the outer contour and the extra conditions;

]( 5,ds=0, § 5,ds=0, §(xpy—yi1,)ds=0 @3)

for the inner boundary. The plate (b/a=2) was divided into 200 triangular small
cells and 48 boundary elements for a numerical computation. Fig. 8 shows the
bending moment distributions obtained by BEM and the theoretical research.

003 ]
’Me o calculated
o ~— exact

|

N U . ’ 8 /a 20
0
E J——
= \o
-0.03
-0.06
N

-0.09

Fig. 8 Bending moment distributions on the radial line in the concentric

circular plate with a free circular hole under the uniformly dis-
tributed load g (b/a=2, 48 elements and 200 internal cells).

The last example is the bending of the clamped square plate with a free central
circular hole under the uniformly distributed lateral load g. We have the same
systems as the former one except the conditions (42). The tractions along the
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outer contour is given as

p=pt ,ﬂ)[ 0 vx2>—x 07— — (149} | »

py=

2__ %y 2y (1-+)] ]
L )= R ) (4}
Since no exact solution is available, the bending test was carried out to the steel
plate whose side length L is 500 mm, and the radius of the central hole g is 100 mm.
The bending moments on the x-axis obtained by BEM are compared with the ex-
perimental results in Fig. 9.

2
Y M o calculated
o ALY A experiment
1 I OA ° ’
I R
oda 0 A0 op T _© 2XIL
(0] 1%
wu 0-15 0.16 %7 Of’ D9 . 1.’0
E1— o | o
[e)
_2 I o}
G [
-3 o—
-4 Lo

Fig. 9 Bending moment distributions on the x-axis in the square plate
with a free circular hole under the uniformly distributed load ¢
(a/L=0.2, 48 elements and 200 internal cells).

5. Concluding remarks

In the analysis of the bending of the plate, the existence of the free edges or
the holes makes it difficult to find out the deflection function satisfying the bound-
ary conditions. The free edge is also the neck point in the analysis of the plate
by BEM.

In this paper, the analogy between the plate bending problem and the plate
stretching problem was made much clearer than the former work, and for the ana-
lysis of the perforated plate it was pointed out that the dislocations, when we go
around the hole, are dependent on the point where we start. Furthermore, we
brought this analogy into the boundary element method. As illustrated in the
above chapter, the results are sufficiently enough for us.

We believe that we can make the best use of BEM in the field of the bending
analysis of the perforated plate with free edges.
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Appendix
The equilibrium equations for two-dimensional elastic problem is

60, 61‘ xy

+X 0, + +Y 0 (A-1)

where x, y are cartesian coordinates, o,, o,, 7,, are the components of stress and
X, Y are the components of body force. The stress-strain relations of a homo-
geneous, isotropic medium with initial strains e, ¢,, in the plane stress state are
given as

E
Gx:i_—yz {ex—{—vey—(em—l—ueyo)}

y:1 fyz {c’:‘y—I—Vé‘x—(Eyo—]—Vé‘xo)} (A—Z)

Tey™ E Vzy
2(1+v)

where E is Yong’s modulus and v is poisson’s ratio.
Substituting (A-2) into (A-1) and using the relations between strain and dis-
placement (u, v)

&, =

ou dv 8v  du
Ep=— s , A-3
ox ? dy Ter = dx ay (A=3)

we obtain the governing equations with respect to displacement as

QE@Q?Q[E<@@]X3[ ]
ax[l—Vz(aerVay)]Jray 2(1+) 6x+6'y> R e ot )

(A-4)
%[1 - uZ(g—;Jr ”%>]+ aax[z(fr u)@ﬁ*m* Y= aay[ (E”Jr”"“)]

The last term in the left-hand side is equivalent to the body force and then equiva-
lent body force is

—E 0 —E 9
X* —1 —yz £(€x0+yey0) > Y* :l_v—Vz a_y(eyo—l—yezo) (A_S)



