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Boundary Element Analysis of Bendmg Problems

     ef PIates with fiee or fixed Mges f

Tadakazu KATAyAMA*, Hideto TAi** and Tsuyoshi SEKiyA"

(Received Nov. 15, 1983)

   The bending and twisting moments and the transverse shearing fbrce in a plate are

derived from the "moment functions" Uand Z The field of(a V) beeomes analogous

to the displacement field of two-dimensional elasto-statics. The boundary conditions

are such that, on an unsupported edge, the boundary values of Uand Yare known and
that the derivatives of Uand Vare specified on a fixed edge. This is the most advantage

ofthemethodtotheboundaryelementmethod. Thernomentcomponentsareobtained
from the Strain components of the corresponding plane elasticity.

   Numerical calculation was carried out by boundary elernent method with linear

elements. The results show that the BEM analysis can be applied precisely to the

bending of the plate with free edges.

1. introduction

'

    Many workers have been trying to apply the Boundary Element Method (BEM)

to the plate bending problems. Jaswon and Maiti') have applied their BEM for-

mulation fbr a stress function in two-dimensional elasticity to bending problems

of the uniformly loaded clamped or simply-supported plates. Maiti and Chakra-

barty2) and Hansen3) have proposed methods suitable for the restricted classes

of plate bending problems. In the plate bending problem, it is diMcult to deal

with the free-edge conditions because of the second- and third-order derivatives
of the deflection function. ' The numerical diMculties also arise for the free-edge

boundary conditions in the indirect BEM fbrmulation.

    More recently, Wu and Altiero4) have suggested a little more general treat-

ment by embedding the plate of interest in the circular clamped plate for which

Green's function fbr an unit load is known. They have determined a fictitious

line load and a normal moment along a contour which lies outside of the plate

contour so as to satisfy the prescribed boundary conditions on the original boundary

and avoided the second order singularities in the integrant of the equations. Stern5)

has employed a more direet approach and obtained a pair of integrai equations

involving displacement, normal slope, bending moment and equivalent shear on

the boundary.

    In the present work, an alternative approach is employed to obtain a formula-

tion for a bending problem of a plate with free edges, which is apropriate to apply

the BEM. The method is in spirit the same as the ones proposed by Southwel16)

and extended to plates of variable thickness and mixed boundary conditions by

Fung') and further to the multiply-connected plates by Matsumoto and Sekiya8),

The "moment functions", which was termed "stress functions" by Fung, are intro-
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duced in relation to the bending and twisting moments and the transverse shear

in the plate. Then an analogy between the plate bending problem and the plate

stretching problem is established much clearer than the fbrmer works. It is needed

to change partially the BEM program of the two-dimensional elasticity to calculate

the bending moments. Moments on the boundary are able to be computed from

boundary data after some algebraic operations. Numerical examples show that

the present method is very usefu1 to analyze the mornent distributions.

       2. AnalQgy between beRding- and stretching- problems of plates

2.1 Fimdamental equatioms

   The plate is assumed to be homogeneous and isotropic and to obey the Kirch-

hoff:Love assumption. Moreover, it is subjected to a distributed surfaoe load

q and/or an edge load e. or moments Mi or Mi, (Fig. i). The equihbrium equa-

tions of this plate are well-known as

                                                 Mnt                                 Mxy

                   My Mx s Mn Q. n
                   Myx Qy ca} (b)
              Fig. 1 Sign convention of moments and shearing foroes.

          OaMxle+aYyptx-e.=o, 06M.ley-OaMy'+2,==o

                oe,          oe.
                   +q-O              +
                Oy           Ox

    We define "load functions", 9i and 92, such as

                0222          622,
              +                    =q          Ox2                 ay2

Then, equations (1) are identically satisfied by introducing "moment

U and V such that

                            - av o2,            -ath a2,          2x-sEi - ox ' 2y--sy- oy

          MitOyV-2,, M,==gSU-2,

and

          ..,,=g-,u+th, M,.=--gy/+th

Here, equations (5) can be rewritten as

oroJq""
･
      a.

(1)

(2)

functions",

(3)

(4)

(5)
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Mx, == -agx =" t( aLV+
6x

t
o
f
U
)

(6)

   The equations governing U and V are the compatibility

be derived from the relations between moments and deflection w

M. .,. -D(gl2yg

M., == D(1 in v)

   o2w
+v-   ay2
62w

OxOy

)
･
A4,--D( o2w   +v

ay2

o2w

Ox2
)
'

    .equat!ons
Le.

,and ,can

(7)

where D is the flexural rigidity of th

tions (4), (6) and (7), we have

e plate and v is Poisson's ratio. From equa-

ai2!tiw = -i/D t2U -, l2-LV

ay2 1-v2 1ax Oy
gl21I!-iF-1;D,(gilVlm,g{Ul

-,S.2,w
,=-
,nt/e,(gi"+

-(2,-v2D]

    '
-(2,-v2D]

3
Y
)

(8)

By eliminating w from above equations. the governing equations of new functions

U and V become

    8.[iLSP(kU-vS")]+8,Lfii-iD,,(kV+3U)]--8.[i'C",(22-v2i)]--o

    8,[i-';D,(8V-v.O.U)]+,-O.[,i,iLD.,(gV+3,U)]-8,[,--i;D,(2i-vg2)]=-o

                                                              (9)

Comparing equations (9) with the governing equations of the stretching problems

of thin plates under the initial strains (see Appendix), it is concluded that both

systems of equations become identical if E" and v* are put in place of -11D and

-v respectively, and 22 and 2! are looked as the initial strains e.o and eyo respec-

tively. Therefbre we can interpret U and V as the components of a displacement

and then the equivalent body fbrce components X* and Y" are given by

x* .,, 11D -{it

    1-v2 ax
(9,-v2,) , Y* == 11D a

1-y2 Oy
(2,-v22) (1O)

So, if the plane stress problem fbr the plate with body forces given by equations

(10) can be solved, the strain distributions give the moment 'distributions of the

original bending problems (see Eqs. (4) and (6)).

2.2 Boundaryconditioms

   Values of U and V at the point on the boundary can be calculated as follows.

The differentials of U and V on the boundary are given by '
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         du,.,(-t6.U.+giUli)ds, dv=(-glY/m+glVIii)cls ' (ii)

where l and m are direction cosines of the outer normal n and s is an arc length

along the boundary (Fig. 1). Substituting equations (4) and (5) into equations

(11), we obtain

         dU== -(mM, -ZM.,+ IV -m9Dcis
                                                          (12)
         dV=(mM).+Lld.-mVfi+l2i)cis

Using the fbllowing relations

         MMy-IMxs=MMn-IMnt
                                                          (13)
         MMyx+llU'x==IMh+MMnt

                                            '
and integrating the results along the boundary, we obtain the boundary values

of Uand Vas follows: '
         U=Ub- !:. (mMi-lll4I.t+lfiyb'+m22)cis

         V== Vb+ I, (IMn+MMnt-MV+l2i)ds

Similarly, V is given from equations (3) as

         fiyb" --Nbee+ S: (e.+ ilZltSi +m {litllf2) ds (is)

U6, Vh and fiybee are integration constants. This set of boundary conditions cor-

responds to the unsupported edge of the plate on which edge moments and shear-

ing force are specified. Especially, M.=:M),t =e.==O along a free edge, and then

the boundary values of U and V are given by

         th -=fiyen,+ jl (iO,R.i +m {lii'lii2) ds

         U-: Ub- jj (iN`･+m2Dcts . (i 6)

          V= = Vb - ji (mV-l2,)ds

for a free edge.

   Another important boundary condition of the plate bending problem is the

fixed-edge condition, i.e. w==aw/On==O. This implies OwfOx==aw/Oy==O and then

     d-d,(gtsw)--mg}+laO.2owy=-o,d-d,(giw;)--.oO.2owy+lg;¥--o (17)

                                                         '
Therefore, substituting equations (8) into above equations, the following boundary

conditions are obtained :
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             -ijD                 (22-v21)         Px ==             1-y2
                                                           (18)
         p, == i-M/.D, (2i-vgD

where the fo11owing symbols are used:

         p.-ill,D,[i(giu-ygy/)+iiv.(gsv+giul)]

                                                          (19)
         ,,..igD,[.(glvi-,tbsu)+i{i,vi(g,tv+zi/{)]

These conditions are interpreted as the stress boundary conditions of the plane

stress problem.

2.3 Extraconditions

   Equations (14) or (16) can be rewritten as fbllows:

         U==-C,y+C,+U,.V==C,x+Ck+V (20)
Here, terms U and V are able to be derived from edge moments, shearing force

and load functions 2i and 22. Constants Ci, C2 and C3 are diffbrent on every

boundary contour of multiply-connected plate, but only one triplet may be set

equal zero since the derivatives of U and V are needed to derive the moments (see

equations (4) and (6)). These triplets of constants are to be determined fbr each

contour ri which contains the free edge. The conditions to determine these con-

stants are the uniqueness conditions of the plate defiection w and its derivatives:

         jr,dW==O' Ir,d(iill't)=:O' j.,d(giWi)==O (2i)

Using the fbllowing relations

         d(gts')==g211!du+,O.2,w,dy,d(gs')=,a.2,w,du+gi2Ygdy

                                                          (22)
         d.=d(.gtlf)+d(ygi'L)-xd(gl't)-yd(g'i;)

and equations (8), equations (21) may be rewritten as

         jr, Pxds==ill/.D2 jr, l(22-V2i)ds

         jr,Pyds== ilmll.D2 jr, M(2i-v22)ds . (23)

         Ir, (xppt-JZPx)ds= i ltl£D2 j., [M'X(2i-V22)'ly(22hV2i)]`tS

                             '
where p. and p, are quantities defined by equations (19). In the corresponding
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plane stress problem, these are the equilibrium conditions of the ;esultant fbroe

and moment in each hole.

2.4 Removal of multivaluedness of U and V

   Sometimes it may happen that the boundary values of U and V derived from

                                                        tv-equation (16) are multi-valued. In this case, single-valued functions U and' V

are introduced as fo11ows:

         0 =u- t. Z Ui tan-iYxny-Yx'i.

                                                          (24)
         fi== v-1z vi tan-iY-Yi

               2n x-xi
where Ui and Vi are dislocations of U and V at point (x, y) on a contour ri where

U and V are specified (Fig. 2). The governing equations and the boundary values

          ev -Vfbr the field (U, V) are obtained from equations (9) and (20). As a result, we have

additional terms in equations (10), (18), (20) and (23).

s

n

R

Fig. 2

 (,,;,;i (XY),Ol q,

                   n

Configuration of the plate with holes
.

             3. Application of the boundary element method

   As shown above, the governing equations of moment functions are analogous

to those of the plane stress problem. The free edges in the bending problems cor-

respond to the edges on which displacements are specified, and the fixed edges to

the stressed edges in the plane stress problem. But there are some differences

between two problems, i.e. the unknown constants in equations (20) and the extra

equations (23) to determine these constants. Therefore, if we intend to use the

ordinary BEM prograrn fbr plane elasto-static problems, it has to be modified

a little.

   Fundamental integrai equations9) for a two-dimensional elasto-statics are, using

summation convention,

         cijui= S. (u?ipj -p?juj)dr+ j. uf･iXjd£ (2s)

where 2 is the dbmain of the plate, r==ri+r2+･･･+rM is the boundary of
the plate, and ui, pj and Xi are the components of displacements, tractions and

body forces, respectively. eii is the constant estimated by means of the rigid body
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conditions. uf･j is the fundamental solution which gives the displacement field

of the in finite elastic medium subjeeted to an unit load at point 6 in x,･-direction.

p?i, is the..i-th traction at point x due to the field u?j. In an usual sequence, dis-

cretizing equation (25) and using the boundary conditions, the resulted systems

of equations are solved. But in our case, we have the specified values of displace-

ment given by equations (20) and the extra conditions (23), then unknowns increase

by three per such a contour. Equations (23) can be discretized with equation (25)

in the same way as the ordinary BEM formulation, and they are solved with equa-

tions (18) and (20).

   The derivatives at inner point x which are used to compute the moments (see

equations (4) and (6)) are calculated from the equation

          g."i == j. (f]$kPk-gfjkUk)dr+ j.ff･ikXkd2

where kernel functionsf* and g* are given as

   JiC?lik = s.G(i-.,)r((3 -4ve) zillti; 6,kmzilfti, 5,t -zilft; 6jk+2 aOxr, aaxr, aaxrk)

    gZk =4.(imi.,),,(2oa-2[(i-2v,)oax",B,k oO.",a,,-zllf'i,6,k+4oOxr, oOi, 60x",]

          -[(i-2v,)Sik+2oOxri iaxrk]ni+(i-2v,)(6i,:-2oOii o6xrj)nk

                  '          -(i -2v,)(6jk-2 ijliti;. 2jlftik) ni]

and G== -1/2D(1-v), v,== -v!(1-y), r is the distance from an inner point x to

a pointe on the boundary, nk is the outer unit normal vector and Sii･ is Kronecker's

delta. We can not calculate the derivatives at points on the boundary because

of the strong singularities contained in the kernels. However the strains at the

boundary points can be calculated from the boundary data as fbllows (Fig. 3).

s
t

y

qY
qL ,f-l)Si･i?i ,

&n
 ct R x

                     Fig. 3 Stresses on the boundary.

The normal and shear stresses and the tangential strain are computed

boundary data as

          a. Fp. cos a+ps sin a

         T.t== -=P. Sin a+py cos a

          et == - -duds sin a +:? cos a

(26)

(27)

from the

(28)
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Then the rest of the strain components are obtained by means of the stress-strain

relations as fo11ows:

          Ot == (2Get+Vean)1(1 -Ve)

          en==((1-2Ve)On/2G-Veet)/(1-Ve) (29)
          rnt=rntlG

                        4. Numerical examples

                                  L    Numerical analyses were carried out by means of BEM with linear elements,

First example is shown in Fig. 4. This is one of the most diMcult problem to ana-

lyze because the plate has the free edges and moreover is subjected to the concen-

trated load P. We put 2i==22==O, since q==O and assume tho==-P/2, U,=O,
Vb==aP/2 in equations (16) to get the symmetric boundary conditions as

          p.=p,==O on fixed edge x=O
          U=O, V=i;-(x-a)sgn(y) onfreeedgey=±b/2 (30)
           '
          U= l} ({l- -lyl) , V =O ' on free edge x =a

                                          &?sF
                          ?)tsszP

                              O ggkfb

                                              ×                 y S;slist p ,
         Fig. 4 Rectangular plate with three edges firee and-a fourth edge fixed.

The bending moment distribution on the fixed edge x=O is shown in Fig. 5 with

the results of the photo-elastic experimentiO). The number N of the boundary

element is 20 or 30.

-' MxlP
.6

-experiment
eBEMN=20
.BEMN=30

.4

.3

･2

. .

.

･1
o
.

Fig. 5

-- ･5 -･4 -･3 -･2 d-･1 O -1 ･2 ･3 ･4 ･5･
                  Ylb

Bending moment distributions on the fixed edge (b/a=w4).
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   The second example is the bending of the square plate with three edges fixed

and a fourth edge free (Fig. 6--a). Two loading cases, a uniformly d.istributed

load (case I) and a hydrostatically distributed load (case II), were considered (Fig.

6-b and c). Since the surface load qis applied to the plate, we need to find out

                             FREE

                                  a                                  u
                                  ×                                  H                                  L ---
                                      q,- q,

                           (a) Cb} Cc)
               Fig. 6 Geometry of the plate and the loading form.

the load functions 2i in equation (2). We assumed 2i==g,x2!4 and 22 =g,y214

fbr case I. Then the equivalent body fbrce is obtained from equation (10 ) as

         X"==-vq,x/2D(1-y2), Y"=-vg,yf2D(1-y2) '                                                             (31)

               '                                               'and the surface traction applied to the fixed edge is giyen as

         '     '
         p.==-ig,(y2-vxb14D(1-v2), p,=-mq,(x2-vy2)!4D(1-v2) (32)

and the prescribed displacement on the free edge is assumed as

On the other hand, we assumed 2,=q,x316a, 22=O for case II. Thus the body fbrce

becomes

          X"==-vq,x212aD(1-v2), Y"==O (34)
and the boundary conditions are given as

          U== V===O (35)
on a free edge and

         p.=:vig,x3!6aD(1-v2), p, ==mq,x3/6aD(1-v2) . (36)

on a fixed edge. The obtained results fbr the typical points shown in Fig. 6-a

are compared in Table 1 with the values from Ref. 11.

   To assure applicability of the present method to the perfbrated plate, the nu-

merical analysis was carried out for the circular ring plate with fixed outer edge. The

bending,analysis also become dithcult when the plate has holes, but fortunately

the exact solutions are easily obtained in this case. When the moment M, is uni-

fbrmly distributed along the edge of the central hole, the boundary condition is

glven as

          U=-C,y+C,-M,x, V=Cix+C3-Mby ontheinneredge (37)

          px==py =O on the outer edge

Y E c

o D

B
Ag2
g
×
2
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Table 1 Moments of square plates with three edges fixed and a fourth edge free.

              M== Mlqdl2, v=116

Load
case N

A

Mx

B

Mx M,
C

Mr

D
Mr
E
My

I

    24

    40

    M
finite

 difft:renoen)

-O.0588

-O.0584

-O.0555

-O.0510

O.O151

o.o14e

O.O135

O.O138

O.0308

O.0304

O.0307

O.0317

O.04oo

O.0440

O.0434

O.0444

-O.0613

-O.0641

-O.0660

-O.0614

-O.0889

-O.0880

-O.0859

-O.e853

ll

    24

    ro

    M
finite

 differenoen)

-O.0376

-O.0367

-O.03oo

-O.0299

O.OI09

O.oo97

O.oo92

O.oo94

O.O122

O.O126

O.O127

O.O135

O.OI06

O.O099

O.oo96

O.oo95

-O.0262

-O.0283

-O.0291

-O.0269

-O.O153

-O.O133

-O.Ol17

-O.O146

and the extra conditions to detemine the constants Ci are

fp.ds == o , fp,ds=O , f (up,-mp.)ds -O
(38)

fbr the inner boundary. 'IThe numerical calculation was carried out to the case

which the ratio of the outer and the inner radii (b/a) is equal to 2 and the number

of the boundary element is 24 per each contour. The obtained moments are com-

pared with the exact one (Fig. 7).

 oE
.--.

E

1.0

O.75

O.5

025

o

- O.25

                - os

            Fig. 7 Bending moment distributions on the radial line in the

                  conoentric circular plate under the uniform bending

                  moment Mb at the hole (b/a=2, 48 elements).

    Next we consider the case that the plate is subjected to the unifbrm surface

load g and the hole is free from stress. As Ioad functions, we take 2,=:qx2/4

and 22== qy2/4. But in this case, the displacements on the inner boundary have

discrepancies Ui=-qdizy and K=gdirrx where x2+y2=di. Then we introduce

a single-valued displacement such as

          0= u+ qdiy -l; tan-i -i: , fr= v- qdix -i!- tan-i -Ill- . (3g)

ocatculated
exact

M"

b
M
,
-
a

Me

1･2
1.4

1.6 ISrla 2.0
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For this system, we have the body fbrce;

          "X}=,.SX- .,) ((ilf/ ,)I F .,- .]

                                                                (40)
          i= 2D(f'nv ,2) ((kli'K,'gl･･ - v]

the boundary conditions;

          V--Ciy+q-q(x3+3dix-4di112
                                                                (41)
          fi== Cix+C3-q(y3+3diy)112 , v2+y2..di

along the edge of the centrai hole and

          PX =" 2[DT (if!}2)b(y2-yx2+2vaF)

                                                                (42)
          P'= 4Di/ !Y,bb (X2-yy2+2vab .2 +y2 ..b,

along the outer contour and the extra conditions;

          fP.ds=O, fP,ds :O, f(op,-yP.)ds=O (43)

fbr the inner boundary. The plate (bla=2) was divided into 2oo triangular small

cells and 48 boundary elements for a numerical computation. Fig. 8 shows the

bending moment distributions obtained by BEM and the theoretical research.

                 ao3

ra
9
E

o

-O.03

-O.O6

                - O.09

        Fig. 8 Bending moment distributions on the radial line in the conoentric

              circular plate with a free circular hole under the uniformly dis-

              uibuted Ioad q (b/at=2, 48 elements and 2oo internal cells),

      '
   The last example is the bending of the clamped square plate with a free central

circular hole under the uniformly distributed lateral load q. We have the same

systems as the fbrmer one except the conditions (42). The tractions along the

          t

Me
o

Qcetcutated
-exact

1.2
114 1.6 IS r/a2･

'

t
Mr

Jkq"Sl"2Ill;}"cris

6J
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outer coptour ls glven as

          Px = = 4D(li {! .b[l(Y2-vx2) ny.,2+"2y, {l(.v2-vx2) m (1 + .).ay} ]

                                                             (44)
         Py == 4D(il{l .2)[m(x2- vy2) -x,2+a2y, {m(x2-vr2) -(1 + v)bcy} ]

Since no exact solution is available, the bending test was carried out to the steel

plate whose side length L is 500 mm, and the radius of the central hole a is 100 mm.

The bending moments on the x-axis obtained by BEM are compared with the ex-

perimental results in Fig. 9.

Fig. 9

2

1

   o
NN`F-
E-1

-2

-3

-4

o AoMy
ocatcutated
Aexperiment

AoAo
oAo
t
o
8o 2XIL

11
o.sa60OA7o.scP･9 1.0

AOo
y A aj
L o

a × MAx
o

os

Bending moment distributions on the x-axis in the squqre plate

with a free circular hole under the uniformly distributed load q

(alL=O.2, 48 elements and 200 internal cells).

                       5. Concluding remarks

   In the analysis of the bending of the plate, the existence of the free edges or

the holes makes it diMcult to find out the deflection function satisfying the bound-

ary conditions. The free edge is also the neck point in the analysis of the plate

by BEM.
   In this paper, the analogy between the plate bending problem and the plate

stretching problem was made much clearer than the fbrmer work, and for the ana-

lysis of the perfbrated plate it was pointed out that the dislocations, when we go

around the hole, are dependent on the point where we start. Furthermore, we

brought this analogy into the boundary element method. As illustrated in the

above chapter, the results are suMciently enough for us.

   We believe that we can make the best use of BEM in the field of the bending

analysis of the perfbrated plate with free edges.

1
)2
)3
)4
)

                         References

M.A. Jaswon and M. Maiti, J. Engng. Math. 2, 83 (1968)

M. Maiti and S.K. Chakrabarty, Int. J. Engng. Sci., 12 (10), 793 (1974)

E.B. Hansen, J. Elasticity, 6(1), 39 (1976)

B.C. Wu and N.J. Altiero, Comput. Struct., 10, 703 (1979)



5
)
6
)7
)8
)9
)1O)

11)

  Bounclat:y Element Analysis ofBending Rroblems ofPlates with FYee or jFZxed Edges 105

M. Stern, Int. J. Solid Struct., 15, 769 (1979)

R.V. Southwell, Quart. J. Mech. Appl. Math., 3(3), 257 (1950)

Y.C. Fung, J. Aero. Sci., 20(7), 455 (1953)

E. Matsumoto and T. Sekiya, Proc. 11th Japan Nat. Congr. Appl. Mech., 41 (1961)

C.A. Brebbia, "The Boundary Element Method fbr Engineers", Pentech Press, London (1978)

S. Ohte and M. Nishida, Trans. JSME, 38, 2475 (1972)

S. Timoshenko and S. Woinowski-Krieger, "Theory of Plates and Shells", 2nd ed, McGraw-

Hill, New York (1959)

Appendix

    The equilibrium equations for two-dimensional elastic problem is

          aoaxx+OaTyxy+x=o,Oor.xy+Ooayy+y...o '(A-i)

where x, y are cartesian coordinates, a., oy, r.y are the components of stress and

XL Y are the components of body fbrce. The stress-strain relations of a homo-

geneous, isotropic medium with initial strains e,o, e,o in the plane stress state are

glven as

               E          ax= : 1 -v2 {ex+vEy-(e.o+veyo)}

               E          ay=1 -y2 {ey+ve. -(Eye+ye.o)} (A-2)

                 E
          Txy =2(1 + v) rxy

where E is Yong's modulus and v is poisson's ratio.

    Substituting (A-2) into (A-1) and using the relations between strain and dis-

placement (u, v)

          ex=gl'i, e,-gi.li, r., ==gi.i+g/l (Am3)

we obtain the governing equations with respect to displacement as

   amOx[i-Ev2(toxt+vgeyV)]+8y[2(iE+v)(gex'+St)]+xHzllxr[i-E.2(exo+veyo)]=o

                                                              (A.4)

   zily[1-E,,(gy:g'+vg-.u)]+zjl.J[2(IE+.)(g-.v+gye')]+y-a-Oy[1-E.,(E,,+ve.,)]-o

The last term in the left-hand side is equivalent to the body force and then equiva-

lent body fbrce is

    X"==iiEy2zllxT(exo+yeyo), Y"=i-+Ev,a-Oy(eyo+ve.o) (A-s)


