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Combinatorial Properties of Identifying Dominant

     Failure Patbs in Structural Systems

Yoshisada MuRoTsu*

(Received November 15, 1983)

       This paper clarifies the combinatorial properties of failure paths in structural

    systems. A branch-and-bound algorithm is proposed for selecting the stochastically

    dominant failure paths, and its characteristics are investigated. A modified algorithrn

    is also provided which uses the lower and upper bounds of the failure path probabilities.

    Effects of the approximation are discussed on the resulting selected failure paths.

                          1. introduction

   There are many studies made of the reliability analysis of structural systems.

At first, their concerns were devoted to the estimation of reliability bounds'-6) for

given modes of failure. Recently, it has been noticed7'v27) that identification of

relevant failure modes for given structures is one of the keys to the development

and application of structural reliability theory. A failure mode is often charac-

terized as a set of failed elements (members, sections, etc.) which makes the struc-

tural system fail. Consequently, there exist many combinations of the failed mem-

bers to yield structural failure, i.e., failure modes.

   A simplest way fbr selecting the relevant failure modes is the enumeration

method which produces and evaluates al1 the possible modes. The method can

not be applied to large structures with many degrees of redundancy since the nimiber

of the modes is astronomically large. This motivated the studies of strategies to

find the dominant modes by searching only fbr a subset of all the failure modes.

One of these approaches is to determine the most dominant failure modes among

al1 the linear combinations of the predetermined independent failure mechanisrns

by using a nonlinear programming technique'8), whose applicability seems to be

limited due to the state of arts of the optimization technique. An alternative is

to select the probable failure paths8-i5), i.e., sequences of failed elements to yield

structural failure, by using a branch-and-bound concepti3ij'5),22,gg,ca,27) in combi-

natorial mathematics and then to integrate22'as) them to relevant failure modes,

when necessary.

    Tlie purpose of this paper is to clarify the combinatorial properties of the

branch-and-bound approach for selecting the stochastically dominant failure paths

in structural systems. At first, the properties of the failure paths are examined

from a viewpoint of combinatorial mathematics. Then, a branch-and-bound
algorithm is proposed and its characteristics are investigated. Finally, a modhied

branch-and-bound algorithm by using the lower and upper bounds of the failure

path probabilities is proposed and its effects on the selected failure paths are dis-

cussed. Further, some concluding remarks a;e provided.
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               2. Combinatorial Properties of Failure Paths

    Consider a structural system which has n potential plastic hinges and s degrees

of redundancy. Structural failure is defined as formation of a collapse mechanism

in the system. Plastic hinges are assumed to develop one by one up to some speci-

fic number pk until a collapse mechanism is fbrmed. The sequence of .those plastic

hinges to fbrm a collapse mechanism is symbolically denoted as ri, r2, ･･･, rp, ･･,,

and rp,, which is called a complete failure path and the number of the plastic hinges

pk is a length of the failure path. On the other hand,'the sequence of the plastic

hinges which do not yield structural failure, e.g., the failure･path ri-->r2.･･･.rp

(p<pk) is called a partiai failure path. Consider a case where a collapse mechanism

is stil1 fbrmed even if some plastic hinges are removed from a complete failure path,

fbr example rp in the complete failure path ri.r2->･･･.rp-->･･･->rpk. A plastic

hinge such as rp is called a redundant one while those which can not be removed

from a complete failure path to form a collapse mechanism are called essential

ones. The probability Pfp(,)(P) of a failure path ri.r2.･･･->rp is calculated as

                    p          Pfp(e)(')==Pt.0,F52e)]

where FSi?,) is the failure event that plastic hinge ri develops at the i-th order of

sequence. Superscript p denotes the length of the failure path and q is used to

denote a particular failure path. Whenp<pk, Pfp(,)(P) is the probability of a panial

failure path while it is the probability of a complete failure path forp==pk.

Theorem 1 (Essential plastic hinges)

    The plastic hinge at the final failure stage of a complete failure path is an essen-

tial plastic hinge. The number r of the essential plastic hinges is given by

Proof

   If the last developed plastic hinge is removed from the complete failure path,

the failure path becomes a partial failure path from the definition of the complete

failure path. The lower bound on the number of the essential plastic hinges cor-

responds to the collapse mechanism formed by development of one plastic hinge.

The upper bound is the case when collapse ooeurs after losing all the degrees of

redundancy.

Theorem 2 (Number of redundant plastic hinges)

   For a complete failure path with length l, there exist at most (l-1) redundant

plastic hinges,

Proof

   Consider the case where all the plastic hinges other than the last developed

plastic hinge are not essential.

Theorem 3 (Length of complete paths)

   The length l(r) of the failure paths with r essential plastic hinges is bounded by



     Combinatorial Properties ofldlent(fyitrg Dominant haiinre Paths in Structural th,stems 109

         rs:l(r)-<s+1 (ls{irs{;s+1) (2)
Proof

   The lower bound corresponds to the case where the failure path comprises

solely the essential plastic hinges while the upper bound the case where the first

(s-r+1) plastic hinges are redundant.

Theorem 4 (Redundant plastic hinges)

   Let there be r essential plastic hinges which allow k(O-<k:{;s+1-r) redundant

plastic hinges to fbrm a complete failure path. Then, any subset of the k redund-

ant plastic hinges constitutes a complete failure path which contains the r essentiai

plastic hinges.

hoof
   As seen from the definition of redundant plastic hinges, any number of the

redundant plastic hinges contained in a complete failure path can be removed from

the failure path. This means that it is always possible to fbrrn a complete failure

path which contains the r essential plastic hinges and any subset of the k redundant

plastic hinges.

Theorem 5 (Number of complete failure path (1))

   Let there be r essential plastic hinges which allow a complete failure path with

length l (rSlf{Is+1), i.e., there are (l-r) redundant plastic hinges. The total

number N(r, l) of the complete failure paths comprising the r essential plastic hinges

and any combination of the (l-r) redundant plastic hinges is given by

                l-r          N(r, l) -jEi r(k+r-1)!C(l-r, k) (3)
                1-r               ==Z r!(l-r)!C(k+r-1, k)/(l-r-k)! (4)
                k"pO
Proof

   Consider a case where complete failure paths contain k redundant plastic hinges

(k = O, 1, 2, ･･･, l-r). For the case, there exist r(k+r-1)!C(l-r, k) different fail-

ure paths, which results by considering the number of the complete fail.ure paths

with r essential plastic hinges and k redundant ones (r(k+r-1)!) and the number

of combinations fbr selecting k redundant plastic hinges from (l-r) hinges (C(l-r,

k)). Then, summing up over all k.yields Eq. (3). By simple algeb,raic manipula-

tion, Eq. (4) results. '
Theorem 6 (Number of complete failure paths (2))

    N(r, l) is an increasing function of l.

Proof
                   t+1-r
          N(r, l+1) = : r(k+r-1)!C(l+1-r, k)

                   l-r
                 =Zr(k+r-1)!C(l+1-r, k)+r(l+r)! (5)
                   k-O
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                 > X' r(k+r-1)!C(l-r, k)-N(r, l)t (6)
                   ksO
The inequality (6) fbllows since

          C(l+1-r, k)>C(l-r, k), r(l+r)!>O (7)
Theorem 7 (Bound of the number of the complete failure paths (1))

          N(r, s+1)S(s+1)! (8)
Proof

   By putting l=s+1 in Eq. (4) and considering the inequaiity (s-r+1-k)!}ll 1,

the fo11owing relation fo11ows

                             s-r+1          IV(r, s+1)Sr!(s-r+1)!(E C(k+r-1, k) (9)
                             k"O
                  =r!(s-r+1)!C(s+1,s-r+1) (10)
                  -=(s+1)!

In deriving Eq. (IO), the rule of sumso) fbr the combinations is applied, i.e.,

                    mm          C(n+1, m) -Z C(n -k, m-k) =2 C(k+n-m, k) (mSn) (1 1)
                    kt=O                                   k-O
Theorem 8 (Bound of the number of the complete failure paths (2))

   The total number of the complete failure paths is not larger than P(n, s+1)==

n(n-1)･･･(n-s).

koof
   From Theorems 6 and 7, the total number of the complete failure paths with

r(Ss) essential plastic hinges is evidently bounded from above by considering those

of all the fictive complete failure paths which include the r essential plastic hinges

and whose length is (s+1). Consequently, the maximum number ofthe complete

failure paths is attained when all the collapse mechanisms oocur if and only if any

combination of (s+1) plastic hinges develop in the system.

Theorem 9 (Monotonicity of the probabilities of failure paths)

   The probability of a partial failure path is a monotonically decreasing func-

tion of the failure stage, i.e.,

          Pfp(e)(P)2Pfp(e)(P"i) (P==1,2, "',Pk-1) (12)

koof
                    P+1         Pfp(e)(P'i) =P [. n FS;?q)]

                    t==1

                     p .'                 S{P[.O,F512e)]=Pfp(e)(" ' (13)

                   3. A Branch-and-Boimd Aigoritllln

   A branch-and-bound concept28) developed for finding the optimum combina-
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tion in combinatorial problems is applied to select stochastically dominant failure

paths, The fbllowing nornenclature is used in the description of the proposed

branch-and-bound algorithm.

      Pfp.=the maximum of the probabilities of the selected complete failure

            paths
    Pfp(,)(Pk)=the probability of a selected complete failure path

         X==the set of the failure paths to be selected for branching

        X}=the set of the selected complete failure paths

        X, ==the set of the discarded failure paths

         x,= =a selected complete failure path

         6=a bounding constant

         ¢ ===a null set

         x,===the artificial starting point of the failure path which can proceed

            to any one of the potential plastic hinges

          A branch-ancl-bound aigorithm for selecting stochastically

                        dominant foilare paths

  Step 1:

-initializing-

  Step 2: 1.
-partitioning-

  Step 3:

--:branehing-

  Step 4:

-bounding-
(discarding)

･Step 5:

2
.
1
.

2
.
3
.

1
.

2
.

Set Pfp.=O, X, == ¢, Xt :q5, and X== {x,}.

x, is specified as a path for partitioning.

Proceed one failure stage by adding each of all the poten-

tial plastic hinges to the specified partial failure path. The

resulting failure paths are added to the set X of the failure

paths to be selected for branching.

Evaluate the probabilities of the new failure paths.

Select the failure path with maximum probability among

the newly partitioned failure paths.

Check the fbrmation of a collapse mechanism.

If a collapse mechanism is formed, go to Step 4 fbr bounding

by adding the selected failure path x, to the set X, of the

selected complete failure paths. If not, go to Step 2 for

further partitioning by specifying the selected failure path as

the failure path to be partitioned.

Update the maximum Pfp. of the probabilities of the selected

complete failure paths by setting Pfp.==Pfp(,)(Ph) when Pfp.<

Pfp(q)(pk)

Discard the failure paths which have the failure probabilities

smaller than 10-6Pfp.. Add the discarded failure paths to

the set Xt of the discarded failure paths. Exclude the dis-

carded failure paths and the selected complete failure path

from the set X of the failure paths for branching. Con-

sequently, the set X of the failure paths to be selected for

branching is changed to

   X-X-Xt-Xe
If X=:¢, i.e., there are no failure paths fbr branching, the
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-completing- search is completed. If not, go to step 3-2 fbr funher branch-

                 ing with the most probable failure path selected in the set X:

    The proposed branch-and-bound procedure has the following propenies.

Theorem 10 (Number of branching operations)

    The number Nb of branching operations fbr the branch-and-bound method is

bounded by

          r.i. f{g Nb sg P(n, s+ 1) (s+1) (14)
where r.i.( f{gs+1) is the minimum number of essential plastic hinges required to

fbrm a collapse mechanism.

Proof

    The lower bound is attained when the minimum complete failure path cor-

responding to the complete failure path with the minimum length r.i. is most prob-

able and it is selected at the first. The upper bound corresponds to the case when

all the complete failure paths have the length (s+1) and the most probable path is

selected in the last.

Theorem 11 (Selected failure paths (1))

   Nl the failure paths which have the probabilities larger than / or equal to

10-SPfp. are selected by the branch-and-bound algorithm.

Proof

   From the bounding criterion and the completion condition of the algorithm,

there is no possibility that the failure paths with probabilities larger than 10-SP".

are neglected.

'Iheorem 12 (Discarded failure paths (1))

   A partial failure path which has the probability smaller than 10-SPfp. is excluded

from the set of the failure paths to be selected fbr branching.

hoof
   From the monotonicity of the failure path probability, the failure paths ob-

tained from partitiOning the panial failure paths do not have the probability larger

than 10'6Pfp.. Consequently, they can be neglected.

Theorem 13 (The most probable failure path (1))

   The complete failure path which gives the maximum of the probabilities of

the complete failure paths, i.e., Pfp., at the time of the completion, is the most prob-

koof
   The selection process by the branch-and-bound method is completed only
when no failure paths with probabilities larger than 10-SPfp. (6})O) exist, and Pfp.

is the maximum of the probabilities of the complete failure paths so far obtained.
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Consequently, the statement of the theorem is evident.

              4. Approximation of Failure Path Probabilities

    Consider the case when the fai1ure path probabilities Pfp(,)(P) are estimated by

their lower and upper bounds, Pfbcg)(L)<P) and Pfp(e)(u)(P), i･e･,

                              '                              p'          Pfp(g)(L) (P)SPfp(e)(P) =:P[in. ,F5i?q)] :E;: Pfp(e)(u) (P) (1 5)

    For example, these bounds are given by (see Appendix)

          Pfp(e)(u)(')==j.Il,il,il,,}P[F51()q)nF5ila)] (16)

          ' Pfp(q)(L)(') "MaX{O, P[FSI)(e)]-P[jF51)(a) n "F5:)(e)]

                         p-                      -1.ll..l, min (PSQ?)'(u), p[F51>(,)njFgi,"･'(,)])} (i7)

    Of course, more sophisticated bounds`"'6)'29) are also applicable. By using

the bounds, the branch-and-bound algorithm is modtaed as follows.

   The maximum of the lower bounds P fp(,)(L)(Pk) of the selected complete paths

is used as the reference value Pfp. fbr bounding (discarding) operations, i.e.,

          Pfp.4.max Pfp(,)cL)(Pk) (18)
   Branching operations are performed, based on the estimated upper bounds

of the candidate failure paths. That is, the new failure path branches to the one

which has the maximum value of Pfp(,)(u)(P). Further, the bounding (discarding)

criterion is modified as

          Pfp(e)(u)(P)<10-OPfpm (19)
   By using the approximations mentioned above, the resulting branch-and-bound

algorithm gives the fbllowing properties.

Theorem 14 (Selected and discarded failure paths (2))

   All the failure paths which may have the probabilities larger thanlor equal to

10'SPfp. are selected. On the other hand, the discarded failure paths have the

probabilities less than 10-SPfp..

Preof

    From the bounding (discarding) criterion (19), the failure paths with the prob-

abilities

          Pfp(e)(P)SPfp(e)(u)(P)<10"SPfpm (20)
are discarded, which proves the second part of the theorem. Then, the first part

fbllows evidently.

Thereem 15 (The most probable failure path (2))

    The probability of the most probable failure path is bounded as fbllows:

          Pfpm ==M,ax Pfp(e)(L)(Pk) Sg M,aX Pfp(e)(Ph)SM,aX Pfp(q)(u) (Pk) (21)
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Proof

   The probability maxPfp(,)(Pk) of the most probable failure path is clearly
                   ebounded from below and above by the maximums of the lower and upper bounds

of the selected complete failure path probabilities, respectively.

                       5. Concluding Remarks

   The essential differences between the present and previotiSii)･i3""i5),22),as),26)

branch-and-bound procedures lie in the two points: Fjrst, the reference value

Pfp. fbr the discarding operations is taken in the former as the maximum of the

lower bounds of the selected complete failure path probabilities while it is taken

as that of the upper bounds in the latter. That change'assures the sound properties

of the present niethod, as proved in the preceding section. Second, the branching

after reaching the complete failure path is made in the present method to the most

probable failure path among all the remaining paths. In the previous method,

however, selection is perfbrmed first from the last failure stage if any paths left

and then to the preceding failure stages.

   The enumeration method is the special case of the proposed branch-and-bound

method since by taking the bounding constant 6==+oo all the complete failure

paths are selected. The branch-and-bound method is computationally eMcient

when some failure paths are probabilistically dominant. On the other hand, its

effectiveness is lost when all the failure paths are equally probable and then al1

ofthem are selected. For the latter case, an alternative method has to be developed,

which hopefu11y enables us to evaluate the resulting errors.

   Nothing has been mentioned of the mechanical properties of the structural

systems. The treatment is essentially directed to the most general frame struc-

tures whose failure criteria, i.e., formation of a collapse mechanism, are path-de-

pendent. For the systems with path-independent failure criteria, e.g., purely plastic-

elastic frame structures, the branch-and-bound method can be computationally

improved by restrictingee) the partitioning failure paths because only one complete

failure path needs to be selected for the same set of plastic hinges to yield system

failure.

   The system failure probability Pf is estimated by

          P[,.U.,(l6,F5;('q))]SPfEl:P[,.U.,(l6,FSi'?e)),.U.,(,'O,FSieq))]

                          sg p[ u( 'nh FSi?,))]+E (22)
                             qEXc isl
where the union with respect to q means to be taken over all the selected complete

failure paths X, or all the discarded failure paths Xt and E is the contribution of

the discarded failure paths. rlhe probabilities of the unions of the intersections

of the failure events are evaluated by using the well developed approximation meth-

ods4-6),29). When the contribution E of the discarded failure paths is difficult to

estimate or too large, an alternative upper bound Pfu(P) may be applied:

                 ･p         Pfu(P)--P[V{.t,,FSi?,))] ,. ..･ , , (23)
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where the union with respect to q is taken over all the partial failure paths with

length p. Eq. (23) evidently gives the upper bound due to the monotonicity of the

failure path probabilities. Particularly when p=1, it becomes

                  n          Pfu`" =P[. .U, FSI'] (24)
which is the weakest link approximation of the redundant structure.
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         Appendix-Lower and upper bounds of failure path probabvaty

   A failure path probability is evaluated as

                    pp          Pfp(a)`')=P[,n..,FS;'?q)]==1-P[,Y,FSi?e)]

                gj.{M,, ,iP..,,B[FSI()q) n FS','.lq)]mZ-Xpf,(,)(.)(p)

where (.)is the complement of the failure event (.).

Consequently, Pfp(,)(u)(P) gives an upper bound.

    The second term of the third expression is also evaluated as

              p            P[.U F5I?a)]

              t=i1
          = P[]Rr,(q)]+P[FSI()q) n F5Z)(q)] + "' +P[FSI)(q) n FS;)(e) n "' n F5',:,?q) n "FS',)(q)]

                                      p          -< 1 -P[R,(q)]+P[F51)(q) n FS22)(a)] +,;., Min {Pfp(q)(u) (i-i), P[F51)(q) n FYiRe)]}

Then, Eq. (17) fbllows.

1
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3
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