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Combinatorial Properties of Identifying Dominant
Failure Paths in Structural Systems

Yoshisada MuURoOTSU*

(Received November 15, 1983)

This paper clarifies the combinatorial properties of failure paths in structural
systems. A branch-and-bound algorithm is proposed for selecting the stochastically
dominant failure paths, and its characteristics are investigated. A modified algorithm
is also provided which uses the lower and upper bounds of the failure path probabilities.
Effects of the approximation are discussed on the resulting selected failure paths.

1. Introduction

There are many studies made of the reliability analysis of structural systems.
At first, their concerns were devoted to the estimation of reliability bounds'~® for
given modes of failure. Recently, it has been noticed”~?" that identification of
relevant failure modes for given structures is one of the keys to the development
and application of structural reliability theory. A failure mode is often charac-
terized as a set of failed elements (members, sections, etc.) which makes the struc-
tural system fail. Consequently, there exist many combinations of the failed mem-
bers to yield structural failure, i.e., failure modes.

A simplest way for selecting the relevant failure modes is the enumeration
method which produces and evaluates all the possible modes. The method can
not be applied to large structures with many degrees of redundancy since the number
of the modes is astronomically large. This motivated the studies of strategies to
find the dominant modes by searching only for a subset of all the failure modes.
One of these approaches is to determine the most dominant failure modes among
all the linear combinations of the predetermined independent failure mechanisms
by using a nonlinear programming technique'®, whose applicability seems to be
limited due to the state of arts of the optimization technique. An alternative is
to select the probable failure paths®~, i.e., sequences of failed elements to yield
structural failure, by using a branch-and-bound concept!®~1-22.%.2) in combi-
natorial mathematics and then to integrate®® them to relevant failure modes,
when necessary.

The purpose of this paper is to clarify the combinatorial properties of the
branch-and-bound approach for selecting the stochastically dominant failure paths
in structural systems. At first, the properties of the failure paths are examined
from a viewpoint of combinatorial mathematics. Then, a branch-and-bound
algorithm is proposed and its characteristics are investigated. Finally, a modified
branch-and-bound algorithm by using the lower and upper bounds of the failure
path probabilities is proposed and its effects on the selected failure paths are dis-
cussed. Further, some concluding remarks are provided.

* Department of Aeronautical Engineering.
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2. Combinatorial Properties of Failure Paths

Consider a structural system which has n potential plastic hinges and s degrees
of redundancy. Structural failure is defined as formation of a collapse mechanism
in the system. Plastic hinges are assumed to develop one by one up to some speci-
fic number p, until a collapse mechanism is formed. The sequence of those plastic
hinges to form a collapse mechanism is symbolically denoted as 7y, r,, «+-, 74, =+,
and r,,, which is called a complete failure path and the number of the plastic hinges
Di is a length of the failure path. On the other hand, the sequence of the plastic
hinges which do not yield structural failure, e.g., the failure path r,—r,—---—r,
(p<p,) is called a partial failure path. Consider a case where a collapse mechanism
is still formed even if some plastic hinges are removed from a complete failure path,
for example r, in the complete failure path Fy—>ry> 11, A plastic
hinge such as r, is called a redundant one while those which can not be removed
from a complete failure path to form a collapse mechanism are called essential
ones. The probability P,,? of a failure path r,—>r,—---—r, is calculated as

? R
Piyp®=P [inF fiol

where F{i, is the failure event that plastic hinge r; develops at the i-th order of
sequence. Superscript p denotes the length of the failure path and ¢ is used to
denote a particular failure path. When p<p;, P,y is the probability of a partial

failure path while it is the probability of a complete failure path for p—=p,.

Theorem 1 (Essential plastic hinges)
The plastic hinge at the final failure stage of a complete failure path is an essen-
tial plastic hinge. The number r of the essential plastic hinges is given by

1<r<s+1 1)

Proof

If the last developed plastic hinge is removed from the complete failure path,
the failure path becomes a partial failure path from the definition of the complete
faiture path. The lower bound on the number of the essential plastic hinges cor-
responds to the collapse mechanism formed by development of one plastic hinge.
The upper bound is the case when collapse occurs after losing all the degrees of
redundancy.

Theorem 2 (Number of redundant plastic hinges)
For a complete failure path with length /, there exist at most (/—1) redundant
plastic hinges.

Proof
Consider the case where all the plastic hinges other than the last developed
plastic hinge are not essential.

Theorem 3 (Length of complete paths)
The length /(r) of the failure paths with r essential plastic hinges is bounded by
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r<iin<s+1 (1<r<s+1) ¥
Proof

The lower bound corresponds to the case where the failure path comprises
solely the essential plastic hinges while the upper bound the case where the first
(s—r+1) plastic hinges are redundant.

Theorem 4 (Redundant plastic hinges)

Let there be r essential plastic hinges which allow k(0<k<s-+1—r) redundant
plastic hinges to form a complete failure path. Then, any subset of the k redund-
ant plastic hinges constitutes a complete failure path which contains the r essential
plastic hinges.

Proof

As seen from the definition of redundant plastic hinges, any number of the
redundant plastic hinges contained in a complete failure path can be removed from
the failure path. This means that it is always possible to form a complete failure
path which contains the r essential plastic hinges and any subset of the k redundant
plastic hinges.

Theorem 5 (Number of complete failure path (1))

Let there be r essential plastic hinges which allow a complete failure path with
length ! (r<I<s+1), ie., there are (/—r) redundant plastic hinges. The total
number N(r, [) of the complete failure paths comprising the r essential plastic hinges
and any combination of the (/—r) redundant plastic hinges is given by

NG, D) =§: r(r—1)I1C(—r, k) 3
=:—g; P —r)Ce+r—1, k) [(I—r—k)! @

Proof

Consider a case where complete failure paths contain k redundant plastic hinges
(k=0, 1, 2, ---, I—r). For the case, there exist r(k+r—1)!C(/—r, k) different fail-
ure paths, which results by considering the number of the complete failure paths
with r essential plastic hinges and k redundant ones (r(k+r—1)!) and the number
of combinations for selecting k redundant plastic hinges from (/—r) hinges (C(I—r,
k)). Then, summing up over all k yields Eq. (3). By simple algebraic manipula-
tion, Eq. (4) results. ' '

Theorem 6 (Number of complete failure paths (2))
N(r, ]) is an increasing function of /.

Proof .
l+l=r
NG, )= 3 r(e+r—DICE+H1—r, k)

= ;f:‘_(., r(le+r—1)1C{I+1—r, k)+r(l+r)! )
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> :g r(-+r—1)IC(I—r, K)=N(r, [ ' (6)
The inequality (6) follows since ‘
CU+1—r, kK)>C(—r, k), r(+r)!>0 )
Theorem 7 (Bound of the number of the complete failure paths (1))
N(r, s+1)<(s+1)! ®

Proof

By putting /=s-+1 in Eq. (4) and considering the inequality (s—r--1—k)!1>1,
the following relation follows

NG, s+1)<ri(s—r+D)1 EIC(k—i—r——l, ) ©)
=ri(s—r+DC+1, s—r+1) (10)
—(s+1)!

In deriving Eq. (10), the rule of sum®*? for the combinations is applied, i.e.,
Clnt1, m)=kﬁ‘6 Cln—k, m—k)=kzm]0C(k—[—n—m, k) (m<m (1)

Theorem 8 (Bound of the number of the complete failure paths (2))

The total number of the complete failure paths is not larger than P(n, s+1)=
a(n—1)+--(n—s).
Proof

From Theorems 6 and 7, the total number of the complete failure paths with
r(<s) essential plastic hinges is evidently bounded from above by considering those
of all the fictive complete failure paths which include the r essential plastic hinges
and whose length is (s41). Consequently, the maximum number of the complete
failure paths is attained when all the collapse mechanisms occur if and only if any
combination of (s+1) plastic hinges develop in the system.

Theorem 9 (Monotonicity of the probabilities of failure paths)

The probability of a partial failure path is a monotonically decreasing func-
tion of the failure stage, i.e.,

P p@P= Py (p=1,2, -+, p,—1) 12
Proof
P+l .
Py p@= P[{DlFﬁj.(’q)]

? . .
<PINFRal=Ppp® (13)

3. A Branch-and-Bound Algorithm

A branch-and-bound concept® developed for finding the optimum combina-
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tion in combinatorial problems is applied to select stochastically dominant failure
paths. The following nomenclature is used in the description of the proposed
branch-and-bound algorithm.
P,,,=the maximum of the probabilities of the selected complete failure
paths
P ;,®P=the probability of a selected complete failure path
X=the set of the failure paths to be selected for branching
X,=the set of the selected complete failure paths
X, =the set of the discarded failure paths
x,=a selected complete failure path
&=a bounding constant
¢==a null set
x,=the artificial starting point of the failure path which can proceed
to any one of the potential plastic hinges

A branch-and-bound algorithm for selecting stochastically
dominant failure paths

Step 1: ‘ Set Py =0, X,=¢, X,=¢, and X={x;}.
—initializing— X, is specified as a path for partitioning.

Step 2: 1. Proceed one failure stage by adding each of all the poten-
—partitioning— tial plastic hinges to the specified partial failure path. The

resulting failure paths are added to the set X of the failure
paths to be selected for branching.

2. Evaluate the probabilities of the new failure paths.

Step 3: Select the failure path with maximum probability among
—branching— the newly partitioned failure paths.

2. Check the formation of a collapse mechanism.

3. If a collapse mechanism is formed, go to Step 4 for bounding
by adding the selected failure path x, to the set X, of the
selected complete failure paths. If not, go to Step 2 for
further partitioning by specifying the selected failure path as
the failure path to be partitioned.

[o—y

Step 4: 1. Update the maximum P, of the probabilities of the selected
—bounding— complete failure paths by setting P ,, =P ;¥ when P,, <
(discarding) Py ®

2. Discard the failure paths which have the failure probabilities
smaller than 107°P,,,. Add the discarded failure paths to
the set X, of the discarded failure paths. Exclude the dis-
carded failure paths and the selected complete failure path
from the set X of the failure paths for branching. Con-
sequently, the set X of the failure paths to be selected for
branching is changed to

XeX—-X,—X,
-Step 5: If X=9, i.e., there are no failure paths for branching, the
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——completing— search is completed. If not, go to step 3-2 for further branch-
ing with the most probable failure path selected in the set X.

The proposed branch-and-bound procedure has the following properties.

Theorem 10 (Number of branching operations)

The number N, of branchmg operations for the branch-and-bound method is
bounded by

Prin < Ny< P(n, s+1) (s+1) 14)

where r,;,(<s+1) is the minimum number of essential plastic hinges required to
form a collapse mechanism.

Proof

The lower bound is attained when the minimum complete failure path cor-
responding to the complete failure path with the minimum length r,,;, is most prob-
able and it is selected at the first. The upper bound corresponds to the case when
all the complete failure paths have the length (s+1) and the most probable path is
selected in the last.

Theorem 11 (Selected failure paths (1))

All the failure paths which have the probabilities larger than / or equal to
10-%P,,,, are selected by the branch-and-bound algorithm.

Proof

From the bounding criterion and the completion condition of the algorithm,
there is no possibility that the failure paths with probabilities larger than 10-°P ,,,
are neglected.

Theorem 12 (Discarded failure paths (1))

A partial failure path which has the probability smaller than 10~-%P ,,, is excluded
from the set of the failure paths to be selected for branching.

Proof

From the monotonicity of the failure path probability, the failure paths ob-
tained from partitioning the partial failure paths do not have the probability larger
than 10-P,,,. Consequently, they can be neglected.

Theorem 13 (The most probable failure path (1))

The complete failure path which gives the maximum of the probabilities of
the complete failure paths, i.e., P,,,, at the time of the completion, is the most prob-
able failure path.

Proof

The selection process by the branch-and-bound method is completed only
when no failure paths with probabilities larger than 107°P,,,, (6>0) exist, and P,,,
is the maximum of the probabilities of the complete failure paths so far obtained.
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Consequently, the statement of the theorem is evident.

4. Approximation of Failure Path Probabilities

Consider the case when the failure path probabilities P,,,,® are estimated by
their lower and upper bounds, P ﬂ,(q)( »® and Pyyyan®, iee.,

PP <Py "P[ ﬂ FENZP o™ 15)

For example, these bounds are given by (see Appendix)

P fp(g)(v)“’)—j %mn P[F{n N Fip) (16)
Pf,,(q)(z.)“’"‘max{o PIFi0]—PIF ) N FEp]
—2 min (P¥ciu, PIFS N FE 20D} an

Of course, more sophisticated bounds*~®-?) are also applicable. By using
the bounds, the branch-and-bound algorithm is modified as follows.

The maximum of the lower bounds P ,,,)?¥ of the selected complete paths
is used as the reference value P, for bounding (discarding) operations, i.e.,

Py pwlmax Py (18)

Branching operations are performed, based on the estimated upper bounds
of the candidate failure paths. That is, the new failure path branches to the one
which has the maximum value of P,,,»?. Further, the bounding (discarding)
criterion is modified as

Psppwn® <107°Pg,,, (19)

By using the approximations mentioned above, the resulting branch-and-bound
algorithm gives the following properties.

Theorem 14 (Selected and discarded failure paths (2))

All the failure paths which may have the probabilities larger than/or equal to
10-°P,,,, are selected. On the other hand, the discarded failure paths have the
probabilities less than 107°P ,,,. :

Proof
From the bounding (discarding) criterion (19), the failure paths with the prob-
abilities ;

PP <Py n® <107°P,, (20)
are discarded, which proves the second part of the theorem. Then, the first part
follows evidently.

Theroem 15 (The most probable failure path (2))
The probability of the most probable failure path is bounded as follows:

prm=mfx pr(q)(L)"’")quax Py ® < max Py @n
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Proof
The probability max P,,,,*» of the most probable failure path is clearly
q

bounded from below and above by the maximums of the lower and upper bounds
of the selected complete failure path probabilities, respectively.

5. Concluding Remarks

The essential differences between the present and previous!-13=19).22.2.26)
branch-and-bound procedures lie in the two points: First, the reference value
P,,, for the discarding operations is taken in the former as the maximum of the
lower bounds of the selected complete failure path probabilities while it is taken
as that of the upper bounds in the latter. That change assures the sound properties
of the present method, as proved in the preceding section. Second, the branching
after reaching the complete failure path is made in the present method to the most
probable failure path among all the remaining paths. In the previous method,
however, selection is performed first from the last failure stage if any paths left
and then to the preceding failure stages.

The enumeration method is the special case of the proposed branch-and-bound
method since by taking the bounding constant d=--co all the complete failure
paths are selected. The branch-and-bound method is computationally efficient
when some failure paths are probabilistically dominant. On the other hand, its
effectiveness is lost when all the failure paths are equally probable and then all
of them are selected. For the latter case, an alternative method has to be developed,
which hopefully enables us to evaluate the resulting errors.

Nothing has been mentioned of the mechanical properties of the structural
systems. The treatment is essentially directed to the most general frame struc-
tures whose failure criteria, i.e., formation of a collapse mechanism, are path-de-
pendent. For the systems with path-independent failure criteria, e.g., purely plastic-
elastic frame structures, the branch-and-bound method can be computationally
improved by restricting® the partitioning failure paths because only one complete
failure path needs to be selected for the same set of plastic hinges to yield system
failure.

The system failure probability P, is estimated by

Dy . by . » .
(i) (i) ()
PG (0ol <P <P L (N Fiw b (0 )
? X
<P[ U (NFRIHE 22)
9€X, i=1

where the union with respect to ¢ means to be taken over all the selected complete
failure paths X, or all the discarded failure paths X, and E is the contribution of
the discarded failure paths. The probabilities of the unions of the intersections
of the failure events are evaluated by using the well developed approximation meth-
ods?*~®2) When the contribution E of the discarded failure paths is difficult to
estimate or too large, an alternative upper bound P, may be applied:

. » R
Pu®=P[U(NF)] o @3)
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where the union with respect to g is taken over all the partial failure paths with
length p. Eq. (23) evidently gives the upper bound due to the monotonicity of the
failure path probabilities. Particularly when p=1, it becomes

P,,®=P[UF®] (24)
iw=l

which is the weakest link approximation of the redundant structure.
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Appendix-Lower and upper bounds of failure path probability
A failure path probability is evaluated as
» o
Pr®P=PIOF Sol=1 —PLUF ol
< _min P[F SN FE ) IAP
je(2,3,-
where () is the complement of the failure event (. ).

Consequently, P, @ gives an upper bound.
The second term of the third expression is also evaluated as

po_
P[ U Fiol
—P[ 1<q>]+P[F$iiq> N ngq)]“l‘ +P[F$11%q) an%q) NN Fﬁ’}ff&) n F(,(q)]
<1—P[F, (p]+P[F{ N FS %q>]+2 min{P ¥ ™Y, PIFi N Fpl}

Then, Eq. (17) follows.
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