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Safety Margins for Reliability Analysis of Frame Structures

Hiroo OKADA", Satoshi MATsuzAKi"* and Yoshisada MuRoTsu***

                 (Received November 15, 1983)

       The new method is proposed in this paper for generating safety margins of general

    frame structures, taking account of interaction of the applied loads on yielding of the

    sections and structural failure defined as production of large nodal displacements due

    to the plastic collapsing. The plasticity condition of the sections is approximated by

    a linear surface and the matrix method is applied to formulate the safety margins as

    linear combinations of the strengths of the elements and the applied loads, which greatly

    facilitates reliability analysis of the frame structures under any loading conditions.

                            1. Introduction

   The early studies on reliability analysis of frame structures were focussed on

estimation of reliability by evaluating its lower and upper bounds for given modes

of failureiN3). It is diMcult in practice to specify the relevant modes of failure

and their equations a priori for large structures with high degrees of redundancy.

Consequently, identification of stochastically significant failure modes is recognized

to be an essential step to be done for reliability assessment of structural systems.

Researches for automatically generating mode equations of truss or frame structures

were initiated in the case where failure of structural elements was governed simply

by axial fbrces or bending moments.4Ni!) However, failure criteria under com-

bined loads have not been fully applied to reliability analysis of general frame

Structures.i2)

    This paper is concerned with a new method of generating safety margins fbr

general frame structures by taking account of interaction of the applied load effects

on an yielding section. For the purpose, the plasticity condition of a structural

element is at first approximated by a linear surface, and then the corresponding

reduced stiffoess matrices and equivalent nodal forces representing the residual

strengths of the yielded elements are derived for the plastic analysis, by using a

plastic deformation theory. Finally, safety margins for reliability analysis are

fbrmulated by using a matrix method.

              2. Elastic-Plastic Analysis of Frame Structures

2.1 Basicassimiptions

    The fbllowing assumptions are made, concerning frame structures to be con-

sidered:

(1) Consider a frame structure whose elements are unifbrm and homogeneous

and to which only concentrated loads are applied. In such a frame structure,
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critical sections where plastic hinges may form are the joints of the elements and

the places at which the concentrated loads are applied. Consequently, those poten-

tial plastic hinged sections are taken as the ends of the elements to facilitate struc-

tural analysis.

(2) Yielding of a section occurs when the yield function ,Flk is equal to zero, that

is, 4=-O. Further, the yield function ,F]le is determined by the dimension and yield

stress of the element as well as the applied internal forces .2S}.

(3) Mechanical behaviours of materials are perfectly elastic-plastic. That is,

the plastic hinged sections fbllow the plastic deformation theory, and the other

section behaves elastically.

2.2 PIasticitycondition

   Let .X} and O, denote the nodal fbrce and displacement vectors of the unit

element i, J', e.g., the element number t in the local coordinate system shown in

Fig. 1.

   From the assumption (1), the bending moment varies linearly from node i to j,

It fbllows that the maximum bending moment of the unit element occurs at one

or both of the nodes. Eventually, the yielding occurs at one or both of the ends

of the unit elements when the plasticity condition 4==O (k=i, j) is satisfied. In

case where the interaction at the yield section is not taken into account, this condi-

tion is simple.`-") In order to overcome the diMculties encountered in failure

analysis'3) considering the interaction effect of the internal forces upon the plas-

ticity condition, the yield function is approximated by a linearized surface as given

in the fbllowing fbrm:

         4-R,-CZX}-O (k-i,1') (1)
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where Rk : strength of the element end k,

      CleT : factor determined by the dimension of the element.

    Several examples of the plasticity conditions based on the above approxima-

tion are given fbr explanation:

(1) Plane frames where the interaction of the bending moment and axial fbrce

upon the plasticity condition is taken into account and when a fu11y plastic mo-

ment is taken as the reference strength (see Fig. 2):

- Rk Xlil}l:i:k

Mzk

R
k

F
xk

-R
 k

R
Apk

kAZpk

           Fig. 2 Linearized plasticity condition considering the interation of

                the bending moment and axial force.

          Rk=aykAZbk (a)
          CT･ -(A4i!A,i sign (]Fl,i), O, sign (Mlei), O, O, O) (b)

          Cf･ -(O, O, O, AZ,j!A,j sign (4j), O, sign (M],i)) (c)

where avk : yield stress

     AZhfe: plasticsectionmodulus

     Apk : area ofan element section

     sjgn(･): sign of(･)

          -Il,--(4,, 4,, Mle,, 4j, 4,, M},)T (d)

In particular, the well-known plasticity condition subjected solely to the bending

moment is obtained by making the first term of CT･ and the fourth term of C,T･ equal

to zero.

(2) Space frames where interaction of the bending moments and an axial fbrce

is considered and when a fuIIy plastic moment about the z axis is taken as the refer-

ence strength :

          Rk=a,kA4pk (e)
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          CT･ =(AZ},i/Api sign (,FL,i), O, O, O, A4pilAZ,,i sign (agi),

                     sign (M}i), O, O, O, O, O, O) (f)
          c,T･ == (o, o, O, O, O, O, A4,i/A,i sign (JF;,i), O, O, O

                    AZ.,j/AZ,,i sign (M,,･), sign (M}i)) (g)

where AZ}pk, AZ,pk: plastic section modulus about the z and y axes, respectively .

         -X} = (jFlti, 4i, jF,i, M}i, M,i, M}i, 4j, JFI,i, JF}i, M2i, M,j, M}j)' (h)

2.3 Derivation of reduced stiffness matrices and equivaient nodal forces

   When an element remains elastic, the relation between the nodal fbrce vector

.IS:} and displacement vector Ot of an element is written as

where kt: elastic element stiflhess matrix

After a section of the element has yielded, i.e., the plasticity condition jF]le=O has

attained, the relation between .X} and bt will be derived in the fbllowing.

   The total displaoement bt of the element is assumed to consist of an elastic

displacement Of and a plastic displacement O{, i.e.,

         o,-of+o{=of+o?+Be (3)
   Based on the plastic deformation theory, the plastic defbrmation is expressed

in the form:

         oe･ =2, OL ==-z,q

              ox
                                                          (4)
         oe･ = zi aoillll = -zj c?

where Zi and Z,･ are factors to indicate the magnitude of plastic defbrmation. For

example, when section i (j) is elastic, 2i=O (R,･=O).

   Nodal fbrce .X} is expressed,as

         .X}-k,Of-k,(6,-Oe) (5)
Substituting Eqs. (3) and (4) into Eq. (5) gives

         .Xl==k,6,+a,k,q+Zik,q (6)
Substituting Eq. (6) into Eq. (1) reduces to:

         R,-CT･ (k,O,+2,k,C,+2ik,q) =-O (7-1)
         Rj -C,T･ (k,O,+Z,k,C}+2jk,C}) ==O (7-2)

From Eqs. (7), the relation between 2i, Zi and Ot is derived. By substituting the

resulting relation into Eq. (6), the following equation is obtained:

         .X} ==kSP)O,+.XSP) (8)
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where klP) : reduced element stiffiiess matrix

      XSP): equivalent nodal fbrce vector

The explicit fbrms of kSP), X$P) and 2k are expressed as follows:

(1) In case of an elastic element:

          zi=zj--o

          kSP)=k,

          xSP)=o

(2) In case of failure at the left-hand end:

          R,-(R,-CT･ k,6,)1(Cf･ k,C,), Rj -O

          kSP)(-k2)-k,-k,C,CT･ k,!(Cf･ k,C,)

          .X SP )( -X 2) -R,k, C,1(C I･ k, C,)

(3) In case of failure at the right-hand end:

          2,-O, 2j=(Ri-Cf･k,O,)!(C;k,Cj)

          kSP )( -k5) -k, -k, q･ C,T･ k,1(C ,T･ k, q.)

          XSP )( -X5) =Rjk, Cjl(C ;･ k, Cj)

(4) In case of failure at the both ends:

          I11l = -[G-i] [H-]o,+ [G-i] I Ri, l

               ,.-i,.=[Zik,iC.I Si2,tX-i, [H]=[Si･21]

          kSP)(:==k2R)-k,-[H]T[G-i][H]

          X-(,P)(=XdL, R) =,= [H]T [G-i] I lllll

The reduced element stiffness matrix kSP) and the equivalent

X(tP) are analytically derived from Eqs. (a), (b), and (c) and they

3 for the plane frame in which the interaction of the bending

force upon the plasticity condition is considered. Moreover, it

that the following fact is observed from the results in Fig. 3.

=O, the reduced element stifibess matrix and the equivalent

plane frame subjected to the bending moment alone are obtained,

truss structure subiected only to the axial force are given by

Rjl(CR'I)-"Rj( =a,jApj).

                    3. Generation of Safety Margins

    Consider a frame structure with n elements and at most ml

of freedom of a node) app}ied to its lnodes. Let the left- and

s

159

(9-1)

(9-2)

(9-3)

(9-4)

 nodal force vector

   are given in Fig.

  moment and axial

   should be noted
  By taking CL:= cR

 force vector for a

    and those for a

putting, CR.oo and

loads (m: degree

 right-hand ends
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of an element be serially numbered. Here, the failure criterion of the i-th element

end is given by

          Z, -R,-CT･ .X} $O (lo)
    Structural failure of a frame structure is defined as occurrence of the plastic

collapsing in the structure. A criterion for structural failure is given in the follow-

ing manner. When the element ends ri, r2,･･･,rp.i have failed, stress analysis is

performed once again and the element stifihess equation is obtained as

          .X} -kSP)O,+XSP) (11)
where kSP) : reduced element stifihess matrix

      XSP): equivalent nodal force vector

After calculating the reduced element stiffness matrix for all the elements, they

are assembled to have the total structure stifihess equation:

          K(P)d==L+R(P) (12)
where d : total nodal displacement vector referred to the global coordinate system

            n      K(P)==Z TfkSP)Tt: reduced total structure stifihess matrix
           t=1
      Tt: transformationmatrix

      L: vector of the external loads

              n      R(P)=-2 TfXSP): equivalent nodal force vector referred to the global
             t=1
           coordinate system

Solving the above equation with respect to the nodal displacement vector yields

          d-[K(P)]-i(L+R(P)) (13)
From Eq, (13), the nodal displacement vector d, of the t-th element referred to

the global coordinate system is given by

          d,--[KSP)l-i(L+R(P)) (14)
where the matrix [K9)]-' indicates the matrix formed by extracting the rows cor-

responding to the vector dt from the matrix [K(P)]-i. As O, is related to dt through

the transformation matrix Tt: Ot= Tlat, the nodal force vector Xt of the t-th mem-

ber is given by

          .x}-bgp)(L+R(p))+Xsp) (ls)
where bSP)==kS')Z[K(t')]-i

    After repeating the above processes, structural failure results when the element

ends up to some specified number pk, e.g., element ends ri, r2, ..., and rpk, have

failed. Occurrence of the plastic collapsing is determined by investigating the

total structure stiffness matrix [K(Pk)]. For example, a criterion for structural failure

is given by
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          l[K('h)]l=<e (16)
where e is a specified constant, Another criterion will be afforded by the magni-

tudes of the nodal displacements.

   Now let us consider the expressions for the safety margins of the element ends.

When the element ends ri, r2, ･･., and rp-i have failed, the safety margin of the sur-

viving element end i (element number t) is given by

                         n--          ZS･P)-=R,+CT･ (bSP)X T,TX2P)-XSP))-CT･ bSP)L (17)
                        k=1
                  P-1 ml             == Ri+,X.,airkRrk-,>, i]., l, bij'Li (18)

Note that Eq. (17) results by substitution of Eq. (15) into Eq. (10), and Eq. (18)

does by resolution of the vectors into their components.

   By using the safety margins, a criterion of structural failure is given by

          Z;P,) SO (p=1, 2, ･･･, p,) (19)
   If there are any failed element ends rp, which have their coeMcients arp,rp equal

to zero in the safety margin of the last yielded element end rp,, i.e･,

they are the redundant element ends which do not directly contribute to oecurrence

of the plastic collapsing.

   In the searching process of a complete failure path, the value of Zk (k =i,j)

has an important physical meaning as described below. When ak (k==i, j) satisfies

in Eqs. (9), yielding of the element end continues. On the other hand, when

unloading has started. Consequently, in case of 2k<O, it is neccessary to eliminate

the element end k from the set of the failed element ends to form a complete failure

path.

   In summary, the plasticity condition of the element end under the combined

loads has been approximated by a linear surface given by Eq. (1) regardless of a

plane or space structure, and the safety margin of the element end has been ex-

pressed as a linear combination of the strengths of the element ends and the applied

loads. Consequently, reliability analysis is greatly facilitated when the strengths

and the loads are random variables.

4. ConclusiOns

   The method was developed in this paper fbr generating the safety margins of

the frame structures to perfbrm their reliability analysis under the combined loading

conditions. The plasticity condition of the element section was approximated by

a linear surface and structural failure was determined by production of large nodal

displacements due to the plastic collapsing. The matrix method was applied to
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have the expression of the safety margins and the failure criteria. The conclusions

are summarized as follows:

1. The reduced stifthess matrix describing the elastic-plastic behaviour of the

   elements and the equivalent nodal forces after development of plastic hinges

   are derived by approximating the plasticity condition with a linear surface.

2. By using the matrix method, the safety margins of the element ends are ex-

   pressed as linear combinations of the strengths of the elements and the applied

   loads.

3. The proposed method can be applied to generation of the safety margins both

   for plane and space frame structures under any loading conditions.
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