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A nonlinear tool life model is proposed, in which the cutting conditions and the
amount of tool wear are treated as independent variables. The nonlinear model is
constructed to fit the process of tool wear in three stages, i.e. rapid initial wear, gradual
wear and catastrophic wear.

The nonlinear parameters are estimated by Gauss linearization method and pre-
diction accuracy of tool life is investigated within confidence region of the estimated
parameters.

1. Introduction

Taylor equation is widely used for determination of economically optimum
cutting conditions. The equations which treat the amount of tool wear are neces-
sary when surface roughness is one of the constraints in the machining process,
and cutting speed varies in cutting material such as a stepped part. In answer to
the request, a multiplication model (a modified form of Taylor equation) and a
polynomial model are suggested. The models agree well with the wear process
which involves gradual wear after rapid initial wear, however, disagreement between
observations and the models is frequently perceived at the third stage of the process.
This paper proposes a tool life equation which describes the three stages of the wear
process as a mathematical model. The sensitivity analysis of the proposed model
is tried by investigating the effect of variation in the parameters on its accuracy.

2. Tool Life Equation

Flank wear V3 is related to cutting time ¢, if cutting conditions are constant,
as shown in Fig. 1 (a). The wear process follows three stages; rapid initial wear,
gradual wear and catastrophic wear as the cutting time increases.” Assume that
the wear process curve approximates to a curve having an asymptote t=T, as shown
in Fig. 1 (b), then the relationship between Vg and 7 is given by

t=T,exp [—exp (V"] n<0 )]

where b and n are constants and T, stands for the critical cutting time. Provided
that T, in eq. (1) is a function of the cutting conditions,

T,=aV"if" @
where a, n, and n, are constants, ¥V is the cutting speed and f'is the feed rate. The

depth of cut can be disregarded because its effect on tool life is almost negligible.?
Egs. (1) and (2) give
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Currine Tive 2
Cutting Tive ¢ 29

FLANK WeAR V3 FLank WEAR 7y

Fig.1 (a) Fig. 1(b)
Fig. 1(a) Ordinary wear process curve
Fig. 1(b) Approximate wear process curve

t=aV"1f" exp [—exp (5)V5"] | (€)

Substitution of the appropriate value of Vg in eq. (3) as the tool life criterion yields
the ordinary Taylor equation. Taking logarithms of both sides of eq. (3) to esti-
mate the parameters, we have

Int=Ina+n In Vitn,Inf—e' V" (€Y

Since eq. (4) is nonlinear, the least square method can not estimate simultaneously
the parameters, @, n,, n,, b and n. The application of Gauss linearization method
can be examined.

Equation (4) can be written as

7;=P 1+ Boxi+Faxi —ﬂ4x?§ o)

where 7, x,, x, and x; are the logarithmic transformation of the cutting time, the
cutting speed, the feed rate and the amount of flank wear, respectively. The sen-
sitivity coefficients in eq. (5) are

677 ; 7; 677 :
X.=—"= N .=_L=xi, i:-i:‘.’
i1 a8, i2 34, 1 3 35, Xiz ©
O, on.
Xi= '5%': =—x{§ and Xz= 6;79’5 =—p.(log x;))x1% .
The sensitivity matrix corresponding to the coefficients is
b) 0
X= # 517/9- =1 —xf5 —Bllogxpxi| (D)
87.7 a.ﬂ . :
a_ﬂ: ) /9: L oxy X —x’:g —Blog xn3)x5g
The nonlinear parameter vector b can be estimated by
B =ph | POLXTE(Y — Y] (82)
P xThX® (8b)

where the notation k and k-1 indicate the iteration number of calculation required
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Table 1 Cutting conditions and experimental results

i | QU pearae  Cdne o ko Qi
: V' m/min : X3 Xo Ve mm t min
1 252 0.40 1 1 0.143 5.01
2 252 0.15 1 —1 0.151 13.39
3 178 0.40 —1 1 0.098 7.78
4 178 0.15 —1 —1 0.100 6.35
5 300 0.25 2 0 0.080 1.90
6 211 0.60 0 2 0.108 1.68
7 150 0.25 -2 0 0.165 44.15
8 211 0.10 0 -2 0.187 8.80
9 252 0.40 1 1 0.342 9.28
10 252 0.15 1 —1 0.191 21.54
11 178 0.40 —1 1 0.122 13.73
12 178 0.15 —1 -1 0.183 31.47
13 300 0.25 2 0 0.155 4.93
14 211 0.60 0 2 0.195 3.83
15 . 150 0.25 -2 0 0.295 151.42
16 211 0.10 0 -2 0.270 31.46
17 252 0.40 1 1 0.511 15.81
18 252 0.15 1 —1 0.259 40.21
19 178 0.40 —1 1 0.178 17.79
20 178 0.15 —1 —1 0.300 78.87
21 300 0.25 2 0 0.260 6.84
22 211 0.60 0 2 0.258 8.27
23 150 0.25 -2 0 0.450 293.75
24 211 0.10 0 -2 0.448 103.90
25 252 0.40 1 1 0.670 21.90
26 252 0.15 1 —1 0.282 48.79
27 178 0.40 —1 1 0.210 35.45
28 178 0.15 -1 —1 0.414 197.85
29 300 0.25 2 0 0.331 12.09
30 211 0.60 0 2 0.341 12.99
31 150 0.26 -2 0 0.550 323.04
32 211 0.10 0 -2 0.624 117.32
33 252 0.40 1 1 0.802 25.65
34 252 0.15 1 —1 0.448 61.00
35 178 0.40 —1 1 0.261 52.63
36 178 0.15 —1 -1 0.643 333,70
37 300 0.25 2 0 0.536 15.86
38 211 0.60 0 2 0.434 16.28
39 150 0.25 —2 0 0.749 344.20
40 211 0.10 0 -2 0.969 283.35
41 211 0.25 0 0 0.250 21.58
42 211 0.25 0 0 0.250 34.08
43 211 0.25 0 0 0.250 50.70
44 211 0.25 0 0 0.250 41.15
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for estimation of nonlinear parameters, and y® implies the estimate of ¥, which
is obtained at k-th iteration.

Design of the Experiment

A central composite design of twelve tests in five levels with two factors (cut-
ting speed and feed rate), consisting of nine different cutting conditions and three
repetitions at the center point is adopted for the nonlinearity of the postulated
model. Each of the eight tests is performed at five levels of amount of tool wear,
and total number of experiments is forty-four.

The levels of x,; and x, are

x _2(In ¥—In 252) 11,

_2nf—1n04) )
" n252—In 178 ¥ +1 ©)

2 In0.4—1In0.15

X3 is equivalent to Vg on a logarithmic scale, since control of flank wear level is
difficult and time consuming.

4. Experiments and Results

Tool life tests were performed in an engine lathe equipped with a 7.5 KW
motor. The work material was as-received S55C carbon steel; the specimens
were 100 mm in diameter and 400 mm in length. The cutting tool was a throw-
away type made of P10 and its geometrical shape was (—0.5, —0.5, 5, 5, 15, 15,
0.8). The cutting conditions, flank wear and corresponding cutting time are shown
in Table 1.

Using the experimental results and the estimated parameters b,, b,, b,, b, and
bs, we obtain

y=e57—0.62x;—0.42x,—2.04V 3> (10)

The above result and the iterations are summarized in Table 2. From egs. (9)
and (10), the required tool life equation becomes

Table 2 Summary of calculations by iterations

Tteration Parameter Values Sum of
Number by by b be b Squares

0 20.0 —3.0 —1.0 0.6 —0.7 10384.0

1 6.224 —0.621 —0.422 1.471 —0.286 44.00

2 6.102 —0.620 —0.423 1.361 —0.557 11.143

3 6.572 —0.620 —0.422 1.814 —0.408 9.948

4 6.795 —0.620 —0.422 2.042 —0.395 9.226

5 6.789 —0.620 —0.422 2.037 —0.397 9.223

t=e24.67V-3.57f—0.86 exp (—2.04V§°'4°) . (1 1)

Application of F-statistics for purpose of comparison is described in Table 3.
It is apparent from the table that the proposed model is satisfactory.
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Table 3 Analysis of variance table

WIDTH OF FLANK WEAR ¥y (mm)

Source of Sum of Degree of Mean
Variation Squares Freedom  Square C;lc\l;;a}t;d
SV SS DF MS 0
Regression 545.1 5
Residual 9.223 39 F(36, 3, 0.95)
Lack of Fit 8.825 36 0.245 1.842 T=8.62
Pure Error 0.398 3 0.133 >k
Total 554.323 44
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Fig. 2(a) Wear process curve (V=178 m/min, f=0.15 mm/rev., d=1 mm)
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Fig. 2(b) Wear process curve (=300 m/min, f=0.25 mm/rev., d=1 mm)
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Fig. 2(c) Wear process curve (=211 m/min, f=0.10 mm/rev., d=1 mm)

The curves of the tool wear process by the proposed model and the others
together with observed values are shown in Figs. 2 (a), 2 (b) and 2 (c).. In these
figures the multiplication model is a modified form of Taylor equation:

t:.—aoV"If"z VBaa

where a,, a,, a, and aq; are constants. The polynomial model can be obtained by
a stepwise regression procedure.? The parameters of the two models are estimated
with the data used in the proposed model. These figures tell us that whereas the
multiplication and the polynomial models are valid for the tool life in the second
stage, the proposed model is valid for the tool life in the third stage. The mean
square errors for each model shown in Table 4 suggest that the proposed model
is not so inferior to the others in accuracy.

Table 4 Comparison of the accuracy of the models

Tool Life Tool Life Degree of Mean

Equation Criterion Residual Freedom Square
Proposed Model Vs=0.7 9.223 39 0.237
Mutltiplication 0.4 7.328 24 0.305
Model 0.7 10.009 40 0.250
Polynomial 0.4 2.049 21 0.098
Model 0.7 3.645 37 0.099

For practical application of tool life equation to analytical method such as
the determination of economically optimum cutting conditions, the polynomial
model cannot be used because of its complexity. The multiplication model is
intended for optimization of cutting processes.” From the facts that the pro-
posed model is similar in form to the multiplication model and that use of non-
linear estimation enables us to obtain a tool life model readily without estimating -
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the critical cutting time individually and employing a linear estimation twice, one
may regard the model as practcial.

5. Sensitivity Analysis of the Tool Life Model

Since parameters are probabilistic, not deterministic, at a workshop parameter
estimation should be tried again in making use of the proposed model which is
composed of two parts; a function of the cutting condition and a function of the
amount of tool wear. If the optimization of cutting conditions for a specified tool
life criterion is to be accomplished, the parameter values in the former function
can be updated by fixing the parameters in the latter. And if the tool life time
having the relation to Vg under constant cutting conditions is to be predicted, up-
dating the parameter values in the latter would be possible by fixing the para-
meters in the former. If the fixed ones are greatly affected by these variation, this
method will be useless.

The objective of this section is the determination of the joint confidence regions
of the parameters in each function and the sensitivities of tool life to the variations
in the parameters within the joint confidence regions.

5.1 Confidence Region of the Parameters in the Model

Unlike linear estimation, the expression for the confidence region of non-
linear parameter is approximate, because the sensitivity coefficients are function
of parameters and the first two terms of Taylor series in linearization method.

Let 8 be a vector of p parameters and b be its least squares estimator, the
100(1 —a)%, joint confidence region for B is given by

G—p)*XTX(b —P)= pS’Fi-o(p, n—P) (12)
where X is the sensitivity matrix of which sensitivity coefficients are function of b,
and S? is approximately :
¥—¥)"(¥—7¥)
n—p

S? =

(13)

The approximate confidence region given by eq. (12) is ellipse or circle for p=2,
The sensitivity matrix for estimating the parameters in aV™f": is equivalent
to the first #x 3 matrix of eq. (7). From the matrix we obtain

4 0 0
XTX=| 0 60 O
0 0 60

The eigenvalues of XX are
L=44, 2,=60, 2A,—60

and corresponding eigenvectors are
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1 0 0
e=|0 e=11 e;=| 0
0 0 1

Hence, the end points of the axes are given by

[(B—B)maj(0—B)minl =+ (PS°Fi-a(5, 39
1 0 0][44™ 0 0
X| 01 0f] 0 60 0
00 1 0 0 60

The reason for putting p=>5 is that the estimation of the three parameters in aV"1f":
includes estimation of the two parameters in exp (—e’Vg"). Thus the region forms
into the ellipsoid, of which each cross section is shown in Fig. 3. Since the sen-
sitivity matrix of exp (—e’¥g") consists of the fourth and fifth columns in eq. (7),

XTX is

4
MSE=0.311
(6.79, -0.40, -0.42) | ° a

MSE=0, 311

(7.05, ~0.62, -0.42)

MSE=0.311
(6.79, -0.62, -0.64) e

MSE=0.311

6.79, -0.62, -0.20)

MSE=0.311
(6.53, -0.62, -0.42)
MSE=0. 311
(6.79, -0.84, -0.42)

Fig. 3 Joint confidence region of the parameters for aV* f*s and
values of mean square errors

1352 —427.3
XTX=
- —427.3 1538.1
For the eigenvalues,
2,=1531 2,=1658
and fo1 the eigenvectors,

0.963 —0.270 ‘

el - ez == ‘
t 0.270 ‘ 0.963

Consequently, the end points of the axes are given by

[®—B)aj (B —B)mial =L (PS7F)-o(5, 39
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10.963 -0.2701 115.31‘1’2 0

0.270 0.963 0 165812
The region is the ellipse as shown in Fig. 4.
A
MSE=0.261

(2.28, -0.33)

MSE=0.261
b
MSE=0.263
(2.04, -0.42)

MSE=0.264
(1.79, -0.47)

Fig. 4 Joint confidence region of the parameters for exp (—e?V3") and
values of mean square errors

5.2 The sensitivity of the Tool Life Equation

In order to examine how the accuracy of the tool life changes within the joint
confidence regions of the parameters, the residual sums of squares of the estimated
tool lives from the observed may be obtained from the 959 confidence regions
of the calculated parameters. The mean square errors are shown in Figs. 3 and 4.
From these figures a significant difference cannot be perceived. Therefore, if
desired, the parameters in one function can be updated with fixed parameters in
the other.

6. Conclusion

(1) The nonlinear model for prediction of the tool life is identified, which can be
applied to the wear process consisting of the three stages of tool wear with the cut-
ting conditions. The parameters in the model are estimated by Gauss linearization
method.

(2) The accuracy and utility of the model are compared with multiplication and
polynomial models to show its usefulness.

(3) From the results of the sensitivity analysis of the model, a simple way of prac-
tical use of the model is considered.
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